1 /* 2 * linux/kernel/time/tick-common.c 3 * 4 * This file contains the base functions to manage periodic tick 5 * related events. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/module.h> 22 23 #include <asm/irq_regs.h> 24 25 #include "tick-internal.h" 26 27 /* 28 * Tick devices 29 */ 30 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 31 /* 32 * Tick next event: keeps track of the tick time 33 */ 34 ktime_t tick_next_period; 35 ktime_t tick_period; 36 37 /* 38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 40 * variable has two functions: 41 * 42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 43 * timekeeping lock all at once. Only the CPU which is assigned to do the 44 * update is handling it. 45 * 46 * 2) Hand off the duty in the NOHZ idle case by setting the value to 47 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 48 * at it will take over and keep the time keeping alive. The handover 49 * procedure also covers cpu hotplug. 50 */ 51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 52 53 /* 54 * Debugging: see timer_list.c 55 */ 56 struct tick_device *tick_get_device(int cpu) 57 { 58 return &per_cpu(tick_cpu_device, cpu); 59 } 60 61 /** 62 * tick_is_oneshot_available - check for a oneshot capable event device 63 */ 64 int tick_is_oneshot_available(void) 65 { 66 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 67 68 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 69 return 0; 70 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 71 return 1; 72 return tick_broadcast_oneshot_available(); 73 } 74 75 /* 76 * Periodic tick 77 */ 78 static void tick_periodic(int cpu) 79 { 80 if (tick_do_timer_cpu == cpu) { 81 write_seqlock(&jiffies_lock); 82 83 /* Keep track of the next tick event */ 84 tick_next_period = ktime_add(tick_next_period, tick_period); 85 86 do_timer(1); 87 write_sequnlock(&jiffies_lock); 88 update_wall_time(); 89 } 90 91 update_process_times(user_mode(get_irq_regs())); 92 profile_tick(CPU_PROFILING); 93 } 94 95 /* 96 * Event handler for periodic ticks 97 */ 98 void tick_handle_periodic(struct clock_event_device *dev) 99 { 100 int cpu = smp_processor_id(); 101 ktime_t next; 102 103 tick_periodic(cpu); 104 105 if (dev->mode != CLOCK_EVT_MODE_ONESHOT) 106 return; 107 /* 108 * Setup the next period for devices, which do not have 109 * periodic mode: 110 */ 111 next = ktime_add(dev->next_event, tick_period); 112 for (;;) { 113 if (!clockevents_program_event(dev, next, false)) 114 return; 115 /* 116 * Have to be careful here. If we're in oneshot mode, 117 * before we call tick_periodic() in a loop, we need 118 * to be sure we're using a real hardware clocksource. 119 * Otherwise we could get trapped in an infinite 120 * loop, as the tick_periodic() increments jiffies, 121 * when then will increment time, posibly causing 122 * the loop to trigger again and again. 123 */ 124 if (timekeeping_valid_for_hres()) 125 tick_periodic(cpu); 126 next = ktime_add(next, tick_period); 127 } 128 } 129 130 /* 131 * Setup the device for a periodic tick 132 */ 133 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 134 { 135 tick_set_periodic_handler(dev, broadcast); 136 137 /* Broadcast setup ? */ 138 if (!tick_device_is_functional(dev)) 139 return; 140 141 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 142 !tick_broadcast_oneshot_active()) { 143 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC); 144 } else { 145 unsigned long seq; 146 ktime_t next; 147 148 do { 149 seq = read_seqbegin(&jiffies_lock); 150 next = tick_next_period; 151 } while (read_seqretry(&jiffies_lock, seq)); 152 153 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); 154 155 for (;;) { 156 if (!clockevents_program_event(dev, next, false)) 157 return; 158 next = ktime_add(next, tick_period); 159 } 160 } 161 } 162 163 /* 164 * Setup the tick device 165 */ 166 static void tick_setup_device(struct tick_device *td, 167 struct clock_event_device *newdev, int cpu, 168 const struct cpumask *cpumask) 169 { 170 ktime_t next_event; 171 void (*handler)(struct clock_event_device *) = NULL; 172 173 /* 174 * First device setup ? 175 */ 176 if (!td->evtdev) { 177 /* 178 * If no cpu took the do_timer update, assign it to 179 * this cpu: 180 */ 181 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 182 if (!tick_nohz_full_cpu(cpu)) 183 tick_do_timer_cpu = cpu; 184 else 185 tick_do_timer_cpu = TICK_DO_TIMER_NONE; 186 tick_next_period = ktime_get(); 187 tick_period = ktime_set(0, NSEC_PER_SEC / HZ); 188 } 189 190 /* 191 * Startup in periodic mode first. 192 */ 193 td->mode = TICKDEV_MODE_PERIODIC; 194 } else { 195 handler = td->evtdev->event_handler; 196 next_event = td->evtdev->next_event; 197 td->evtdev->event_handler = clockevents_handle_noop; 198 } 199 200 td->evtdev = newdev; 201 202 /* 203 * When the device is not per cpu, pin the interrupt to the 204 * current cpu: 205 */ 206 if (!cpumask_equal(newdev->cpumask, cpumask)) 207 irq_set_affinity(newdev->irq, cpumask); 208 209 /* 210 * When global broadcasting is active, check if the current 211 * device is registered as a placeholder for broadcast mode. 212 * This allows us to handle this x86 misfeature in a generic 213 * way. This function also returns !