xref: /linux/kernel/time/tick-common.c (revision 71dfa617ea9f18e4585fe78364217cd32b1fc382)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/nmi.h>
16 #include <linux/percpu.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/module.h>
20 #include <trace/events/power.h>
21 
22 #include <asm/irq_regs.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Tick devices
28  */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31  * Tick next event: keeps track of the tick time. It's updated by the
32  * CPU which handles the tick and protected by jiffies_lock. There is
33  * no requirement to write hold the jiffies seqcount for it.
34  */
35 ktime_t tick_next_period;
36 
37 /*
38  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40  * variable has two functions:
41  *
42  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43  *    timekeeping lock all at once. Only the CPU which is assigned to do the
44  *    update is handling it.
45  *
46  * 2) Hand off the duty in the NOHZ idle case by setting the value to
47  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48  *    at it will take over and keep the time keeping alive.  The handover
49  *    procedure also covers cpu hotplug.
50  */
51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
52 #ifdef CONFIG_NO_HZ_FULL
53 /*
54  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
55  * tick_do_timer_cpu and it should be taken over by an eligible secondary
56  * when one comes online.
57  */
58 static int tick_do_timer_boot_cpu __read_mostly = -1;
59 #endif
60 
61 /*
62  * Debugging: see timer_list.c
63  */
64 struct tick_device *tick_get_device(int cpu)
65 {
66 	return &per_cpu(tick_cpu_device, cpu);
67 }
68 
69 /**
70  * tick_is_oneshot_available - check for a oneshot capable event device
71  */
72 int tick_is_oneshot_available(void)
73 {
74 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
75 
76 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
77 		return 0;
78 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
79 		return 1;
80 	return tick_broadcast_oneshot_available();
81 }
82 
83 /*
84  * Periodic tick
85  */
86 static void tick_periodic(int cpu)
87 {
88 	if (READ_ONCE(tick_do_timer_cpu) == cpu) {
89 		raw_spin_lock(&jiffies_lock);
90 		write_seqcount_begin(&jiffies_seq);
91 
92 		/* Keep track of the next tick event */
93 		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
94 
95 		do_timer(1);
96 		write_seqcount_end(&jiffies_seq);
97 		raw_spin_unlock(&jiffies_lock);
98 		update_wall_time();
99 	}
100 
101 	update_process_times(user_mode(get_irq_regs()));
102 	profile_tick(CPU_PROFILING);
103 }
104 
105 /*
106  * Event handler for periodic ticks
107  */
108 void tick_handle_periodic(struct clock_event_device *dev)
109 {
110 	int cpu = smp_processor_id();
111 	ktime_t next = dev->next_event;
112 
113 	tick_periodic(cpu);
114 
115 	/*
116 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
117 	 * update_process_times() -> run_local_timers() ->
118 	 * hrtimer_run_queues().
119 	 */
120 	if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic)
121 		return;
122 
123 	if (!clockevent_state_oneshot(dev))
124 		return;
125 	for (;;) {
126 		/*
127 		 * Setup the next period for devices, which do not have
128 		 * periodic mode:
129 		 */
130 		next = ktime_add_ns(next, TICK_NSEC);
131 
132 		if (!clockevents_program_event(dev, next, false))
133 			return;
134 		/*
135 		 * Have to be careful here. If we're in oneshot mode,
136 		 * before we call tick_periodic() in a loop, we need
137 		 * to be sure we're using a real hardware clocksource.
138 		 * Otherwise we could get trapped in an infinite
139 		 * loop, as the tick_periodic() increments jiffies,
140 		 * which then will increment time, possibly causing
141 		 * the loop to trigger again and again.
