1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains the base functions to manage periodic tick 4 * related events. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/nmi.h> 15 #include <linux/percpu.h> 16 #include <linux/profile.h> 17 #include <linux/sched.h> 18 #include <linux/module.h> 19 #include <trace/events/power.h> 20 21 #include <asm/irq_regs.h> 22 23 #include "tick-internal.h" 24 25 /* 26 * Tick devices 27 */ 28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 29 /* 30 * Tick next event: keeps track of the tick time. It's updated by the 31 * CPU which handles the tick and protected by jiffies_lock. There is 32 * no requirement to write hold the jiffies seqcount for it. 33 */ 34 ktime_t tick_next_period; 35 36 /* 37 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 38 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 39 * variable has two functions: 40 * 41 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 42 * timekeeping lock all at once. Only the CPU which is assigned to do the 43 * update is handling it. 44 * 45 * 2) Hand off the duty in the NOHZ idle case by setting the value to 46 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 47 * at it will take over and keep the time keeping alive. The handover 48 * procedure also covers cpu hotplug. 49 */ 50 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 51 #ifdef CONFIG_NO_HZ_FULL 52 /* 53 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns 54 * tick_do_timer_cpu and it should be taken over by an eligible secondary 55 * when one comes online. 56 */ 57 static int tick_do_timer_boot_cpu __read_mostly = -1; 58 #endif 59 60 /* 61 * Debugging: see timer_list.c 62 */ 63 struct tick_device *tick_get_device(int cpu) 64 { 65 return &per_cpu(tick_cpu_device, cpu); 66 } 67 68 /** 69 * tick_is_oneshot_available - check for a oneshot capable event device 70 */ 71 int tick_is_oneshot_available(void) 72 { 73 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 74 75 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 76 return 0; 77 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 78 return 1; 79 return tick_broadcast_oneshot_available(); 80 } 81 82 /* 83 * Periodic tick 84 */ 85 static void tick_periodic(int cpu) 86 { 87 if (tick_do_timer_cpu == cpu) { 88 raw_spin_lock(&jiffies_lock); 89 write_seqcount_begin(&jiffies_seq); 90 91 /* Keep track of the next tick event */ 92 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC); 93 94 do_timer(1); 95 write_seqcount_end(&jiffies_seq); 96 raw_spin_unlock(&jiffies_lock); 97 update_wall_time(); 98 } 99 100 update_process_times(user_mode(get_irq_regs())); 101 profile_tick(CPU_PROFILING); 102 } 103 104 /* 105 * Event handler for periodic ticks 106 */ 107 void tick_handle_periodic(struct clock_event_device *dev) 108 { 109 int cpu = smp_processor_id(); 110 ktime_t next = dev->next_event; 111 112 tick_periodic(cpu); 113 114 /* 115 * The cpu might have transitioned to HIGHRES or NOHZ mode via 116 * update_process_times() -> run_local_timers() -> 117 * hrtimer_run_queues(). 118 */ 119 if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic) 120 return; 121 122 if (!clockevent_state_oneshot(dev)) 123 return; 124 for (;;) { 125 /* 126 * Setup the next period for devices, which do not have 127 * periodic mode: 128 */ 129 next = ktime_add_ns(next, TICK_NSEC); 130 131 if (!clockevents_program_event(dev, next, false)) 132 return; 133 /* 134 * Have to be careful here. If we're in oneshot mode, 135 * before we call tick_periodic() in a loop, we need 136 * to be sure we're using a real hardware clocksource. 137 * Otherwise we could get trapped in an infinite 138 * loop, as the tick_periodic() increments jiffies, 139 * which then will increment time, possibly causing 140 * the loop to trigger again and again. 