1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains the base functions to manage periodic tick 4 * related events. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/nmi.h> 15 #include <linux/percpu.h> 16 #include <linux/profile.h> 17 #include <linux/sched.h> 18 #include <linux/module.h> 19 #include <trace/events/power.h> 20 21 #include <asm/irq_regs.h> 22 23 #include "tick-internal.h" 24 25 /* 26 * Tick devices 27 */ 28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 29 /* 30 * Tick next event: keeps track of the tick time. It's updated by the 31 * CPU which handles the tick and protected by jiffies_lock. There is 32 * no requirement to write hold the jiffies seqcount for it. 33 */ 34 ktime_t tick_next_period; 35 36 /* 37 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 38 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 39 * variable has two functions: 40 * 41 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 42 * timekeeping lock all at once. Only the CPU which is assigned to do the 43 * update is handling it. 44 * 45 * 2) Hand off the duty in the NOHZ idle case by setting the value to 46 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 47 * at it will take over and keep the time keeping alive. The handover 48 * procedure also covers cpu hotplug. 49 */ 50 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 51 #ifdef CONFIG_NO_HZ_FULL 52 /* 53 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns 54 * tick_do_timer_cpu and it should be taken over by an eligible secondary 55 * when one comes online. 56 */ 57 static int tick_do_timer_boot_cpu __read_mostly = -1; 58 #endif 59 60 /* 61 * Debugging: see timer_list.c 62 */ 63 struct tick_device *tick_get_device(int cpu) 64 { 65 return &per_cpu(tick_cpu_device, cpu); 66 } 67 68 /** 69 * tick_is_oneshot_available - check for a oneshot capable event device 70 */ 71 int tick_is_oneshot_available(void) 72 { 73 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 74 75 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 76 return 0; 77 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 78 return 1; 79 return tick_broadcast_oneshot_available(); 80 } 81 82 /* 83 * Periodic tick 84 */ 85 static void tick_periodic(int cpu) 86 { 87 if (tick_do_timer_cpu == cpu) { 88 raw_spin_lock(&jiffies_lock); 89 write_seqcount_begin(&jiffies_seq); 90 91 /* Keep track of the next tick event */ 92 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC); 93 94 do_timer(1); 95 write_seqcount_end(&jiffies_seq); 96 raw_spin_unlock(&jiffies_lock); 97 update_wall_time(); 98 } 99 100 update_process_times(user_mode(get_irq_regs())); 101 profile_tick(CPU_PROFILING); 102 } 103 104 /* 105 * Event handler for periodic ticks 106 */ 107 void tick_handle_periodic(struct clock_event_device *dev) 108 { 109 int cpu = smp_processor_id(); 110 ktime_t next = dev->next_event; 111 112 tick_periodic(cpu); 113 114 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON) 115 /* 116 * The cpu might have transitioned to HIGHRES or NOHZ mode via 117 * update_process_times() -> run_local_timers() -> 118 * hrtimer_run_queues(). 119 */ 120 if (dev->event_handler != tick_handle_periodic) 121 return; 122 #endif 123 124 if (!clockevent_state_oneshot(dev)) 125 return; 126 for (;;) { 127 /* 128 * Setup the next period for devices, which do not have 129 * periodic mode: 130 */ 131 next = ktime_add_ns(next, TICK_NSEC); 132 133 if (!clockevents_program_event(dev, next, false)) 134 return; 135 /* 136 * Have to be careful here. If we're in oneshot mode, 137 * before we call tick_periodic() in a loop, we need 138 * to be sure we're using a real hardware clocksource. 139 * Otherwise we could get trapped in an infinite 140 * loop, as the tick_periodic() increments jiffies, 141 * which then will increment time, possibly causing 142 * the loop to trigger again and again. 