1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains the base functions to manage periodic tick 4 * related events. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/nmi.h> 15 #include <linux/percpu.h> 16 #include <linux/profile.h> 17 #include <linux/sched.h> 18 #include <linux/module.h> 19 #include <trace/events/power.h> 20 21 #include <asm/irq_regs.h> 22 23 #include "tick-internal.h" 24 25 /* 26 * Tick devices 27 */ 28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 29 /* 30 * Tick next event: keeps track of the tick time. It's updated by the 31 * CPU which handles the tick and protected by jiffies_lock. There is 32 * no requirement to write hold the jiffies seqcount for it. 33 */ 34 ktime_t tick_next_period; 35 36 /* 37 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 38 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 39 * variable has two functions: 40 * 41 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 42 * timekeeping lock all at once. Only the CPU which is assigned to do the 43 * update is handling it. 44 * 45 * 2) Hand off the duty in the NOHZ idle case by setting the value to 46 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 47 * at it will take over and keep the time keeping alive. The handover 48 * procedure also covers cpu hotplug. 49 */ 50 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 51 #ifdef CONFIG_NO_HZ_FULL 52 /* 53 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns 54 * tick_do_timer_cpu and it should be taken over by an eligible secondary 55 * when one comes online. 56 */ 57 static int tick_do_timer_boot_cpu __read_mostly = -1; 58 #endif 59 60 /* 61 * Debugging: see timer_list.c 62 */ 63 struct tick_device *tick_get_device(int cpu) 64 { 65 return &per_cpu(tick_cpu_device, cpu); 66 } 67 68 /** 69 * tick_is_oneshot_available - check for a oneshot capable event device 70 */ 71 int tick_is_oneshot_available(void) 72 { 73 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 74 75 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 76 return 0; 77 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 78 return 1; 79 return tick_broadcast_oneshot_available(); 80 } 81 82 /* 83 * Periodic tick 84 */ 85 static void tick_periodic(int cpu) 86 { 87 if (tick_do_timer_cpu == cpu) { 88 raw_spin_lock(&jiffies_lock); 89 write_seqcount_begin(&jiffies_seq); 90 91 /* Keep track of the next tick event */ 92 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC); 93 94 do_timer(1); 95 write_seqcount_end(&jiffies_seq); 96 raw_spin_unlock(&jiffies_lock); 97 update_wall_time(); 98 } 99 100 update_process_times(user_mode(get_irq_regs())); 101 profile_tick(CPU_PROFILING); 102 } 103 104 /* 105 * Event handler for periodic ticks 106 */ 107 void tick_handle_periodic(struct clock_event_device *dev) 108 { 109 int cpu = smp_processor_id(); 110 ktime_t next = dev->next_event; 111 112 tick_periodic(cpu); 113 114 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON) 115 /* 116 * The cpu might have transitioned to HIGHRES or NOHZ mode via 117 * update_process_times() -> run_local_timers() -> 118 * hrtimer_run_queues(). 119 */ 120 if (dev->event_handler != tick_handle_periodic) 121 return; 122 #endif 123 124 if (!clockevent_state_oneshot(dev)) 125 return; 126 for (;;) { 127 /* 128 * Setup the next period for devices, which do not have 129 * periodic mode: 130 */ 131 next = ktime_add_ns(next, TICK_NSEC); 132 133 if (!clockevents_program_event(dev, next, false)) 134 return; 135 /* 136 * Have to be careful here. If we're in oneshot mode, 137 * before we call tick_periodic() in a loop, we need 138 * to be sure we're using a real hardware clocksource. 139 * Otherwise we could get trapped in an infinite 140 * loop, as the tick_periodic() increments jiffies, 141 * which then will increment time, possibly causing 142 * the loop to trigger again and again. 