xref: /linux/kernel/time/tick-common.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20 
21 #include <asm/irq_regs.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Tick devices
27  */
28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
29 /*
30  * Tick next event: keeps track of the tick time. It's updated by the
31  * CPU which handles the tick and protected by jiffies_lock. There is
32  * no requirement to write hold the jiffies seqcount for it.
33  */
34 ktime_t tick_next_period;
35 
36 /*
37  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
38  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
39  * variable has two functions:
40  *
41  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
42  *    timekeeping lock all at once. Only the CPU which is assigned to do the
43  *    update is handling it.
44  *
45  * 2) Hand off the duty in the NOHZ idle case by setting the value to
46  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
47  *    at it will take over and keep the time keeping alive.  The handover
48  *    procedure also covers cpu hotplug.
49  */
50 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
51 #ifdef CONFIG_NO_HZ_FULL
52 /*
53  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
54  * tick_do_timer_cpu and it should be taken over by an eligible secondary
55  * when one comes online.
56  */
57 static int tick_do_timer_boot_cpu __read_mostly = -1;
58 #endif
59 
60 /*
61  * Debugging: see timer_list.c
62  */
63 struct tick_device *tick_get_device(int cpu)
64 {
65 	return &per_cpu(tick_cpu_device, cpu);
66 }
67 
68 /**
69  * tick_is_oneshot_available - check for a oneshot capable event device
70  */
71 int tick_is_oneshot_available(void)
72 {
73 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
74 
75 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
76 		return 0;
77 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
78 		return 1;
79 	return tick_broadcast_oneshot_available();
80 }
81 
82 /*
83  * Periodic tick
84  */
85 static void tick_periodic(int cpu)
86 {
87 	if (tick_do_timer_cpu == cpu) {
88 		raw_spin_lock(&jiffies_lock);
89 		write_seqcount_begin(&jiffies_seq);
90 
91 		/* Keep track of the next tick event */
92 		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
93 
94 		do_timer(1);
95 		write_seqcount_end(&jiffies_seq);
96 		raw_spin_unlock(&jiffies_lock);
97 		update_wall_time();
98 	}
99 
100 	update_process_times(user_mode(get_irq_regs()));
101 	profile_tick(CPU_PROFILING);
102 }
103 
104 /*
105  * Event handler for periodic ticks
106  */
107 void tick_handle_periodic(struct clock_event_device *dev)
108 {
109 	int cpu = smp_processor_id();
110 	ktime_t next = dev->next_event;
111 
112 	tick_periodic(cpu);
113 
114 	/*
115 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
116 	 * update_process_times() -> run_local_timers() ->
117 	 * hrtimer_run_queues().
118 	 */
119 	if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic)
120 		return;
121 
122 	if (!clockevent_state_oneshot(dev))
123 		return;
124 	for (;;) {
125 		/*
126 		 * Setup the next period for devices, which do not have
127 		 * periodic mode:
128 		 */
129 		next = ktime_add_ns(next, TICK_NSEC);
130 
131 		if (!clockevents_program_event(dev, next, false))
132 			return;
133 		/*
134 		 * Have to be careful here. If we're in oneshot mode,
135 		 * before we call tick_periodic() in a loop, we need
136 		 * to be sure we're using a real hardware clocksource.
137 		 * Otherwise we could get trapped in an infinite
138 		 * loop, as the tick_periodic() increments jiffies,
139 		 * which then will increment time, possibly causing
140 		 * the loop to trigger again and again.