143 */ 144 if (timekeeping_valid_for_hres()) 145 tick_periodic(cpu); 146 } 147 } 148 149 /* 150 * Setup the device for a periodic tick 151 */ 152 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 153 { 154 tick_set_periodic_handler(dev, broadcast); 155 156 /* Broadcast setup ? */ 157 if (!tick_device_is_functional(dev)) 158 return; 159 160 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 161 !tick_broadcast_oneshot_active()) { 162 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 163 } else { 164 unsigned int seq; 165 ktime_t next; 166 167 do { 168 seq = read_seqcount_begin(&jiffies_seq); 169 next = tick_next_period; 170 } while (read_seqcount_retry(&jiffies_seq, seq)); 171 172 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 173 174 for (;;) { 175 if (!clockevents_program_event(dev, next, false)) 176 return; 177 next = ktime_add_ns(next, TICK_NSEC); 178 } 179 } 180 } 181 182 #ifdef CONFIG_NO_HZ_FULL 183 static void giveup_do_timer(void *info) 184 { 185 int cpu = *(unsigned int *)info; 186 187 WARN_ON(tick_do_timer_cpu != smp_processor_id()); 188 189 tick_do_timer_cpu = cpu; 190 } 191 192 static void tick_take_do_timer_from_boot(void) 193 { 194 int cpu = smp_processor_id(); 195 int from = tick_do_timer_boot_cpu; 196 197 if (from >= 0 && from != cpu) 198 smp_call_function_single(from, giveup_do_timer, &cpu, 1); 199 } 200 #endif 201 202 /* 203 * Setup the tick device 204 */ 205 static void tick_setup_device(struct tick_device *td, 206 struct clock_event_device *newdev, int cpu, 207 const struct cpumask *cpumask) 208 { 209 void (*handler)(struct clock_event_device *) = NULL; 210 ktime_t next_event = 0; 211 212 /* 213 * First device setup ? 214 */ 215 if (!td->evtdev) { 216 /* 217 * If no cpu took the do_timer update, assign it to 218 * this cpu: 219 */ 220 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 221 tick_do_timer_cpu = cpu; 222 223 tick_next_period = ktime_get(); 224 #ifdef CONFIG_NO_HZ_FULL 225 /* 226 * The boot CPU may be nohz_full, in which case set 227 * tick_do_timer_boot_cpu so the first housekeeping 228 * secondary that comes up will take do_timer from 229 * us. 230 */ 231 if (tick_nohz_full_cpu(cpu)) 232 tick_do_timer_boot_cpu = cpu; 233 234 } else if (tick_do_timer_boot_cpu != -1 && 235 !tick_nohz_full_cpu(cpu)) { 236 tick_take_do_timer_from_boot(); 237 tick_do_timer_boot_cpu = -1; 238 WARN_ON(tick_do_timer_cpu != cpu); 239 #endif 240 } 241 242 /* 243 * Startup in periodic mode first. 244 */ 245 td->mode = TICKDEV_MODE_PERIODIC; 246 } else { 247 handler = td->evtdev->event_handler; 248 next_event = td->evtdev->next_event; 249 td->evtdev->event_handler = clockevents_handle_noop; 250 } 251 252 td->evtdev = newdev; 253 254 /* 255 * When the device is not per cpu, pin the interrupt to the 256 * current cpu: 257 */ 258 if (!cpumask_equal(newdev->cpumask, cpumask)) 259 irq_set_affinity(newdev->irq, cpumask); 260 261 /* 262 * When global broadcasting is active, check if the current 263 * device is registered as a placeholder for broadcast mode. 264 * This allows us to handle this x86 misfeature in a generic 265 * way. This function also returns !=0 when we keep the 266 * current active broadcast state for this CPU. 267 */ 268 if (tick_device_uses_broadcast(newdev, cpu)) 269 return; 270 271 if (td->mode == TICKDEV_MODE_PERIODIC) 272 tick_setup_periodic(newdev, 0); 273 else 274 tick_setup_oneshot(newdev, handler, next_event); 275 } 276 277 void tick_install_replacement(struct clock_event_device *newdev) 278 { 279 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 280 int cpu = smp_processor_id(); 281 282 clockevents_exchange_device(td->evtdev, newdev); 283 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 284 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 285 tick_oneshot_notify(); 286 } 287 288 static bool tick_check_percpu(struct clock_event_device *curdev, 289 struct clock_event_device *newdev, int cpu) 290 { 291 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 292 return false; 293 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 