1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains the base functions to manage periodic tick 4 * related events. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/compiler.h> 11 #include <linux/cpu.h> 12 #include <linux/err.h> 13 #include <linux/hrtimer.h> 14 #include <linux/interrupt.h> 15 #include <linux/nmi.h> 16 #include <linux/percpu.h> 17 #include <linux/profile.h> 18 #include <linux/sched.h> 19 #include <linux/module.h> 20 #include <trace/events/power.h> 21 22 #include <asm/irq_regs.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Tick devices 28 */ 29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 30 /* 31 * Tick next event: keeps track of the tick time. It's updated by the 32 * CPU which handles the tick and protected by jiffies_lock. There is 33 * no requirement to write hold the jiffies seqcount for it. 34 */ 35 ktime_t tick_next_period; 36 37 /* 38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 40 * variable has two functions: 41 * 42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 43 * timekeeping lock all at once. Only the CPU which is assigned to do the 44 * update is handling it. 45 * 46 * 2) Hand off the duty in the NOHZ idle case by setting the value to 47 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 48 * at it will take over and keep the time keeping alive. The handover 49 * procedure also covers cpu hotplug. 50 */ 51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 52 #ifdef CONFIG_NO_HZ_FULL 53 /* 54 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns 55 * tick_do_timer_cpu and it should be taken over by an eligible secondary 56 * when one comes online. 57 */ 58 static int tick_do_timer_boot_cpu __read_mostly = -1; 59 #endif 60 61 /* 62 * Debugging: see timer_list.c 63 */ 64 struct tick_device *tick_get_device(int cpu) 65 { 66 return &per_cpu(tick_cpu_device, cpu); 67 } 68 69 /** 70 * tick_is_oneshot_available - check for a oneshot capable event device 71 */ 72 int tick_is_oneshot_available(void) 73 { 74 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 75 76 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 77 return 0; 78 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 79 return 1; 80 return tick_broadcast_oneshot_available(); 81 } 82 83 /* 84 * Periodic tick 85 */ 86 static void tick_periodic(int cpu) 87 { 88 if (READ_ONCE(tick_do_timer_cpu) == cpu) { 89 raw_spin_lock(&jiffies_lock); 90 write_seqcount_begin(&jiffies_seq); 91 92 /* Keep track of the next tick event */ 93 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC); 94 95 do_timer(1); 96 write_seqcount_end(&jiffies_seq); 97 raw_spin_unlock(&jiffies_lock); 98 update_wall_time(); 99 } 100 101 update_process_times(user_mode(get_irq_regs())); 102 profile_tick(CPU_PROFILING); 103 } 104 105 /* 106 * Event handler for periodic ticks 107 */ 108 void tick_handle_periodic(struct clock_event_device *dev) 109 { 110 int cpu = smp_processor_id(); 111 ktime_t next = dev->next_event; 112 113 tick_periodic(cpu); 114 115 /* 116 * The cpu might have transitioned to HIGHRES or NOHZ mode via 117 * update_process_times() -> run_local_timers() -> 118 * hrtimer_run_queues(). 119 */ 120 if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic) 121 return; 122 123 if (!clockevent_state_oneshot(dev)) 124 return; 125 for (;;) { 126 /* 127 * Setup the next period for devices, which do not have 128 * periodic mode: 129 */ 130 next = ktime_add_ns(next, TICK_NSEC); 131 132 if (!clockevents_program_event(dev, next, false)) 133 return; 134 /* 135 * Have to be careful here. If we're in oneshot mode, 136 * before we call tick_periodic() in a loop, we need 137 * to be sure we're using a real hardware clocksource. 138 * Otherwise we could get trapped in an infinite 139 * loop, as the tick_periodic() increments jiffies, 140 * which then will increment time, possibly causing 141 * the loop to trigger again and again. 142 */ 143 if (timekeeping_valid_for_hres()) 144 tick_periodic(cpu); 145 } 146 } 147 148 /* 149 * Setup the device for a periodic tick 150 */ 151 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 152 { 153 tick_set_periodic_handler(dev, broadcast); 154 155 /* Broadcast setup ? */ 156 if (!tick_device_is_functional(dev)) 157 return; 158 159 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 160 !tick_broadcast_oneshot_active()) { 161 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 162 } else { 163 unsigned int seq; 164 ktime_t next; 165 166 do { 167 seq = read_seqcount_begin(&jiffies_seq); 168 next = tick_next_period; 169 } while (read_seqcount_retry(&jiffies_seq, seq)); 170 171 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 172 173 for (;;) { 