xref: /linux/kernel/time/tick-common.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/nmi.h>
16 #include <linux/percpu.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/module.h>
20 #include <trace/events/power.h>
21 
22 #include <asm/irq_regs.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Tick devices
28  */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31  * Tick next event: keeps track of the tick time. It's updated by the
32  * CPU which handles the tick and protected by jiffies_lock. There is
33  * no requirement to write hold the jiffies seqcount for it.
34  */
35 ktime_t tick_next_period;
36 
37 /*
38  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40  * variable has two functions:
41  *
42  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43  *    timekeeping lock all at once. Only the CPU which is assigned to do the
44  *    update is handling it.
45  *
46  * 2) Hand off the duty in the NOHZ idle case by setting the value to
47  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48  *    at it will take over and keep the time keeping alive.  The handover
49  *    procedure also covers cpu hotplug.
50  */
51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
52 #ifdef CONFIG_NO_HZ_FULL
53 /*
54  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
55  * tick_do_timer_cpu and it should be taken over by an eligible secondary
56  * when one comes online.
57  */
58 static int tick_do_timer_boot_cpu __read_mostly = -1;
59 #endif
60 
61 /*
62  * Debugging: see timer_list.c
63  */
64 struct tick_device *tick_get_device(int cpu)
65 {
66 	return &per_cpu(tick_cpu_device, cpu);
67 }
68 
69 /**
70  * tick_is_oneshot_available - check for a oneshot capable event device
71  */
72 int tick_is_oneshot_available(void)
73 {
74 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
75 
76 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
77 		return 0;
78 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
79 		return 1;
80 	return tick_broadcast_oneshot_available();
81 }
82 
83 /*
84  * Periodic tick
85  */
86 static void tick_periodic(int cpu)
87 {
88 	if (READ_ONCE(tick_do_timer_cpu) == cpu) {
89 		raw_spin_lock(&jiffies_lock);
90 		write_seqcount_begin(&jiffies_seq);
91 
92 		/* Keep track of the next tick event */
93 		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
94 
95 		do_timer(1);
96 		write_seqcount_end(&jiffies_seq);
97 		raw_spin_unlock(&jiffies_lock);
98 		update_wall_time();
99 	}
100 
101 	update_process_times(user_mode(get_irq_regs()));
102 	profile_tick(CPU_PROFILING);
103 }
104 
105 /*
106  * Event handler for periodic ticks
107  */
108 void tick_handle_periodic(struct clock_event_device *dev)
109 {
110 	int cpu = smp_processor_id();
111 	ktime_t next = dev->next_event;
112 
113 	tick_periodic(cpu);
114 
115 	/*
116 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
117 	 * update_process_times() -> run_local_timers() ->
118 	 * hrtimer_run_queues().
119 	 */
120 	if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic)
121 		return;
122 
123 	if (!clockevent_state_oneshot(dev))
124 		return;
125 	for (;;) {
126 		/*
127 		 * Setup the next period for devices, which do not have
128 		 * periodic mode:
129 		 */
130 		next = ktime_add_ns(next, TICK_NSEC);
131 
132 		if (!clockevents_program_event(dev, next, false))
133 			return;
134 		/*
135 		 * Have to be careful here. If we're in oneshot mode,
136 		 * before we call tick_periodic() in a loop, we need
137 		 * to be sure we're using a real hardware clocksource.
138 		 * Otherwise we could get trapped in an infinite
139 		 * loop, as the tick_periodic() increments jiffies,
140 		 * which then will increment time, possibly causing
141 		 * the loop to trigger again and again.