141 */ 142 if (timekeeping_valid_for_hres()) 143 tick_periodic(cpu); 144 } 145 } 146 147 /* 148 * Setup the device for a periodic tick 149 */ 150 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 151 { 152 tick_set_periodic_handler(dev, broadcast); 153 154 /* Broadcast setup ? */ 155 if (!tick_device_is_functional(dev)) 156 return; 157 158 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 159 !tick_broadcast_oneshot_active()) { 160 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 161 } else { 162 unsigned int seq; 163 ktime_t next; 164 165 do { 166 seq = read_seqcount_begin(&jiffies_seq); 167 next = tick_next_period; 168 } while (read_seqcount_retry(&jiffies_seq, seq)); 169 170 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 171 172 for (;;) { 173 if (!clockevents_program_event(dev, next, false)) 174 return; 175 next = ktime_add_ns(next, TICK_NSEC); 176 } 177 } 178 } 179 180 #ifdef CONFIG_NO_HZ_FULL 181 static void giveup_do_timer(void *info) 182 { 183 int cpu = *(unsigned int *)info; 184 185 WARN_ON(tick_do_timer_cpu != smp_processor_id()); 186 187 tick_do_timer_cpu = cpu; 188 } 189 190 static void tick_take_do_timer_from_boot(void) 191 { 192 int cpu = smp_processor_id(); 193 int from = tick_do_timer_boot_cpu; 194 195 if (from >= 0 && from != cpu) 196 smp_call_function_single(from, giveup_do_timer, &cpu, 1); 197 } 198 #endif 199 200 /* 201 * Setup the tick device 202 */ 203 static void tick_setup_device(struct tick_device *td, 204 struct clock_event_device *newdev, int cpu, 205 const struct cpumask *cpumask) 206 { 207 void (*handler)(struct clock_event_device *) = NULL; 208 ktime_t next_event = 0; 209 210 /* 211 * First device setup ? 212 */ 213 if (!td->evtdev) { 214 /* 215 * If no cpu took the do_timer update, assign it to 216 * this cpu: 217 */ 218 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 219 tick_do_timer_cpu = cpu; 220 tick_next_period = ktime_get(); 221 #ifdef CONFIG_NO_HZ_FULL 222 /* 223 * The boot CPU may be nohz_full, in which case set 224 * tick_do_timer_boot_cpu so the first housekeeping 225 * secondary that comes up will take do_timer from 226 * us. 227 */ 228 if (tick_nohz_full_cpu(cpu)) 229 tick_do_timer_boot_cpu = cpu; 230 231 } else if (tick_do_timer_boot_cpu != -1 && 232 !tick_nohz_full_cpu(cpu)) { 233 tick_take_do_timer_from_boot(); 234 tick_do_timer_boot_cpu = -1; 235 WARN_ON(tick_do_timer_cpu != cpu); 236 #endif 237 } 238 239 /* 240 * Startup in periodic mode first. 241 */ 242 td->mode = TICKDEV_MODE_PERIODIC; 243 } else { 244 handler = td->evtdev->event_handler; 245 next_event = td->evtdev->next_event; 246 td->evtdev->event_handler = clockevents_handle_noop; 247 } 248 249 td->evtdev = newdev; 250 251 /* 252 * When the device is not per cpu, pin the interrupt to the 253 * current cpu: 254 */ 255 if (!cpumask_equal(newdev->cpumask, cpumask)) 256 irq_set_affinity(newdev->irq, cpumask); 257 258 /* 259 * When global broadcasting is active, check if the current 260 * device is registered as a placeholder for broadcast mode. 261 * This allows us to handle this x86 misfeature in a generic 262 * way. This function also returns !=0 when we keep the 263 * current active broadcast state for this CPU. 264 */ 265 if (tick_device_uses_broadcast(newdev, cpu)) 266 return; 267 268 if (td->mode == TICKDEV_MODE_PERIODIC) 269 tick_setup_periodic(newdev, 0); 270 else 271 tick_setup_oneshot(newdev, handler, next_event); 272 } 273 274 void tick_install_replacement(struct clock_event_device *newdev) 275 { 276 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 277 int cpu = smp_processor_id(); 278 279 clockevents_exchange_device(td->evtdev, newdev); 280 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 281 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 282 tick_oneshot_notify(); 283 } 284 285 static bool tick_check_percpu(struct clock_event_device *curdev, 286 struct clock_event_device *newdev, int cpu) 287 { 288 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 289 return false; 290 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 291 return true; 292 /* Check if irq affinity can be set */ 293 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 294 return false; 295 /* Prefer an existing cpu local device */ 296 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 297 return false; 298 return true; 299 } 300 301 static bool tick_check_preferred(struct clock_event_device *curdev, 302 struct clock_event_device *newdev) 303 { 304 /* Prefer oneshot capable device */ 305 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 306 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 307 return false; 308 if (tick_oneshot_mode_active()) 309 return false; 310 } 311 312 /* 313 * Use the higher rated one, but prefer a CPU local device with a lower 314 * rating than a non-CPU local device 315 */ 316 return !curdev || 317 newdev->rating > curdev->rating || 318 !cpumask_equal(curdev->cpumask, newdev->cpumask); 319 } 320 321 /* 322 * Check whether the new device is a better fit than curdev. curdev 323 * can be NULL ! 324 */ 325 bool tick_check_replacement(struct clock_event_device *curdev, 326 struct clock_event_device *newdev) 327 { 328 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 329 return false; 330 331 return tick_check_preferred(curdev, newdev); 332 } 333 334 /* 335 * Check, if the new registered device should be used. Called with 336 * clockevents_lock held and interrupts disabled. 337 */ 338 void tick_check_new_device(struct clock_event_device *newdev) 339 { 340 struct clock_event_device *curdev; 341 struct tick_device *td; 342 int cpu; 343 344 cpu = smp_processor_id(); 345 td = &per_cpu(tick_cpu_device, cpu); 346 curdev = td->evtdev; 347 348 if (!tick_check_replacement(curdev, newdev)) 349 goto out_bc; 350 351 if (!try_module_get(newdev->owner)) 352 return; 353 354 /* 355 * Replace the eventually existing device by the new 356 * device. If the current device is the broadcast device, do 357 * not give it back to the clockevents layer ! 358 */ 359 if (tick_is_broadcast_device(curdev)) { 360 clockevents_shutdown(curdev); 361 curdev = NULL; 362 } 363 clockevents_exchange_device(curdev, newdev); 364 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 365 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 366 tick_oneshot_notify(); 367 return; 368 369 out_bc: 370 /* 371 * Can the new device be used as a broadcast device ? 372 */ 373 tick_install_broadcast_device(newdev, cpu); 374 } 375 376 /** 377 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 378 * @state: The target state (enter/exit) 379 * 380 * The system enters/leaves a state, where affected devices might stop 381 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 382 * 383 * Called with interrupts disabled, so clockevents_lock is not 384 * required here because the local clock event device cannot go away 385 * under us. 386 */ 387 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 388 { 389 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 390 391 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 392 return 0; 393 394 return __tick_broadcast_oneshot_control(state); 395 } 396 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 397 398 #ifdef CONFIG_HOTPLUG_CPU 399 void tick_assert_timekeeping_handover(void) 400 { 401 WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id()); 402 } 403 /* 404 * Stop the tick and transfer the timekeeping job away from a dying cpu. 405 */ 406 int tick_cpu_dying(unsigned int dying_cpu) 407 { 408 /* 409 * If the current CPU is the timekeeper, it's the only one that 410 * can safely hand over its duty. Also all online CPUs are in 411 * stop machine, guaranteed not to be idle, therefore it's safe 412 * to pick any online successor. 413 */ 414 if (tick_do_timer_cpu == dying_cpu) 415 tick_do_timer_cpu = cpumask_first(cpu_online_mask); 416 417 /* Make sure the CPU won't try to retake the timekeeping duty */ 418 tick_sched_timer_dying(dying_cpu); 419 420 /* Remove CPU from timer broadcasting */ 421 tick_offline_cpu(dying_cpu); 422 423 return 0; 424 } 425 426 /* 427 * Shutdown an event device on a given cpu: 428 * 429 * This is called on a life CPU, when a CPU is dead. So we cannot 430 * access the hardware device itself. 431 * We just set the mode and remove it from the lists. 432 */ 433 void tick_shutdown(unsigned int cpu) 434 { 435 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 436 struct clock_event_device *dev = td->evtdev; 437 438 td->mode = TICKDEV_MODE_PERIODIC; 439 if (dev) { 440 /* 441 * Prevent that the clock events layer tries to call 442 * the set mode function! 