1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains the base functions to manage periodic tick 4 * related events. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/nmi.h> 15 #include <linux/percpu.h> 16 #include <linux/profile.h> 17 #include <linux/sched.h> 18 #include <linux/module.h> 19 #include <trace/events/power.h> 20 21 #include <asm/irq_regs.h> 22 23 #include "tick-internal.h" 24 25 /* 26 * Tick devices 27 */ 28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 29 /* 30 * Tick next event: keeps track of the tick time 31 */ 32 ktime_t tick_next_period; 33 ktime_t tick_period; 34 35 /* 36 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 37 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 38 * variable has two functions: 39 * 40 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 41 * timekeeping lock all at once. Only the CPU which is assigned to do the 42 * update is handling it. 43 * 44 * 2) Hand off the duty in the NOHZ idle case by setting the value to 45 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 46 * at it will take over and keep the time keeping alive. The handover 47 * procedure also covers cpu hotplug. 48 */ 49 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 50 #ifdef CONFIG_NO_HZ_FULL 51 /* 52 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns 53 * tick_do_timer_cpu and it should be taken over by an eligible secondary 54 * when one comes online. 55 */ 56 static int tick_do_timer_boot_cpu __read_mostly = -1; 57 #endif 58 59 /* 60 * Debugging: see timer_list.c 61 */ 62 struct tick_device *tick_get_device(int cpu) 63 { 64 return &per_cpu(tick_cpu_device, cpu); 65 } 66 67 /** 68 * tick_is_oneshot_available - check for a oneshot capable event device 69 */ 70 int tick_is_oneshot_available(void) 71 { 72 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 73 74 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 75 return 0; 76 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 77 return 1; 78 return tick_broadcast_oneshot_available(); 79 } 80 81 /* 82 * Periodic tick 83 */ 84 static void tick_periodic(int cpu) 85 { 86 if (tick_do_timer_cpu == cpu) { 87 raw_spin_lock(&jiffies_lock); 88 write_seqcount_begin(&jiffies_seq); 89 90 /* Keep track of the next tick event */ 91 tick_next_period = ktime_add(tick_next_period, tick_period); 92 93 do_timer(1); 94 write_seqcount_end(&jiffies_seq); 95 raw_spin_unlock(&jiffies_lock); 96 update_wall_time(); 97 } 98 99 update_process_times(user_mode(get_irq_regs())); 100 profile_tick(CPU_PROFILING); 101 } 102 103 /* 104 * Event handler for periodic ticks 105 */ 106 void tick_handle_periodic(struct clock_event_device *dev) 107 { 108 int cpu = smp_processor_id(); 109 ktime_t next = dev->next_event; 110 111 tick_periodic(cpu); 112 113 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON) 114 /* 115 * The cpu might have transitioned to HIGHRES or NOHZ mode via 116 * update_process_times() -> run_local_timers() -> 117 * hrtimer_run_queues(). 118 */ 119 if (dev->event_handler != tick_handle_periodic) 120 return; 121 #endif 122 123 if (!clockevent_state_oneshot(dev)) 124 return; 125 for (;;) { 126 /* 127 * Setup the next period for devices, which do not have 128 * periodic mode: 129 */ 130 next = ktime_add(next, tick_period); 131 132 if (!clockevents_program_event(dev, next, false)) 133 return; 134 /* 135 * Have to be careful here. If we're in oneshot mode, 136 * before we call tick_periodic() in a loop, we need 137 * to be sure we're using a real hardware clocksource. 138 * Otherwise we could get trapped in an infinite 139 * loop, as the tick_periodic() increments jiffies, 140 * which then will increment time, possibly causing 141 * the loop to trigger again and again. 