142 		 */
143 		if (timekeeping_valid_for_hres())
144 			tick_periodic(cpu);
145 	}
146 }
147 
148 /*
149  * Setup the device for a periodic tick
150  */
151 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
152 {
153 	tick_set_periodic_handler(dev, broadcast);
154 
155 	/* Broadcast setup ? */
156 	if (!tick_device_is_functional(dev))
157 		return;
158 
159 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
160 	    !tick_broadcast_oneshot_active()) {
161 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
162 	} else {
163 		unsigned int seq;
164 		ktime_t next;
165 
166 		do {
167 			seq = read_seqcount_begin(&jiffies_seq);
168 			next = tick_next_period;
169 		} while (read_seqcount_retry(&jiffies_seq, seq));
170 
171 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
172 
173 		for (;;) {
174 			if (!clockevents_program_event(dev, next, false))
175 				return;
176 			next = ktime_add_ns(next, TICK_NSEC);
177 		}
178 	}
179 }
180 
181 #ifdef CONFIG_NO_HZ_FULL
182 static void giveup_do_timer(void *info)
183 {
184 	int cpu = *(unsigned int *)info;
185 
186 	WARN_ON(tick_do_timer_cpu != smp_processor_id());
187 
188 	tick_do_timer_cpu = cpu;
189 }
190 
191 static void tick_take_do_timer_from_boot(void)
192 {
193 	int cpu = smp_processor_id();
194 	int from = tick_do_timer_boot_cpu;
195 
196 	if (from >= 0 && from != cpu)
197 		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
198 }
199 #endif
200 
201 /*
202  * Setup the tick device
203  */
204 static void tick_setup_device(struct tick_device *td,
205 			      struct clock_event_device *newdev, int cpu,
206 			      const struct cpumask *cpumask)
207 {
208 	void (*handler)(struct clock_event_device *) = NULL;
209 	ktime_t next_event = 0;
210 
211 	/*
212 	 * First device setup ?
213 	 */
214 	if (!td->evtdev) {
215 		/*
216 		 * If no cpu took the do_timer update, assign it to
217 		 * this cpu:
218 		 */
219 		if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) {
220 			WRITE_ONCE(tick_do_timer_cpu, cpu);
221 			tick_next_period = ktime_get();
222 #ifdef CONFIG_NO_HZ_FULL
223 			/*
224 			 * The boot CPU may be nohz_full, in which case set
225 			 * tick_do_timer_boot_cpu so the first housekeeping
226 			 * secondary that comes up will take do_timer from
227 			 * us.
228 			 */
229 			if (tick_nohz_full_cpu(cpu))
230 				tick_do_timer_boot_cpu = cpu;
231 
232 		} else if (tick_do_timer_boot_cpu != -1 &&
233 						!tick_nohz_full_cpu(cpu)) {
234 			tick_take_do_timer_from_boot();
235 			tick_do_timer_boot_cpu = -1;
236 			WARN_ON(READ_ONCE(tick_do_timer_cpu) != cpu);
237 #endif
238 		}
239 
240 		/*
241 		 * Startup in periodic mode first.
242 		 */
243 		td->mode = TICKDEV_MODE_PERIODIC;
244 	} else {
245 		handler = td->evtdev->event_handler;
246 		next_event = td->evtdev->next_event;
247 		td->evtdev->event_handler = clockevents_handle_noop;
248 	}
249 
250 	td->evtdev = newdev;
251 
252 	/*
253 	 * When the device is not per cpu, pin the interrupt to the
254 	 * current cpu:
255 	 */
256 	if (!cpumask_equal(newdev->cpumask, cpumask))
257 		irq_set_affinity(newdev->irq, cpumask);
258 
259 	/*
260 	 * When global broadcasting is active, check if the current
261 	 * device is registered as a placeholder for broadcast mode.
262 	 * This allows us to handle this x86 misfeature in a generic
263 	 * way. This function also returns !=0 when we keep the
264 	 * current active broadcast state for this CPU.
265 	 */
266 	if (tick_device_uses_broadcast(newdev, cpu))
267 		return;
268 
269 	if (td->mode == TICKDEV_MODE_PERIODIC)
270 		tick_setup_periodic(newdev, 0);
271 	else
272 		tick_setup_oneshot(newdev, handler, next_event);
273 }
274 
275 void tick_install_replacement(struct clock_event_device *newdev)
276 {
277 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
278 	int cpu = smp_processor_id();
279 
280 	clockevents_exchange_device(td->evtdev, newdev);
281 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
282 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
283 		tick_oneshot_notify();
284 }
285 
286 static bool tick_check_percpu(struct clock_event_device *curdev,
287 			      struct clock_event_device *newdev, int cpu)
288 {
289 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
290 		return false;
291 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
292 		return true;
293 	/* Check if irq affinity can be set */
294 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
295 		return false;
296 	/* Prefer an existing cpu local device */
297 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
298 		return false;
299 	return true;
300 }
301 
302 static bool tick_check_preferred(struct clock_event_device *curdev,
303 				 struct clock_event_device *newdev)
304 {
305 	/* Prefer oneshot capable device */
306 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
307 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
308 			return false;
309 		if (tick_oneshot_mode_active())
310 			return false;
311 	}
312 
313 	/*
314 	 * Use the higher rated one, but prefer a CPU local device with a lower
315 	 * rating than a non-CPU local device
316 	 */
317 	return !curdev ||
318 		newdev->rating > curdev->rating ||
319 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
320 }
321 
322 /*
323  * Check whether the new device is a better fit than curdev. curdev
324  * can be NULL !