143 */ 144 if (timekeeping_valid_for_hres()) 145 tick_periodic(cpu); 146 } 147 } 148 149 /* 150 * Setup the device for a periodic tick 151 */ 152 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 153 { 154 tick_set_periodic_handler(dev, broadcast); 155 156 /* Broadcast setup ? */ 157 if (!tick_device_is_functional(dev)) 158 return; 159 160 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 161 !tick_broadcast_oneshot_active()) { 162 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 163 } else { 164 unsigned int seq; 165 ktime_t next; 166 167 do { 168 seq = read_seqcount_begin(&jiffies_seq); 169 next = tick_next_period; 170 } while (read_seqcount_retry(&jiffies_seq, seq)); 171 172 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 173 174 for (;;) { 175 if (!clockevents_program_event(dev, next, false)) 176 return; 177 next = ktime_add_ns(next, TICK_NSEC); 178 } 179 } 180 } 181 182 #ifdef CONFIG_NO_HZ_FULL 183 static void giveup_do_timer(void *info) 184 { 185 int cpu = *(unsigned int *)info; 186 187 WARN_ON(tick_do_timer_cpu != smp_processor_id()); 188 189 tick_do_timer_cpu = cpu; 190 } 191 192 static void tick_take_do_timer_from_boot(void) 193 { 194 int cpu = smp_processor_id(); 195 int from = tick_do_timer_boot_cpu; 196 197 if (from >= 0 && from != cpu) 198 smp_call_function_single(from, giveup_do_timer, &cpu, 1); 199 } 200 #endif 201 202 /* 203 * Setup the tick device 204 */ 205 static void tick_setup_device(struct tick_device *td, 206 struct clock_event_device *newdev, int cpu, 207 const struct cpumask *cpumask) 208 { 209 void (*handler)(struct clock_event_device *) = NULL; 210 ktime_t next_event = 0; 211 212 /* 213 * First device setup ? 214 */ 215 if (!td->evtdev) { 216 /* 217 * If no cpu took the do_timer update, assign it to 218 * this cpu: 219 */ 220 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 221 tick_do_timer_cpu = cpu; 222 tick_next_period = ktime_get(); 223 #ifdef CONFIG_NO_HZ_FULL 224 /* 225 * The boot CPU may be nohz_full, in which case set 226 * tick_do_timer_boot_cpu so the first housekeeping 227 * secondary that comes up will take do_timer from 228 * us. 229 */ 230 if (tick_nohz_full_cpu(cpu)) 231 tick_do_timer_boot_cpu = cpu; 232 233 } else if (tick_do_timer_boot_cpu != -1 && 234 !tick_nohz_full_cpu(cpu)) { 235 tick_take_do_timer_from_boot(); 236 tick_do_timer_boot_cpu = -1; 237 WARN_ON(tick_do_timer_cpu != cpu); 238 #endif 239 } 240 241 /* 242 * Startup in periodic mode first. 243 */ 244 td->mode = TICKDEV_MODE_PERIODIC; 245 } else { 246 handler = td->evtdev->event_handler; 247 next_event = td->evtdev->next_event; 248 td->evtdev->event_handler = clockevents_handle_noop; 249 } 250 251 td->evtdev = newdev; 252 253 /* 254 * When the device is not per cpu, pin the interrupt to the 255 * current cpu: 256 */ 257 if (!cpumask_equal(newdev->cpumask, cpumask)) 258 irq_set_affinity(newdev->irq, cpumask); 259 260 /* 261 * When global broadcasting is active, check if the current 262 * device is registered as a placeholder for broadcast mode. 263 * This allows us to handle this x86 misfeature in a generic 264 * way. This function also returns !=0 when we keep the 265 * current active broadcast state for this CPU. 266 */ 267 if (tick_device_uses_broadcast(newdev, cpu)) 268 return; 269 270 if (td->mode == TICKDEV_MODE_PERIODIC) 271 tick_setup_periodic(newdev, 0); 272 else 273 tick_setup_oneshot(newdev, handler, next_event); 274 } 275 276 void tick_install_replacement(struct clock_event_device *newdev) 277 { 278 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 279 int cpu = smp_processor_id(); 280 281 clockevents_exchange_device(td->evtdev, newdev); 282 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 283 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 284 tick_oneshot_notify(); 285 } 286 287 static bool tick_check_percpu(struct clock_event_device *curdev, 288 struct clock_event_device *newdev, int cpu) 289 { 290 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 291 return false; 292 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 293 return true; 294 /* Check if irq affinity can be set */ 295 