142 		 */
143 		if (timekeeping_valid_for_hres())
144 			tick_periodic(cpu);
145 	}
146 }
147 
148 /*
149  * Setup the device for a periodic tick
150  */
151 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
152 {
153 	tick_set_periodic_handler(dev, broadcast);
154 
155 	/* Broadcast setup ? */
156 	if (!tick_device_is_functional(dev))
157 		return;
158 
159 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
160 	    !tick_broadcast_oneshot_active()) {
161 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
162 	} else {
163 		unsigned int seq;
164 		ktime_t next;
165 
166 		do {
167 			seq = read_seqcount_begin(&jiffies_seq);
168 			next = tick_next_period;
169 		} while (read_seqcount_retry(&jiffies_seq, seq));
170 
171 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
172 
173 		for (;;) {
174 			if (!clockevents_program_event(dev, next, false))
175 				return;
176 			next = ktime_add_ns(next, TICK_NSEC);
177 		}
178 	}
179 }
180 
181 /*
182  * Setup the tick device
183  */
184 static void tick_setup_device(struct tick_device *td,
185 			      struct clock_event_device *newdev, int cpu,
186 			      const struct cpumask *cpumask)
187 {
188 	void (*handler)(struct clock_event_device *) = NULL;
189 	ktime_t next_event = 0;
190 
191 	/*
192 	 * First device setup ?
193 	 */
194 	if (!td->evtdev) {
195 		/*
196 		 * If no cpu took the do_timer update, assign it to
197 		 * this cpu:
198 		 */
199 		if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) {
200 			WRITE_ONCE(tick_do_timer_cpu, cpu);
201 			tick_next_period = ktime_get();
202 #ifdef CONFIG_NO_HZ_FULL
203 			/*
204 			 * The boot CPU may be nohz_full, in which case the
205 			 * first housekeeping secondary will take do_timer()
206 			 * from it.
207 			 */
208 			if (tick_nohz_full_cpu(cpu))
209 				tick_do_timer_boot_cpu = cpu;
210 
211 		} else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) {
212 			tick_do_timer_boot_cpu = -1;
213 			/*
214 			 * The boot CPU will stay in periodic (NOHZ disabled)
215 			 * mode until clocksource_done_booting() called after
216 			 * smp_init() selects a high resolution clocksource and
217 			 * timekeeping_notify() kicks the NOHZ stuff alive.
218 			 *
219 			 * So this WRITE_ONCE can only race with the READ_ONCE
220 			 * check in tick_periodic() but this race is harmless.
221 			 */
222 			WRITE_ONCE(tick_do_timer_cpu, cpu);
223 #endif
224 		}
225 
226 		/*
227 		 * Startup in periodic mode first.
228 		 */
229 		td->mode = TICKDEV_MODE_PERIODIC;
230 	} else {
231 		handler = td->evtdev->event_handler;
232 		next_event = td->evtdev->next_event;
233 		td->evtdev->event_handler = clockevents_handle_noop;
234 	}
235 
236 	td->evtdev = newdev;
237 
238 	/*
239 	 * When the device is not per cpu, pin the interrupt to the
240 	 * current cpu:
241 	 */
242 	if (!cpumask_equal(newdev->cpumask, cpumask))
243 		irq_set_affinity(newdev->irq, cpumask);
244 
245 	/*
246 	 * When global broadcasting is active, check if the current
247 	 * device is registered as a placeholder for broadcast mode.
248 	 * This allows us to handle this x86 misfeature in a generic
249 	 * way. This function also returns !=0 when we keep the
250 	 * current active broadcast state for this CPU.
251 	 */
252 	if (tick_device_uses_broadcast(newdev, cpu))
253 		return;
254 
255 	if (td->mode == TICKDEV_MODE_PERIODIC)
256 		tick_setup_periodic(newdev, 0);
257 	else
258 		tick_setup_oneshot(newdev, handler, next_event);
259 }
260 
261 void tick_install_replacement(struct clock_event_device *newdev)
262 {
263 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
264 	int cpu = smp_processor_id();
265 
266 	clockevents_exchange_device(td->evtdev, newdev);
267 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
268 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
269 		tick_oneshot_notify();
270 }
271 
272 static bool tick_check_percpu(struct clock_event_device *curdev,
273 			      struct clock_event_device *newdev, int cpu)
274 {
275 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
276 		return false;
277 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
278 		return true;
279 	/* Check if irq affinity can be set */
280 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
281 		return false;
282 	/* Prefer an existing cpu local device */
283 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
284 		return false;
285 	return true;
286 }
287 
288 static bool tick_check_preferred(struct clock_event_device *curdev,
289 				 struct clock_event_device *newdev)
290 {
291 	/* Prefer oneshot capable device */
292 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
293 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
294 			return false;
295 		if (tick_oneshot_mode_active())
296 			return false;
297 	}
298 
299 	/*
300 	 * Use the higher rated one, but prefer a CPU local device with a lower
301 	 * rating than a non-CPU local device
302 	 */
303 	return !curdev ||
304 		newdev->rating > curdev->rating ||
305 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
306 }
307 
308 /*
309  * Check whether the new device is a better fit than curdev. curdev
310  * can be NULL !