142 */ 143 if (timekeeping_valid_for_hres()) 144 tick_periodic(cpu); 145 } 146 } 147 148 /* 149 * Setup the device for a periodic tick 150 */ 151 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 152 { 153 tick_set_periodic_handler(dev, broadcast); 154 155 /* Broadcast setup ? */ 156 if (!tick_device_is_functional(dev)) 157 return; 158 159 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 160 !tick_broadcast_oneshot_active()) { 161 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 162 } else { 163 unsigned int seq; 164 ktime_t next; 165 166 do { 167 seq = read_seqcount_begin(&jiffies_seq); 168 next = tick_next_period; 169 } while (read_seqcount_retry(&jiffies_seq, seq)); 170 171 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 172 173 for (;;) { 174 if (!clockevents_program_event(dev, next, false)) 175 return; 176 next = ktime_add(next, tick_period); 177 } 178 } 179 } 180 181 #ifdef CONFIG_NO_HZ_FULL 182 static void giveup_do_timer(void *info) 183 { 184 int cpu = *(unsigned int *)info; 185 186 WARN_ON(tick_do_timer_cpu != smp_processor_id()); 187 188 tick_do_timer_cpu = cpu; 189 } 190 191 static void tick_take_do_timer_from_boot(void) 192 { 193 int cpu = smp_processor_id(); 194 int from = tick_do_timer_boot_cpu; 195 196 if (from >= 0 && from != cpu) 197 smp_call_function_single(from, giveup_do_timer, &cpu, 1); 198 } 199 #endif 200 201 /* 202 * Setup the tick device 203 */ 204 static void tick_setup_device(struct tick_device *td, 205 struct clock_event_device *newdev, int cpu, 206 const struct cpumask *cpumask) 207 { 208 void (*handler)(struct clock_event_device *) = NULL; 209 ktime_t next_event = 0; 210 211 /* 212 * First device setup ? 213 */ 214 if (!td->evtdev) { 215 /* 216 * If no cpu took the do_timer update, assign it to 217 * this cpu: 218 */ 219 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 220 tick_do_timer_cpu = cpu; 221 222 tick_next_period = ktime_get(); 223 tick_period = NSEC_PER_SEC / HZ; 224 #ifdef CONFIG_NO_HZ_FULL 225 /* 226 * The boot CPU may be nohz_full, in which case set 227 * tick_do_timer_boot_cpu so the first housekeeping 228 * secondary that comes up will take do_timer from 229 * us. 230 */ 231 if (tick_nohz_full_cpu(cpu)) 232 tick_do_timer_boot_cpu = cpu; 233 234 } else if (tick_do_timer_boot_cpu != -1 && 235 !tick_nohz_full_cpu(cpu)) { 236 tick_take_do_timer_from_boot(); 237 tick_do_timer_boot_cpu = -1; 238 WARN_ON(tick_do_timer_cpu != cpu); 239 #endif 240 } 241 242 /* 243 * Startup in periodic mode first. 244 */ 245 td->mode = TICKDEV_MODE_PERIODIC; 246 } else { 247 handler = td->evtdev->event_handler; 248 next_event = td->evtdev->next_event; 249 td->evtdev->event_handler = clockevents_handle_noop; 250 } 251 252 td->evtdev = newdev; 253 254 /* 255 * When the device is not per cpu, pin the interrupt to the 256 * current cpu: 257 */ 258 if (!cpumask_equal(newdev->cpumask, cpumask)) 259 irq_set_affinity(newdev->irq, cpumask); 260 261 /* 262 * When global broadcasting is active, check if the current 263 * device is registered as a placeholder for broadcast mode. 264 * This allows us to handle this x86 misfeature in a generic 265 * way. This function also returns !=0 when we keep the 266 * current active broadcast state for this CPU. 267 */ 268 if (tick_device_uses_broadcast(newdev, cpu)) 269 return; 270 271 if (td->mode == TICKDEV_MODE_PERIODIC) 272 tick_setup_periodic(newdev, 0); 273 else 274 tick_setup_oneshot(newdev, handler, next_event); 275 } 276 277 void tick_install_replacement(struct clock_event_device *newdev) 278 { 279 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 280 int cpu = smp_processor_id(); 281 282 clockevents_exchange_device(td->evtdev, newdev); 283 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 284 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 285 tick_oneshot_notify(); 286 } 287 288 static bool tick_check_percpu(struct clock_event_device *curdev, 289 struct clock_event_device *newdev, int cpu) 290 { 291 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 292 return false; 293 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 294 return true; 295 /* Check if irq affinity can be set */ 296 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 297 return false; 