325  */
326 bool tick_check_replacement(struct clock_event_device *curdev,
327 			    struct clock_event_device *newdev)
328 {
329 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
330 		return false;
331 
332 	return tick_check_preferred(curdev, newdev);
333 }
334 
335 /*
336  * Check, if the new registered device should be used. Called with
337  * clockevents_lock held and interrupts disabled.
338  */
339 void tick_check_new_device(struct clock_event_device *newdev)
340 {
341 	struct clock_event_device *curdev;
342 	struct tick_device *td;
343 	int cpu;
344 
345 	cpu = smp_processor_id();
346 	td = &per_cpu(tick_cpu_device, cpu);
347 	curdev = td->evtdev;
348 
349 	if (!tick_check_replacement(curdev, newdev))
350 		goto out_bc;
351 
352 	if (!try_module_get(newdev->owner))
353 		return;
354 
355 	/*
356 	 * Replace the eventually existing device by the new
357 	 * device. If the current device is the broadcast device, do
358 	 * not give it back to the clockevents layer !
359 	 */
360 	if (tick_is_broadcast_device(curdev)) {
361 		clockevents_shutdown(curdev);
362 		curdev = NULL;
363 	}
364 	clockevents_exchange_device(curdev, newdev);
365 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
366 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
367 		tick_oneshot_notify();
368 	return;
369 
370 out_bc:
371 	/*
372 	 * Can the new device be used as a broadcast device ?
373 	 */
374 	tick_install_broadcast_device(newdev, cpu);
375 }
376 
377 /**
378  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
379  * @state:	The target state (enter/exit)
380  *
381  * The system enters/leaves a state, where affected devices might stop
382  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
383  *
384  * Called with interrupts disabled, so clockevents_lock is not
385  * required here because the local clock event device cannot go away
386  * under us.
387  */
388 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
389 {
390 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
391 
392 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
393 		return 0;
394 
395 	return __tick_broadcast_oneshot_control(state);
396 }
397 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
398 
399 #ifdef CONFIG_HOTPLUG_CPU
400 void tick_assert_timekeeping_handover(void)
401 {
402 	WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id());
403 }
404 /*
405  * Stop the tick and transfer the timekeeping job away from a dying cpu.
406  */
407 int tick_cpu_dying(unsigned int dying_cpu)
408 {
409 	/*
410 	 * If the current CPU is the timekeeper, it's the only one that can
411 	 * safely hand over its duty. Also all online CPUs are in stop
412 	 * machine, guaranteed not to be idle, therefore there is no
413 	 * concurrency and it's safe to pick any online successor.
414 	 */
415 	if (tick_do_timer_cpu == dying_cpu)
416 		tick_do_timer_cpu = cpumask_first(cpu_online_mask);
417 
418 	/* Make sure the CPU won't try to retake the timekeeping duty */
419 	tick_sched_timer_dying(dying_cpu);
420 
421 	/* Remove CPU from timer broadcasting */
422 	tick_offline_cpu(dying_cpu);
423 
424 	return 0;
425 }
426 
427 /*
428  * Shutdown an event device on a given cpu:
429  *
430  * This is called on a life CPU, when a CPU is dead. So we cannot
431  * access the hardware device itself.
432  * We just set the mode and remove it from the lists.
433  */
434 void tick_shutdown(unsigned int cpu)
435 {
436 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
437 	struct clock_event_device *dev = td->evtdev;
438 
439 	td->mode = TICKDEV_MODE_PERIODIC;
440 	if (dev) {
441 		/*
442 		 * Prevent that the clock events layer tries to call
443 		 * the set mode function!