294 return true; 295 /* Check if irq affinity can be set */ 296 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 297 return false; 298 /* Prefer an existing cpu local device */ 299 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 300 return false; 301 return true; 302 } 303 304 static bool tick_check_preferred(struct clock_event_device *curdev, 305 struct clock_event_device *newdev) 306 { 307 /* Prefer oneshot capable device */ 308 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 309 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 310 return false; 311 if (tick_oneshot_mode_active()) 312 return false; 313 } 314 315 /* 316 * Use the higher rated one, but prefer a CPU local device with a lower 317 * rating than a non-CPU local device 318 */ 319 return !curdev || 320 newdev->rating > curdev->rating || 321 !cpumask_equal(curdev->cpumask, newdev->cpumask); 322 } 323 324 /* 325 * Check whether the new device is a better fit than curdev. curdev 326 * can be NULL ! 327 */ 328 bool tick_check_replacement(struct clock_event_device *curdev, 329 struct clock_event_device *newdev) 330 { 331 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 332 return false; 333 334 return tick_check_preferred(curdev, newdev); 335 } 336 337 /* 338 * Check, if the new registered device should be used. Called with 339 * clockevents_lock held and interrupts disabled. 340 */ 341 void tick_check_new_device(struct clock_event_device *newdev) 342 { 343 struct clock_event_device *curdev; 344 struct tick_device *td; 345 int cpu; 346 347 cpu = smp_processor_id(); 348 td = &per_cpu(tick_cpu_device, cpu); 349 curdev = td->evtdev; 350 351 if (!tick_check_replacement(curdev, newdev)) 352 goto out_bc; 353 354 if (!try_module_get(newdev->owner)) 355 return; 356 357 /* 358 * Replace the eventually existing device by the new 359 * device. If the current device is the broadcast device, do 360 * not give it back to the clockevents layer ! 361 */ 362 if (tick_is_broadcast_device(curdev)) { 363 clockevents_shutdown(curdev); 364 curdev = NULL; 365 } 366 clockevents_exchange_device(curdev, newdev); 367 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 368 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 369 tick_oneshot_notify(); 370 return; 371 372 out_bc: 373 /* 374 * Can the new device be used as a broadcast device ? 375 */ 376 tick_install_broadcast_device(newdev, cpu); 377 } 378 379 /** 380 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 381 * @state: The target state (enter/exit) 382 * 383 * The system enters/leaves a state, where affected devices might stop 384 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 385 * 386 * Called with interrupts disabled, so clockevents_lock is not 387 * required here because the local clock event device cannot go away 388 * under us. 389 */ 390 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 391 { 392 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 393 394 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 395 return 0; 396 397 return __tick_broadcast_oneshot_control(state); 398 } 399 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 400 401 #ifdef CONFIG_HOTPLUG_CPU 402 /* 403 * Transfer the do_timer job away from a dying cpu. 404 * 405 * Called with interrupts disabled. No locking required. If 406 * tick_do_timer_cpu is owned by this cpu, nothing can change it. 407 */ 408 void tick_handover_do_timer(void) 409 { 410 if (tick_do_timer_cpu == smp_processor_id()) 411 tick_do_timer_cpu = cpumask_first(cpu_online_mask); 412 } 413 414 /* 415 * Shutdown an event device on a given cpu: 416 * 417 * This is called on a life CPU, when a CPU is dead. So we cannot 418 * access the hardware device itself. 419 * We just set the mode and remove it from the lists. 420 */ 421 void tick_shutdown(unsigned int cpu) 422 { 423 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 424 struct clock_event_device *dev = td->evtdev; 425 426 td->mode = TICKDEV_MODE_PERIODIC; 427 if (dev) { 428 /* 429 * Prevent that the clock events layer tries to call 430 * the set mode function! 