141 		 */
142 		if (timekeeping_valid_for_hres())
143 			tick_periodic(cpu);
144 	}
145 }
146 
147 /*
148  * Setup the device for a periodic tick
149  */
150 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
151 {
152 	tick_set_periodic_handler(dev, broadcast);
153 
154 	/* Broadcast setup ? */
155 	if (!tick_device_is_functional(dev))
156 		return;
157 
158 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
159 	    !tick_broadcast_oneshot_active()) {
160 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
161 	} else {
162 		unsigned int seq;
163 		ktime_t next;
164 
165 		do {
166 			seq = read_seqcount_begin(&jiffies_seq);
167 			next = tick_next_period;
168 		} while (read_seqcount_retry(&jiffies_seq, seq));
169 
170 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
171 
172 		for (;;) {
173 			if (!clockevents_program_event(dev, next, false))
174 				return;
175 			next = ktime_add_ns(next, TICK_NSEC);
176 		}
177 	}
178 }
179 
180 #ifdef CONFIG_NO_HZ_FULL
181 static void giveup_do_timer(void *info)
182 {
183 	int cpu = *(unsigned int *)info;
184 
185 	WARN_ON(tick_do_timer_cpu != smp_processor_id());
186 
187 	tick_do_timer_cpu = cpu;
188 }
189 
190 static void tick_take_do_timer_from_boot(void)
191 {
192 	int cpu = smp_processor_id();
193 	int from = tick_do_timer_boot_cpu;
194 
195 	if (from >= 0 && from != cpu)
196 		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
197 }
198 #endif
199 
200 /*
201  * Setup the tick device
202  */
203 static void tick_setup_device(struct tick_device *td,
204 			      struct clock_event_device *newdev, int cpu,
205 			      const struct cpumask *cpumask)
206 {
207 	void (*handler)(struct clock_event_device *) = NULL;
208 	ktime_t next_event = 0;
209 
210 	/*
211 	 * First device setup ?
212 	 */
213 	if (!td->evtdev) {
214 		/*
215 		 * If no cpu took the do_timer update, assign it to
216 		 * this cpu:
217 		 */
218 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
219 			tick_do_timer_cpu = cpu;
220 			tick_next_period = ktime_get();
221 #ifdef CONFIG_NO_HZ_FULL
222 			/*
223 			 * The boot CPU may be nohz_full, in which case set
224 			 * tick_do_timer_boot_cpu so the first housekeeping
225 			 * secondary that comes up will take do_timer from
226 			 * us.
227 			 */
228 			if (tick_nohz_full_cpu(cpu))
229 				tick_do_timer_boot_cpu = cpu;
230 
231 		} else if (tick_do_timer_boot_cpu != -1 &&
232 						!tick_nohz_full_cpu(cpu)) {
233 			tick_take_do_timer_from_boot();
234 			tick_do_timer_boot_cpu = -1;
235 			WARN_ON(tick_do_timer_cpu != cpu);
236 #endif
237 		}
238 
239 		/*
240 		 * Startup in periodic mode first.
241 		 */
242 		td->mode = TICKDEV_MODE_PERIODIC;
243 	} else {
244 		handler = td->evtdev->event_handler;
245 		next_event = td->evtdev->next_event;
246 		td->evtdev->event_handler = clockevents_handle_noop;
247 	}
248 
249 	td->evtdev = newdev;
250 
251 	/*
252 	 * When the device is not per cpu, pin the interrupt to the
253 	 * current cpu:
254 	 */
255 	if (!cpumask_equal(newdev->cpumask, cpumask))
256 		irq_set_affinity(newdev->irq, cpumask);
257 
258 	/*
259 	 * When global broadcasting is active, check if the current
260 	 * device is registered as a placeholder for broadcast mode.
261 	 * This allows us to handle this x86 misfeature in a generic
262 	 * way. This function also returns !=0 when we keep the
263 	 * current active broadcast state for this CPU.
264 	 */
265 	if (tick_device_uses_broadcast(newdev, cpu))
266 		return;
267 
268 	if (td->mode == TICKDEV_MODE_PERIODIC)
269 		tick_setup_periodic(newdev, 0);
270 	else
271 		tick_setup_oneshot(newdev, handler, next_event);
272 }
273 
274 void tick_install_replacement(struct clock_event_device *newdev)
275 {
276 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
277 	int cpu = smp_processor_id();
278 
279 	clockevents_exchange_device(td->evtdev, newdev);
280 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
281 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
282 		tick_oneshot_notify();
283 }
284 
285 static bool tick_check_percpu(struct clock_event_device *curdev,
286 			      struct clock_event_device *newdev, int cpu)
287 {
288 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
289 		return false;
290 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
291 		return true;
292 	/* Check if irq affinity can be set */
293 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
294 		return false;
295 	/* Prefer an existing cpu local device */
296 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
297 		return false;
298 	return true;
299 }
300 
301 static bool tick_check_preferred(struct clock_event_device *curdev,
302 				 struct clock_event_device *newdev)
303 {
304 	/* Prefer oneshot capable device */
305 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
306 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
307 			return false;
308 		if (tick_oneshot_mode_active())
309 			return false;
310 	}
311 
312 	/*
313 	 * Use the higher rated one, but prefer a CPU local device with a lower
314 	 * rating than a non-CPU local device
315 	 */
316 	return !curdev ||
317 		newdev->rating > curdev->rating ||
318 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
319 }
320 
321 /*
322  * Check whether the new device is a better fit than curdev. curdev
323  * can be NULL !