444 		 */
445 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
446 		clockevents_exchange_device(dev, NULL);
447 		dev->event_handler = clockevents_handle_noop;
448 		td->evtdev = NULL;
449 	}
450 }
451 #endif
452 
453 /**
454  * tick_suspend_local - Suspend the local tick device
455  *
456  * Called from the local cpu for freeze with interrupts disabled.
457  *
458  * No locks required. Nothing can change the per cpu device.
459  */
460 void tick_suspend_local(void)
461 {
462 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
463 
464 	clockevents_shutdown(td->evtdev);
465 }
466 
467 /**
468  * tick_resume_local - Resume the local tick device
469  *
470  * Called from the local CPU for unfreeze or XEN resume magic.
471  *
472  * No locks required. Nothing can change the per cpu device.
473  */
474 void tick_resume_local(void)
475 {
476 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
477 	bool broadcast = tick_resume_check_broadcast();
478 
479 	clockevents_tick_resume(td->evtdev);
480 	if (!broadcast) {
481 		if (td->mode == TICKDEV_MODE_PERIODIC)
482 			tick_setup_periodic(td->evtdev, 0);
483 		else
484 			tick_resume_oneshot();
485 	}
486 
487 	/*
488 	 * Ensure that hrtimers are up to date and the clockevents device
489 	 * is reprogrammed correctly when high resolution timers are
490 	 * enabled.
491 	 */
492 	hrtimers_resume_local();
493 }
494 
495 /**
496  * tick_suspend - Suspend the tick and the broadcast device
497  *
498  * Called from syscore_suspend() via timekeeping_suspend with only one
499  * CPU online and interrupts disabled or from tick_unfreeze() under
500  * tick_freeze_lock.
501  *
502  * No locks required. Nothing can change the per cpu device.
503  */
504 void tick_suspend(void)
505 {
506 	tick_suspend_local();
507 	tick_suspend_broadcast();
508 }
509 
510 /**
511  * tick_resume - Resume the tick and the broadcast device
512  *
513  * Called from syscore_resume() via timekeeping_resume with only one
514  * CPU online and interrupts disabled.
515  *
516  * No locks required. Nothing can change the per cpu device.
517  */
518 void tick_resume(void)
519 {
520 	tick_resume_broadcast();
521 	tick_resume_local();
522 }
523 
524 #ifdef CONFIG_SUSPEND
525 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
526 static unsigned int tick_freeze_depth;
527 
528 /**
529  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
530  *
531  * Check if this is the last online CPU executing the function and if so,
532  * suspend timekeeping.  Otherwise suspend the local tick.
533  *
534  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
535  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
536  */
537 void tick_freeze(void)
538 {
539 	raw_spin_lock(&tick_freeze_lock);
540 
541 	tick_freeze_depth++;
542 	if (tick_freeze_depth == num_online_cpus()) {
543 		trace_suspend_resume(TPS("timekeeping_freeze"),
544 				     smp_processor_id(), true);
545 		system_state = SYSTEM_SUSPEND;
546 		sched_clock_suspend();
547 		timekeeping_suspend();
548 	} else {
549 		tick_suspend_local();
550 	}
551 
552 	raw_spin_unlock(&tick_freeze_lock);
553 }
554 
555 /**
556  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
557  *
558  * Check if this is the first CPU executing the function and if so, resume
559  * timekeeping.  Otherwise resume the local tick.
560  *
561  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
562  * Interrupts must not be enabled after the preceding %tick_freeze().
563  */
564 void tick_unfreeze(void)
565 {
566 	raw_spin_lock(&tick_freeze_lock);
567 
568 	if (tick_freeze_depth == num_online_cpus()) {
569 		timekeeping_resume();
570 		sched_clock_resume();
571 		system_state = SYSTEM_RUNNING;
572 		trace_suspend_resume(TPS("timekeeping_freeze"),
573 				     smp_processor_id(), false);
574 	} else {
575 		touch_softlockup_watchdog();
576 		tick_resume_local();
577 	}
578 
579 	tick_freeze_depth--;
580 
581 	raw_spin_unlock(&tick_freeze_lock);
582 }
583 #endif /* CONFIG_SUSPEND */
584 
585 /**
586  * tick_init - initialize the tick control
587  */
588 void __init tick_init(void)
589 {
590 	tick_broadcast_init();
591 	tick_nohz_init();
592 }
593