431 */ 432 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 433 clockevents_exchange_device(dev, NULL); 434 dev->event_handler = clockevents_handle_noop; 435 td->evtdev = NULL; 436 } 437 } 438 #endif 439 440 /** 441 * tick_suspend_local - Suspend the local tick device 442 * 443 * Called from the local cpu for freeze with interrupts disabled. 444 * 445 * No locks required. Nothing can change the per cpu device. 446 */ 447 void tick_suspend_local(void) 448 { 449 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 450 451 clockevents_shutdown(td->evtdev); 452 } 453 454 /** 455 * tick_resume_local - Resume the local tick device 456 * 457 * Called from the local CPU for unfreeze or XEN resume magic. 458 * 459 * No locks required. Nothing can change the per cpu device. 460 */ 461 void tick_resume_local(void) 462 { 463 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 464 bool broadcast = tick_resume_check_broadcast(); 465 466 clockevents_tick_resume(td->evtdev); 467 if (!broadcast) { 468 if (td->mode == TICKDEV_MODE_PERIODIC) 469 tick_setup_periodic(td->evtdev, 0); 470 else 471 tick_resume_oneshot(); 472 } 473 } 474 475 /** 476 * tick_suspend - Suspend the tick and the broadcast device 477 * 478 * Called from syscore_suspend() via timekeeping_suspend with only one 479 * CPU online and interrupts disabled or from tick_unfreeze() under 480 * tick_freeze_lock. 481 * 482 * No locks required. Nothing can change the per cpu device. 483 */ 484 void tick_suspend(void) 485 { 486 tick_suspend_local(); 487 tick_suspend_broadcast(); 488 } 489 490 /** 491 * tick_resume - Resume the tick and the broadcast device 492 * 493 * Called from syscore_resume() via timekeeping_resume with only one 494 * CPU online and interrupts disabled. 495 * 496 * No locks required. Nothing can change the per cpu device. 497 */ 498 void tick_resume(void) 499 { 500 tick_resume_broadcast(); 501 tick_resume_local(); 502 } 503 504 #ifdef CONFIG_SUSPEND 505 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 506 static unsigned int tick_freeze_depth; 507 508 /** 509 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 510 * 511 * Check if this is the last online CPU executing the function and if so, 512 * suspend timekeeping. Otherwise suspend the local tick. 513 * 514 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 515 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 516 */ 517 void tick_freeze(void) 518 { 519 raw_spin_lock(&tick_freeze_lock); 520 521 tick_freeze_depth++; 522 if (tick_freeze_depth == num_online_cpus()) { 523 trace_suspend_resume(TPS("timekeeping_freeze"), 524 smp_processor_id(), true); 525 system_state = SYSTEM_SUSPEND; 526 sched_clock_suspend(); 527 timekeeping_suspend(); 528 } else { 529 tick_suspend_local(); 530 } 531 532 raw_spin_unlock(&tick_freeze_lock); 533 } 534 535 /** 536 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 537 * 538 * Check if this is the first CPU executing the function and if so, resume 539 * timekeeping. Otherwise resume the local tick. 540 * 541 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 542 * Interrupts must not be enabled after the preceding %tick_freeze(). 543 */ 544 void tick_unfreeze(void) 545 { 546 raw_spin_lock(&tick_freeze_lock); 547 548 if (tick_freeze_depth == num_online_cpus()) { 549 timekeeping_resume(); 550 sched_clock_resume(); 551 system_state = SYSTEM_RUNNING; 552 trace_suspend_resume(TPS("timekeeping_freeze"), 553 smp_processor_id(), false); 554 } else { 555 touch_softlockup_watchdog(); 556 tick_resume_local(); 557 } 558 559 tick_freeze_depth--; 560 561 raw_spin_unlock(&tick_freeze_lock); 562 } 563 #endif /* CONFIG_SUSPEND */ 564 565 /** 566 * tick_init - initialize the tick control 567 */ 568 void __init tick_init(void) 569 { 570 tick_broadcast_init(); 571 tick_nohz_init(); 572 } 573