311  */
312 bool tick_check_replacement(struct clock_event_device *curdev,
313 			    struct clock_event_device *newdev)
314 {
315 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
316 		return false;
317 
318 	return tick_check_preferred(curdev, newdev);
319 }
320 
321 /*
322  * Check, if the new registered device should be used. Called with
323  * clockevents_lock held and interrupts disabled.
324  */
325 void tick_check_new_device(struct clock_event_device *newdev)
326 {
327 	struct clock_event_device *curdev;
328 	struct tick_device *td;
329 	int cpu;
330 
331 	cpu = smp_processor_id();
332 	td = &per_cpu(tick_cpu_device, cpu);
333 	curdev = td->evtdev;
334 
335 	if (!tick_check_replacement(curdev, newdev))
336 		goto out_bc;
337 
338 	if (!try_module_get(newdev->owner))
339 		return;
340 
341 	/*
342 	 * Replace the eventually existing device by the new
343 	 * device. If the current device is the broadcast device, do
344 	 * not give it back to the clockevents layer !
345 	 */
346 	if (tick_is_broadcast_device(curdev)) {
347 		clockevents_shutdown(curdev);
348 		curdev = NULL;
349 	}
350 	clockevents_exchange_device(curdev, newdev);
351 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
352 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
353 		tick_oneshot_notify();
354 	return;
355 
356 out_bc:
357 	/*
358 	 * Can the new device be used as a broadcast device ?
359 	 */
360 	tick_install_broadcast_device(newdev, cpu);
361 }
362 
363 /**
364  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
365  * @state:	The target state (enter/exit)
366  *
367  * The system enters/leaves a state, where affected devices might stop
368  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
369  *
370  * Called with interrupts disabled, so clockevents_lock is not
371  * required here because the local clock event device cannot go away
372  * under us.
373  */
374 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
375 {
376 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
377 
378 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
379 		return 0;
380 
381 	return __tick_broadcast_oneshot_control(state);
382 }
383 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
384 
385 #ifdef CONFIG_HOTPLUG_CPU
386 void tick_assert_timekeeping_handover(void)
387 {
388 	WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id());
389 }
390 /*
391  * Stop the tick and transfer the timekeeping job away from a dying cpu.
392  */
393 int tick_cpu_dying(unsigned int dying_cpu)
394 {
395 	/*
396 	 * If the current CPU is the timekeeper, it's the only one that can
397 	 * safely hand over its duty. Also all online CPUs are in stop
398 	 * machine, guaranteed not to be idle, therefore there is no
399 	 * concurrency and it's safe to pick any online successor.
400 	 */
401 	if (tick_do_timer_cpu == dying_cpu)
402 		tick_do_timer_cpu = cpumask_first(cpu_online_mask);
403 
404 	/* Make sure the CPU won't try to retake the timekeeping duty */
405 	tick_sched_timer_dying(dying_cpu);
406 
407 	/* Remove CPU from timer broadcasting */
408 	tick_offline_cpu(dying_cpu);
409 
410 	return 0;
411 }
412 
413 /*
414  * Shutdown an event device on a given cpu:
415  *
416  * This is called on a life CPU, when a CPU is dead. So we cannot
417  * access the hardware device itself.
418  * We just set the mode and remove it from the lists.
419  */
420 void tick_shutdown(unsigned int cpu)
421 {
422 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
423 	struct clock_event_device *dev = td->evtdev;
424 
425 	td->mode = TICKDEV_MODE_PERIODIC;
426 	if (dev) {
427 		/*
428 		 * Prevent that the clock events layer tries to call
429 		 * the set mode function!
430 		 */
431 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
432 		clockevents_exchange_device(dev, NULL);
433 		dev->event_handler = clockevents_handle_noop;
434 		td->evtdev = NULL;
435 	}
436 }
437 #endif
438 
439 /**
440  * tick_suspend_local - Suspend the local tick device
441  *
442  * Called from the local cpu for freeze with interrupts disabled.