=0 when we keep the 214 * current active broadcast state for this CPU. 215 */ 216 if (tick_device_uses_broadcast(newdev, cpu)) 217 return; 218 219 if (td->mode == TICKDEV_MODE_PERIODIC) 220 tick_setup_periodic(newdev, 0); 221 else 222 tick_setup_oneshot(newdev, handler, next_event); 223 } 224 225 void tick_install_replacement(struct clock_event_device *newdev) 226 { 227 struct tick_device *td = &__get_cpu_var(tick_cpu_device); 228 int cpu = smp_processor_id(); 229 230 clockevents_exchange_device(td->evtdev, newdev); 231 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 232 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 233 tick_oneshot_notify(); 234 } 235 236 static bool tick_check_percpu(struct clock_event_device *curdev, 237 struct clock_event_device *newdev, int cpu) 238 { 239 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 240 return false; 241 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 242 return true; 243 /* Check if irq affinity can be set */ 244 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 245 return false; 246 /* Prefer an existing cpu local device */ 247 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 248 return false; 249 return true; 250 } 251 252 static bool tick_check_preferred(struct clock_event_device *curdev, 253 struct clock_event_device *newdev) 254 { 255 /* Prefer oneshot capable device */ 256 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 257 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 258 return false; 259 if (tick_oneshot_mode_active()) 260 return false; 261 } 262 263 /* 264 * Use the higher rated one, but prefer a CPU local device with a lower 265 * rating than a non-CPU local device 266 */ 267 return !curdev || 268 newdev->rating > curdev->rating || 269 !cpumask_equal(curdev->cpumask, newdev->cpumask); 270 } 271 272 /* 273 * Check whether the new device is a better fit than curdev. curdev 274 * can be NULL ! 275 */ 276 bool tick_check_replacement(struct clock_event_device *curdev, 277 struct clock_event_device *newdev) 278 { 279 if (tick_check_percpu(curdev, newdev, smp_processor_id())) 280 return false; 281 282 return tick_check_preferred(curdev, newdev); 283 } 284 285 /* 286 * Check, if the new registered device should be used. Called with 287 * clockevents_lock held and interrupts disabled. 288 */ 289 void tick_check_new_device(struct clock_event_device *newdev) 290 { 291 struct clock_event_device *curdev; 292 struct tick_device *td; 293 int cpu; 294 295 cpu = smp_processor_id(); 296 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 297 goto out_bc; 298 299 td = &per_cpu(tick_cpu_device, cpu); 300 curdev = td->evtdev; 301 302 /* cpu local device ? */ 303 if (!tick_check_percpu(curdev, newdev, cpu)) 304 goto out_bc; 305 306 /* Preference decision */ 307 if (!tick_check_preferred(curdev, newdev)) 308 goto out_bc; 309 310 if (!try_module_get(newdev->owner)) 311 return; 312 313 /* 314 * Replace the eventually existing device by the new 315 * device. If the current device is the broadcast device, do 316 * not give it back to the clockevents layer ! 317 */ 318 if (tick_is_broadcast_device(curdev)) { 319 clockevents_shutdown(curdev); 320 curdev = NULL; 321 } 322 clockevents_exchange_device(curdev, newdev); 323 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 324 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 325 tick_oneshot_notify(); 326 return; 327 328 out_bc: 329 /* 330 * Can the new device be used as a broadcast device ? 331 */ 332 tick_install_broadcast_device(newdev); 333 } 334 335 /* 336 * Transfer the do_timer job away from a dying cpu. 337 * 338 * Called with interrupts disabled. 339 */ 340 void tick_handover_do_timer(int *cpup) 341 { 342 if (*cpup == tick_do_timer_cpu) { 343 int cpu = cpumask_first(cpu_online_mask); 344 345 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : 346 TICK_DO_TIMER_NONE; 347 } 348 } 349 350 /* 351 * Shutdown an event device on a given cpu: 352 * 353 * This is called on a life CPU, when a CPU is dead. So we cannot 354 * access the hardware device itself. 355 * We just set the mode and remove it from the lists. 356 */ 357 void tick_shutdown(unsigned int *cpup) 358 { 359 struct tick_device *td = &per_cpu(tick_cpu_device, *cpup); 360 struct clock_event_device *dev = td->evtdev; 361 362 td->mode = TICKDEV_MODE_PERIODIC; 363 if (dev) { 364 /* 365 * Prevent that the clock events layer tries to call 366 * the set mode function! 367 */ 368 dev->mode = CLOCK_EVT_MODE_UNUSED; 369 clockevents_exchange_device(dev, NULL); 370 dev->event_handler = clockevents_handle_noop; 371 td->evtdev = NULL; 372 } 373 } 374 375 void tick_suspend(void) 376 { 377 struct tick_device *td = &__get_cpu_var(tick_cpu_device); 378 379 clockevents_shutdown(td->evtdev); 380 } 381 382 void tick_resume(void) 383 { 384 struct tick_device *td = &__get_cpu_var(tick_cpu_device); 385 int broadcast = tick_resume_broadcast(); 386 387 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME); 388 389 if (!broadcast) { 390 if (td->mode == TICKDEV_MODE_PERIODIC) 391 tick_setup_periodic(td->evtdev, 0); 392 else 393 tick_resume_oneshot(); 394 } 395 } 396 397 /** 398 * tick_init - initialize the tick control 399 */ 400 void __init tick_init(void) 401 { 402 tick_broadcast_init(); 403 } 404