324  */
325 bool tick_check_replacement(struct clock_event_device *curdev,
326 			    struct clock_event_device *newdev)
327 {
328 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
329 		return false;
330 
331 	return tick_check_preferred(curdev, newdev);
332 }
333 
334 /*
335  * Check, if the new registered device should be used. Called with
336  * clockevents_lock held and interrupts disabled.
337  */
338 void tick_check_new_device(struct clock_event_device *newdev)
339 {
340 	struct clock_event_device *curdev;
341 	struct tick_device *td;
342 	int cpu;
343 
344 	cpu = smp_processor_id();
345 	td = &per_cpu(tick_cpu_device, cpu);
346 	curdev = td->evtdev;
347 
348 	if (!tick_check_replacement(curdev, newdev))
349 		goto out_bc;
350 
351 	if (!try_module_get(newdev->owner))
352 		return;
353 
354 	/*
355 	 * Replace the eventually existing device by the new
356 	 * device. If the current device is the broadcast device, do
357 	 * not give it back to the clockevents layer !
358 	 */
359 	if (tick_is_broadcast_device(curdev)) {
360 		clockevents_shutdown(curdev);
361 		curdev = NULL;
362 	}
363 	clockevents_exchange_device(curdev, newdev);
364 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
365 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
366 		tick_oneshot_notify();
367 	return;
368 
369 out_bc:
370 	/*
371 	 * Can the new device be used as a broadcast device ?
372 	 */
373 	tick_install_broadcast_device(newdev, cpu);
374 }
375 
376 /**
377  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
378  * @state:	The target state (enter/exit)
379  *
380  * The system enters/leaves a state, where affected devices might stop
381  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
382  *
383  * Called with interrupts disabled, so clockevents_lock is not
384  * required here because the local clock event device cannot go away
385  * under us.
386  */
387 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
388 {
389 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
390 
391 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
392 		return 0;
393 
394 	return __tick_broadcast_oneshot_control(state);
395 }
396 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
397 
398 #ifdef CONFIG_HOTPLUG_CPU
399 void tick_assert_timekeeping_handover(void)
400 {
401 	WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id());
402 }
403 /*
404  * Stop the tick and transfer the timekeeping job away from a dying cpu.
405  */
406 int tick_cpu_dying(unsigned int dying_cpu)
407 {
408 	/*
409 	 * If the current CPU is the timekeeper, it's the only one that
410 	 * can safely hand over its duty. Also all online CPUs are in
411 	 * stop machine, guaranteed not to be idle, therefore it's safe
412 	 * to pick any online successor.
413 	 */
414 	if (tick_do_timer_cpu == dying_cpu)
415 		tick_do_timer_cpu = cpumask_first(cpu_online_mask);
416 
417 	/* Make sure the CPU won't try to retake the timekeeping duty */
418 	tick_sched_timer_dying(dying_cpu);
419 
420 	/* Remove CPU from timer broadcasting */
421 	tick_offline_cpu(dying_cpu);
422 
423 	return 0;
424 }
425 
426 /*
427  * Shutdown an event device on a given cpu:
428  *
429  * This is called on a life CPU, when a CPU is dead. So we cannot
430  * access the hardware device itself.
431  * We just set the mode and remove it from the lists.
432  */
433 void tick_shutdown(unsigned int cpu)
434 {
435 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
436 	struct clock_event_device *dev = td->evtdev;
437 
438 	td->mode = TICKDEV_MODE_PERIODIC;
439 	if (dev) {
440 		/*
441 		 * Prevent that the clock events layer tries to call
442 		 * the set mode function!