298 /* Prefer an existing cpu local device */ 299 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 300 return false; 301 return true; 302 } 303 304 static bool tick_check_preferred(struct clock_event_device *curdev, 305 struct clock_event_device *newdev) 306 { 307 /* Prefer oneshot capable device */ 308 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 309 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 310 return false; 311 if (tick_oneshot_mode_active()) 312 return false; 313 } 314 315 /* 316 * Use the higher rated one, but prefer a CPU local device with a lower 317 * rating than a non-CPU local device 318 */ 319 return !curdev || 320 newdev->rating > curdev->rating || 321 !cpumask_equal(curdev->cpumask, newdev->cpumask); 322 } 323 324 /* 325 * Check whether the new device is a better fit than curdev. curdev 326 * can be NULL ! 327 */ 328 bool tick_check_replacement(struct clock_event_device *curdev, 329 struct clock_event_device *newdev) 330 { 331 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 332 return false; 333 334 return tick_check_preferred(curdev, newdev); 335 } 336 337 /* 338 * Check, if the new registered device should be used. Called with 339 * clockevents_lock held and interrupts disabled. 340 */ 341 void tick_check_new_device(struct clock_event_device *newdev) 342 { 343 struct clock_event_device *curdev; 344 struct tick_device *td; 345 int cpu; 346 347 cpu = smp_processor_id(); 348 td = &per_cpu(tick_cpu_device, cpu); 349 curdev = td->evtdev; 350 351 /* cpu local device ? */ 352 if (!tick_check_percpu(curdev, newdev, cpu)) 353 goto out_bc; 354 355 /* Preference decision */ 356 if (!tick_check_preferred(curdev, newdev)) 357 goto out_bc; 358 359 if (!try_module_get(newdev->owner)) 360 return; 361 362 /* 363 * Replace the eventually existing device by the new 364 * device. If the current device is the broadcast device, do 365 * not give it back to the clockevents layer ! 366 */ 367 if (tick_is_broadcast_device(curdev)) { 368 clockevents_shutdown(curdev); 369 curdev = NULL; 370 } 371 clockevents_exchange_device(curdev, newdev); 372 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 373 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 374 tick_oneshot_notify(); 375 return; 376 377 out_bc: 378 /* 379 * Can the new device be used as a broadcast device ? 380 */ 381 tick_install_broadcast_device(newdev); 382 } 383 384 /** 385 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 386 * @state: The target state (enter/exit) 387 * 388 * The system enters/leaves a state, where affected devices might stop 389 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 390 * 391 * Called with interrupts disabled, so clockevents_lock is not 392 * required here because the local clock event device cannot go away 393 * under us. 394 */ 395 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 396 { 397 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 398 399 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 400 return 0; 401 402 return __tick_broadcast_oneshot_control(state); 403 } 404 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 405 406 #ifdef CONFIG_HOTPLUG_CPU 407 /* 408 * Transfer the do_timer job away from a dying cpu. 409 * 410 * Called with interrupts disabled. Not locking required. If 411 * tick_do_timer_cpu is owned by this cpu, nothing can change it. 412 */ 413 void tick_handover_do_timer(void) 414 { 415 if (tick_do_timer_cpu == smp_processor_id()) { 416 int cpu = cpumask_first(cpu_online_mask); 417 418 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : 419 TICK_DO_TIMER_NONE; 420 } 421 } 422 423 /* 424 * Shutdown an event device on a given cpu: 425 * 426 * This is called on a life CPU, when a CPU is dead. So we cannot 427 * access the hardware device itself. 428 * We just set the mode and remove it from the lists. 