443 */ 444 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 445 clockevents_exchange_device(dev, NULL); 446 dev->event_handler = clockevents_handle_noop; 447 td->evtdev = NULL; 448 } 449 } 450 #endif 451 452 /** 453 * tick_suspend_local - Suspend the local tick device 454 * 455 * Called from the local cpu for freeze with interrupts disabled. 456 * 457 * No locks required. Nothing can change the per cpu device. 458 */ 459 void tick_suspend_local(void) 460 { 461 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 462 463 clockevents_shutdown(td->evtdev); 464 } 465 466 /** 467 * tick_resume_local - Resume the local tick device 468 * 469 * Called from the local CPU for unfreeze or XEN resume magic. 470 * 471 * No locks required. Nothing can change the per cpu device. 472 */ 473 void tick_resume_local(void) 474 { 475 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 476 bool broadcast = tick_resume_check_broadcast(); 477 478 clockevents_tick_resume(td->evtdev); 479 if (!broadcast) { 480 if (td->mode == TICKDEV_MODE_PERIODIC) 481 tick_setup_periodic(td->evtdev, 0); 482 else 483 tick_resume_oneshot(); 484 } 485 486 /* 487 * Ensure that hrtimers are up to date and the clockevents device 488 * is reprogrammed correctly when high resolution timers are 489 * enabled. 490 */ 491 hrtimers_resume_local(); 492 } 493 494 /** 495 * tick_suspend - Suspend the tick and the broadcast device 496 * 497 * Called from syscore_suspend() via timekeeping_suspend with only one 498 * CPU online and interrupts disabled or from tick_unfreeze() under 499 * tick_freeze_lock. 500 * 501 * No locks required. Nothing can change the per cpu device. 502 */ 503 void tick_suspend(void) 504 { 505 tick_suspend_local(); 506 tick_suspend_broadcast(); 507 } 508 509 /** 510 * tick_resume - Resume the tick and the broadcast device 511 * 512 * Called from syscore_resume() via timekeeping_resume with only one 513 * CPU online and interrupts disabled. 514 * 515 * No locks required. Nothing can change the per cpu device. 516 */ 517 void tick_resume(void) 518 { 519 tick_resume_broadcast(); 520 tick_resume_local(); 521 } 522 523 #ifdef CONFIG_SUSPEND 524 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 525 static unsigned int tick_freeze_depth; 526 527 /** 528 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 529 * 530 * Check if this is the last online CPU executing the function and if so, 531 * suspend timekeeping. Otherwise suspend the local tick. 532 * 533 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 534 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 535 */ 536 void tick_freeze(void) 537 { 538 raw_spin_lock(&tick_freeze_lock); 539 540 tick_freeze_depth++; 541 if (tick_freeze_depth == num_online_cpus()) { 542 trace_suspend_resume(TPS("timekeeping_freeze"), 543 smp_processor_id(), true); 544 system_state = SYSTEM_SUSPEND; 545 sched_clock_suspend(); 546 timekeeping_suspend(); 547 } else { 548 tick_suspend_local(); 549 } 550 551 raw_spin_unlock(&tick_freeze_lock); 552 } 553 554 /** 555 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 556 * 557 * Check if this is the first CPU executing the function and if so, resume 558 * timekeeping. Otherwise resume the local tick. 559 * 560 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 561 * Interrupts must not be enabled after the preceding %tick_freeze(). 562 */ 563 void tick_unfreeze(void) 564 { 565 raw_spin_lock(&tick_freeze_lock); 566 567 if (tick_freeze_depth == num_online_cpus()) { 568 timekeeping_resume(); 569 sched_clock_resume(); 570 system_state = SYSTEM_RUNNING; 571 trace_suspend_resume(TPS("timekeeping_freeze"), 572 smp_processor_id(), false); 573 } else { 574 touch_softlockup_watchdog(); 575 tick_resume_local(); 576 } 577 578 tick_freeze_depth--; 579 580 raw_spin_unlock(&tick_freeze_lock); 581 } 582 #endif /* CONFIG_SUSPEND */ 583 584 /** 585 * tick_init - initialize the tick control 586 */ 587 void __init tick_init(void) 588 { 589 tick_broadcast_init(); 590 tick_nohz_init(); 591 } 592