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 296 return false; 297 /* Prefer an existing cpu local device */ 298 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 299 return false; 300 return true; 301 } 302 303 static bool tick_check_preferred(struct clock_event_device *curdev, 304 struct clock_event_device *newdev) 305 { 306 /* Prefer oneshot capable device */ 307 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 308 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 309 return false; 310 if (tick_oneshot_mode_active()) 311 return false; 312 } 313 314 /* 315 * Use the higher rated one, but prefer a CPU local device with a lower 316 * rating than a non-CPU local device 317 */ 318 return !curdev || 319 newdev->rating > curdev->rating || 320 !cpumask_equal(curdev->cpumask, newdev->cpumask); 321 } 322 323 /* 324 * Check whether the new device is a better fit than curdev. curdev 325 * can be NULL ! 326 */ 327 bool tick_check_replacement(struct clock_event_device *curdev, 328 struct clock_event_device *newdev) 329 { 330 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 331 return false; 332 333 return tick_check_preferred(curdev, newdev); 334 } 335 336 /* 337 * Check, if the new registered device should be used. Called with 338 * clockevents_lock held and interrupts disabled. 339 */ 340 void tick_check_new_device(struct clock_event_device *newdev) 341 { 342 struct clock_event_device *curdev; 343 struct tick_device *td; 344 int cpu; 345 346 cpu = smp_processor_id(); 347 td = &per_cpu(tick_cpu_device, cpu); 348 curdev = td->evtdev; 349 350 if (!tick_check_replacement(curdev, newdev)) 351 goto out_bc; 352 353 if (!try_module_get(newdev->owner)) 354 return; 355 356 /* 357 * Replace the eventually existing device by the new 358 * device. If the current device is the broadcast device, do 359 * not give it back to the clockevents layer ! 360 */ 361 if (tick_is_broadcast_device(curdev)) { 362 clockevents_shutdown(curdev); 363 curdev = NULL; 364 } 365 clockevents_exchange_device(curdev, newdev); 366 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 367 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 368 tick_oneshot_notify(); 369 return; 370 371 out_bc: 372 /* 373 * Can the new device be used as a broadcast device ? 374 */ 375 tick_install_broadcast_device(newdev, cpu); 376 } 377 378 /** 379 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 380 * @state: The target state (enter/exit) 381 * 382 * The system enters/leaves a state, where affected devices might stop 383 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 384 * 385 * Called with interrupts disabled, so clockevents_lock is not 386 * required here because the local clock event device cannot go away 387 * under us. 388 */ 389 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 390 { 391 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 392 393 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 394 return 0; 395 396 return __tick_broadcast_oneshot_control(state); 397 } 398 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 399 400 #ifdef CONFIG_HOTPLUG_CPU 401 /* 402 * Transfer the do_timer job away from a dying cpu. 403 * 404 * Called with interrupts disabled. No locking required. If 405 * tick_do_timer_cpu is owned by this cpu, nothing can change it. 406 */ 407 void tick_handover_do_timer(void) 408 { 409 if (tick_do_timer_cpu == smp_processor_id()) 410 tick_do_timer_cpu = cpumask_first(cpu_online_mask); 411 } 412 413 /* 414 * Shutdown an event device on a given cpu: 415 * 416 * This is called on a life CPU, when a CPU is dead. So we cannot 417 * access the hardware device itself. 418 * We just set the mode and remove it from the lists. 419 */ 420 void tick_shutdown(unsigned int cpu) 421 { 422 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 423 struct clock_event_device *dev = td->evtdev; 424 425 td->mode = TICKDEV_MODE_PERIODIC; 426 if (dev) { 427 /* 428 * Prevent that the clock events layer tries to call 429 * the set mode function! 