429 */ 430 void tick_shutdown(unsigned int cpu) 431 { 432 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 433 struct clock_event_device *dev = td->evtdev; 434 435 td->mode = TICKDEV_MODE_PERIODIC; 436 if (dev) { 437 /* 438 * Prevent that the clock events layer tries to call 439 * the set mode function! 440 */ 441 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 442 clockevents_exchange_device(dev, NULL); 443 dev->event_handler = clockevents_handle_noop; 444 td->evtdev = NULL; 445 } 446 } 447 #endif 448 449 /** 450 * tick_suspend_local - Suspend the local tick device 451 * 452 * Called from the local cpu for freeze with interrupts disabled. 453 * 454 * No locks required. Nothing can change the per cpu device. 455 */ 456 void tick_suspend_local(void) 457 { 458 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 459 460 clockevents_shutdown(td->evtdev); 461 } 462 463 /** 464 * tick_resume_local - Resume the local tick device 465 * 466 * Called from the local CPU for unfreeze or XEN resume magic. 467 * 468 * No locks required. Nothing can change the per cpu device. 469 */ 470 void tick_resume_local(void) 471 { 472 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 473 bool broadcast = tick_resume_check_broadcast(); 474 475 clockevents_tick_resume(td->evtdev); 476 if (!broadcast) { 477 if (td->mode == TICKDEV_MODE_PERIODIC) 478 tick_setup_periodic(td->evtdev, 0); 479 else 480 tick_resume_oneshot(); 481 } 482 } 483 484 /** 485 * tick_suspend - Suspend the tick and the broadcast device 486 * 487 * Called from syscore_suspend() via timekeeping_suspend with only one 488 * CPU online and interrupts disabled or from tick_unfreeze() under 489 * tick_freeze_lock. 490 * 491 * No locks required. Nothing can change the per cpu device. 492 */ 493 void tick_suspend(void) 494 { 495 tick_suspend_local(); 496 tick_suspend_broadcast(); 497 } 498 499 /** 500 * tick_resume - Resume the tick and the broadcast device 501 * 502 * Called from syscore_resume() via timekeeping_resume with only one 503 * CPU online and interrupts disabled. 504 * 505 * No locks required. Nothing can change the per cpu device. 506 */ 507 void tick_resume(void) 508 { 509 tick_resume_broadcast(); 510 tick_resume_local(); 511 } 512 513 #ifdef CONFIG_SUSPEND 514 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 515 static unsigned int tick_freeze_depth; 516 517 /** 518 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 519 * 520 * Check if this is the last online CPU executing the function and if so, 521 * suspend timekeeping. Otherwise suspend the local tick. 522 * 523 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 524 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 525 */ 526 void tick_freeze(void) 527 { 528 raw_spin_lock(&tick_freeze_lock); 529 530 tick_freeze_depth++; 531 if (tick_freeze_depth == num_online_cpus()) { 532 trace_suspend_resume(TPS("timekeeping_freeze"), 533 smp_processor_id(), true); 534 system_state = SYSTEM_SUSPEND; 535 sched_clock_suspend(); 536 timekeeping_suspend(); 537 } else { 538 tick_suspend_local(); 539 } 540 541 raw_spin_unlock(&tick_freeze_lock); 542 } 543 544 /** 545 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 546 * 547 * Check if this is the first CPU executing the function and if so, resume 548 * timekeeping. Otherwise resume the local tick. 549 * 550 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 551 * Interrupts must not be enabled after the preceding %tick_freeze(). 552 */ 553 void tick_unfreeze(void) 554 { 555 raw_spin_lock(&tick_freeze_lock); 556 557 if (tick_freeze_depth == num_online_cpus()) { 558 timekeeping_resume(); 559 sched_clock_resume(); 560 system_state = SYSTEM_RUNNING; 561 trace_suspend_resume(TPS("timekeeping_freeze"), 562 smp_processor_id(), false); 563 } else { 564 touch_softlockup_watchdog(); 565 tick_resume_local(); 566 } 567 568 tick_freeze_depth--; 569 570 raw_spin_unlock(&tick_freeze_lock); 571 } 572 #endif /* CONFIG_SUSPEND */ 573 574 /** 575 * tick_init - initialize the tick control 576 */ 577 void __init tick_init(void) 578 { 579 tick_broadcast_init(); 580 tick_nohz_init(); 581 } 582