443 		 */
444 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
445 		clockevents_exchange_device(dev, NULL);
446 		dev->event_handler = clockevents_handle_noop;
447 		td->evtdev = NULL;
448 	}
449 }
450 #endif
451 
452 /**
453  * tick_suspend_local - Suspend the local tick device
454  *
455  * Called from the local cpu for freeze with interrupts disabled.
456  *
457  * No locks required. Nothing can change the per cpu device.
458  */
459 void tick_suspend_local(void)
460 {
461 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
462 
463 	clockevents_shutdown(td->evtdev);
464 }
465 
466 /**
467  * tick_resume_local - Resume the local tick device
468  *
469  * Called from the local CPU for unfreeze or XEN resume magic.
470  *
471  * No locks required. Nothing can change the per cpu device.
472  */
473 void tick_resume_local(void)
474 {
475 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
476 	bool broadcast = tick_resume_check_broadcast();
477 
478 	clockevents_tick_resume(td->evtdev);
479 	if (!broadcast) {
480 		if (td->mode == TICKDEV_MODE_PERIODIC)
481 			tick_setup_periodic(td->evtdev, 0);
482 		else
483 			tick_resume_oneshot();
484 	}
485 
486 	/*
487 	 * Ensure that hrtimers are up to date and the clockevents device
488 	 * is reprogrammed correctly when high resolution timers are
489 	 * enabled.
490 	 */
491 	hrtimers_resume_local();
492 }
493 
494 /**
495  * tick_suspend - Suspend the tick and the broadcast device
496  *
497  * Called from syscore_suspend() via timekeeping_suspend with only one
498  * CPU online and interrupts disabled or from tick_unfreeze() under
499  * tick_freeze_lock.
500  *
501  * No locks required. Nothing can change the per cpu device.
502  */
503 void tick_suspend(void)
504 {
505 	tick_suspend_local();
506 	tick_suspend_broadcast();
507 }
508 
509 /**
510  * tick_resume - Resume the tick and the broadcast device
511  *
512  * Called from syscore_resume() via timekeeping_resume with only one
513  * CPU online and interrupts disabled.
514  *
515  * No locks required. Nothing can change the per cpu device.
516  */
517 void tick_resume(void)
518 {
519 	tick_resume_broadcast();
520 	tick_resume_local();
521 }
522 
523 #ifdef CONFIG_SUSPEND
524 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
525 static unsigned int tick_freeze_depth;
526 
527 /**
528  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
529  *
530  * Check if this is the last online CPU executing the function and if so,
531  * suspend timekeeping.  Otherwise suspend the local tick.
532  *
533  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
534  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
535  */
536 void tick_freeze(void)
537 {
538 	raw_spin_lock(&tick_freeze_lock);
539 
540 	tick_freeze_depth++;
541 	if (tick_freeze_depth == num_online_cpus()) {
542 		trace_suspend_resume(TPS("timekeeping_freeze"),
543 				     smp_processor_id(), true);
544 		system_state = SYSTEM_SUSPEND;
545 		sched_clock_suspend();
546 		timekeeping_suspend();
547 	} else {
548 		tick_suspend_local();
549 	}
550 
551 	raw_spin_unlock(&tick_freeze_lock);
552 }
553 
554 /**
555  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
556  *
557  * Check if this is the first CPU executing the function and if so, resume
558  * timekeeping.  Otherwise resume the local tick.
559  *
560  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
561  * Interrupts must not be enabled after the preceding %tick_freeze().
562  */
563 void tick_unfreeze(void)
564 {
565 	raw_spin_lock(&tick_freeze_lock);
566 
567 	if (tick_freeze_depth == num_online_cpus()) {
568 		timekeeping_resume();
569 		sched_clock_resume();
570 		system_state = SYSTEM_RUNNING;
571 		trace_suspend_resume(TPS("timekeeping_freeze"),
572 				     smp_processor_id(), false);
573 	} else {
574 		touch_softlockup_watchdog();
575 		tick_resume_local();
576 	}
577 
578 	tick_freeze_depth--;
579 
580 	raw_spin_unlock(&tick_freeze_lock);
581 }
582 #endif /* CONFIG_SUSPEND */
583 
584 /**
585  * tick_init - initialize the tick control
586  */
587 void __init tick_init(void)
588 {
589 	tick_broadcast_init();
590 	tick_nohz_init();
591 }
592