430 */ 431 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 432 clockevents_exchange_device(dev, NULL); 433 dev->event_handler = clockevents_handle_noop; 434 td->evtdev = NULL; 435 } 436 } 437 #endif 438 439 /** 440 * tick_suspend_local - Suspend the local tick device 441 * 442 * Called from the local cpu for freeze with interrupts disabled. 443 * 444 * No locks required. Nothing can change the per cpu device. 445 */ 446 void tick_suspend_local(void) 447 { 448 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 449 450 clockevents_shutdown(td->evtdev); 451 } 452 453 /** 454 * tick_resume_local - Resume the local tick device 455 * 456 * Called from the local CPU for unfreeze or XEN resume magic. 457 * 458 * No locks required. Nothing can change the per cpu device. 459 */ 460 void tick_resume_local(void) 461 { 462 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 463 bool broadcast = tick_resume_check_broadcast(); 464 465 clockevents_tick_resume(td->evtdev); 466 if (!broadcast) { 467 if (td->mode == TICKDEV_MODE_PERIODIC) 468 tick_setup_periodic(td->evtdev, 0); 469 else 470 tick_resume_oneshot(); 471 } 472 473 /* 474 * Ensure that hrtimers are up to date and the clockevents device 475 * is reprogrammed correctly when high resolution timers are 476 * enabled. 477 */ 478 hrtimers_resume_local(); 479 } 480 481 /** 482 * tick_suspend - Suspend the tick and the broadcast device 483 * 484 * Called from syscore_suspend() via timekeeping_suspend with only one 485 * CPU online and interrupts disabled or from tick_unfreeze() under 486 * tick_freeze_lock. 487 * 488 * No locks required. Nothing can change the per cpu device. 489 */ 490 void tick_suspend(void) 491 { 492 tick_suspend_local(); 493 tick_suspend_broadcast(); 494 } 495 496 /** 497 * tick_resume - Resume the tick and the broadcast device 498 * 499 * Called from syscore_resume() via timekeeping_resume with only one 500 * CPU online and interrupts disabled. 501 * 502 * No locks required. Nothing can change the per cpu device. 503 */ 504 void tick_resume(void) 505 { 506 tick_resume_broadcast(); 507 tick_resume_local(); 508 } 509 510 #ifdef CONFIG_SUSPEND 511 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 512 static unsigned int tick_freeze_depth; 513 514 /** 515 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 516 * 517 * Check if this is the last online CPU executing the function and if so, 518 * suspend timekeeping. Otherwise suspend the local tick. 519 * 520 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 521 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 522 */ 523 void tick_freeze(void) 524 { 525 raw_spin_lock(&tick_freeze_lock); 526 527 tick_freeze_depth++; 528 if (tick_freeze_depth == num_online_cpus()) { 529 trace_suspend_resume(TPS("timekeeping_freeze"), 530 smp_processor_id(), true); 531 system_state = SYSTEM_SUSPEND; 532 sched_clock_suspend(); 533 timekeeping_suspend(); 534 } else { 535 tick_suspend_local(); 536 } 537 538 raw_spin_unlock(&tick_freeze_lock); 539 } 540 541 /** 542 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 543 * 544 * Check if this is the first CPU executing the function and if so, resume 545 * timekeeping. Otherwise resume the local tick. 546 * 547 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 548 * Interrupts must not be enabled after the preceding %tick_freeze(). 549 */ 550 void tick_unfreeze(void) 551 { 552 raw_spin_lock(&tick_freeze_lock); 553 554 if (tick_freeze_depth == num_online_cpus()) { 555 timekeeping_resume(); 556 sched_clock_resume(); 557 system_state = SYSTEM_RUNNING; 558 trace_suspend_resume(TPS("timekeeping_freeze"), 559 smp_processor_id(), false); 560 } else { 561 touch_softlockup_watchdog(); 562 tick_resume_local(); 563 } 564 565 tick_freeze_depth--; 566 567 raw_spin_unlock(&tick_freeze_lock); 568 } 569 #endif /* CONFIG_SUSPEND */ 570 571 /** 572 * tick_init - initialize the tick control 573 */ 574 void __init tick_init(void) 575 { 576 tick_broadcast_init(); 577 tick_nohz_init(); 578 } 579