443  *
444  * No locks required. Nothing can change the per cpu device.
445  */
446 void tick_suspend_local(void)
447 {
448 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
449 
450 	clockevents_shutdown(td->evtdev);
451 }
452 
453 /**
454  * tick_resume_local - Resume the local tick device
455  *
456  * Called from the local CPU for unfreeze or XEN resume magic.
457  *
458  * No locks required. Nothing can change the per cpu device.
459  */
460 void tick_resume_local(void)
461 {
462 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
463 	bool broadcast = tick_resume_check_broadcast();
464 
465 	clockevents_tick_resume(td->evtdev);
466 	if (!broadcast) {
467 		if (td->mode == TICKDEV_MODE_PERIODIC)
468 			tick_setup_periodic(td->evtdev, 0);
469 		else
470 			tick_resume_oneshot();
471 	}
472 
473 	/*
474 	 * Ensure that hrtimers are up to date and the clockevents device
475 	 * is reprogrammed correctly when high resolution timers are
476 	 * enabled.
477 	 */
478 	hrtimers_resume_local();
479 }
480 
481 /**
482  * tick_suspend - Suspend the tick and the broadcast device
483  *
484  * Called from syscore_suspend() via timekeeping_suspend with only one
485  * CPU online and interrupts disabled or from tick_unfreeze() under
486  * tick_freeze_lock.
487  *
488  * No locks required. Nothing can change the per cpu device.
489  */
490 void tick_suspend(void)
491 {
492 	tick_suspend_local();
493 	tick_suspend_broadcast();
494 }
495 
496 /**
497  * tick_resume - Resume the tick and the broadcast device
498  *
499  * Called from syscore_resume() via timekeeping_resume with only one
500  * CPU online and interrupts disabled.
501  *
502  * No locks required. Nothing can change the per cpu device.
503  */
504 void tick_resume(void)
505 {
506 	tick_resume_broadcast();
507 	tick_resume_local();
508 }
509 
510 #ifdef CONFIG_SUSPEND
511 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
512 static unsigned int tick_freeze_depth;
513 
514 /**
515  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
516  *
517  * Check if this is the last online CPU executing the function and if so,
518  * suspend timekeeping.  Otherwise suspend the local tick.
519  *
520  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
521  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
522  */
523 void tick_freeze(void)
524 {
525 	raw_spin_lock(&tick_freeze_lock);
526 
527 	tick_freeze_depth++;
528 	if (tick_freeze_depth == num_online_cpus()) {
529 		trace_suspend_resume(TPS("timekeeping_freeze"),
530 				     smp_processor_id(), true);
531 		system_state = SYSTEM_SUSPEND;
532 		sched_clock_suspend();
533 		timekeeping_suspend();
534 	} else {
535 		tick_suspend_local();
536 	}
537 
538 	raw_spin_unlock(&tick_freeze_lock);
539 }
540 
541 /**
542  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
543  *
544  * Check if this is the first CPU executing the function and if so, resume
545  * timekeeping.  Otherwise resume the local tick.
546  *
547  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
548  * Interrupts must not be enabled after the preceding %tick_freeze().
549  */
550 void tick_unfreeze(void)
551 {
552 	raw_spin_lock(&tick_freeze_lock);
553 
554 	if (tick_freeze_depth == num_online_cpus()) {
555 		timekeeping_resume();
556 		sched_clock_resume();
557 		system_state = SYSTEM_RUNNING;
558 		trace_suspend_resume(TPS("timekeeping_freeze"),
559 				     smp_processor_id(), false);
560 	} else {
561 		touch_softlockup_watchdog();
562 		tick_resume_local();
563 	}
564 
565 	tick_freeze_depth--;
566 
567 	raw_spin_unlock(&tick_freeze_lock);
568 }
569 #endif /* CONFIG_SUSPEND */
570 
571 /**
572  * tick_init - initialize the tick control
573  */
574 void __init tick_init(void)
575 {
576 	tick_broadcast_init();
577 	tick_nohz_init();
578 }
579