174 if (!clockevents_program_event(dev, next, false)) 175 return; 176 next = ktime_add_ns(next, TICK_NSEC); 177 } 178 } 179 } 180 181 #ifdef CONFIG_NO_HZ_FULL 182 static void giveup_do_timer(void *info) 183 { 184 int cpu = *(unsigned int *)info; 185 186 WARN_ON(tick_do_timer_cpu != smp_processor_id()); 187 188 tick_do_timer_cpu = cpu; 189 } 190 191 static void tick_take_do_timer_from_boot(void) 192 { 193 int cpu = smp_processor_id(); 194 int from = tick_do_timer_boot_cpu; 195 196 if (from >= 0 && from != cpu) 197 smp_call_function_single(from, giveup_do_timer, &cpu, 1); 198 } 199 #endif 200 201 /* 202 * Setup the tick device 203 */ 204 static void tick_setup_device(struct tick_device *td, 205 struct clock_event_device *newdev, int cpu, 206 const struct cpumask *cpumask) 207 { 208 void (*handler)(struct clock_event_device *) = NULL; 209 ktime_t next_event = 0; 210 211 /* 212 * First device setup ? 213 */ 214 if (!td->evtdev) { 215 /* 216 * If no cpu took the do_timer update, assign it to 217 * this cpu: 218 */ 219 if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) { 220 WRITE_ONCE(tick_do_timer_cpu, cpu); 221 tick_next_period = ktime_get(); 222 #ifdef CONFIG_NO_HZ_FULL 223 /* 224 * The boot CPU may be nohz_full, in which case set 225 * tick_do_timer_boot_cpu so the first housekeeping 226 * secondary that comes up will take do_timer from 227 * us. 228 */ 229 if (tick_nohz_full_cpu(cpu)) 230 tick_do_timer_boot_cpu = cpu; 231 232 } else if (tick_do_timer_boot_cpu != -1 && 233 !tick_nohz_full_cpu(cpu)) { 234 tick_take_do_timer_from_boot(); 235 tick_do_timer_boot_cpu = -1; 236 WARN_ON(READ_ONCE(tick_do_timer_cpu) != cpu); 237 #endif 238 } 239 240 /* 241 * Startup in periodic mode first. 242 */ 243 td->mode = TICKDEV_MODE_PERIODIC; 244 } else { 245 handler = td->evtdev->event_handler; 246 next_event = td->evtdev->next_event; 247 td->evtdev->event_handler = clockevents_handle_noop; 248 } 249 250 td->evtdev = newdev; 251 252 /* 253 * When the device is not per cpu, pin the interrupt to the 254 * current cpu: 255 */ 256 if (!cpumask_equal(newdev->cpumask, cpumask)) 257 irq_set_affinity(newdev->irq, cpumask); 258 259 /* 260 * When global broadcasting is active, check if the current 261 * device is registered as a placeholder for broadcast mode. 262 * This allows us to handle this x86 misfeature in a generic 263 * way. This function also returns !=0 when we keep the 264 * current active broadcast state for this CPU. 265 */ 266 if (tick_device_uses_broadcast(newdev, cpu)) 267 return; 268 269 if (td->mode == TICKDEV_MODE_PERIODIC) 270 tick_setup_periodic(newdev, 0); 271 else 272 tick_setup_oneshot(newdev, handler, next_event); 273 } 274 275 void tick_install_replacement(struct clock_event_device *newdev) 276 { 277 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 278 int cpu = smp_processor_id(); 279 280 clockevents_exchange_device(td->evtdev, newdev); 281 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 282 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 283 tick_oneshot_notify(); 284 } 285 286 static bool tick_check_percpu(struct clock_event_device *curdev, 287 struct clock_event_device *newdev, int cpu) 288 { 289 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 290 return false; 291 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 292 return true; 293 /* Check if irq affinity can be set */ 294 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 295 return false; 296 /* Prefer an existing cpu local device */ 297 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 298 return false; 299 return true; 300 } 301 302 static bool tick_check_preferred(struct clock_event_device *curdev, 303 struct clock_event_device *newdev) 304 { 305 /* Prefer oneshot capable device */ 306 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 307 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 308 return false; 309 if (tick_oneshot_mode_active()) 310 return false; 311 } 312 313 /* 314 * Use the higher rated one, but prefer a CPU local device with a lower 315 * rating than a non-CPU local device 316 */ 317 return !curdev || 318 newdev->rating > curdev->rating || 319 !cpumask_equal(curdev->cpumask, newdev->cpumask); 320 } 321 322 /* 323 * Check whether the new device is a better fit than curdev. curdev 324 * can be NULL ! 325 */ 326 bool tick_check_replacement(struct clock_event_device *curdev, 327 struct clock_event_device *newdev) 328 { 329 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 330 return false; 331 332 return tick_check_preferred(curdev, newdev); 333 } 334 335 /* 336 * Check, if the new registered device should be used. Called with 337 * clockevents_lock held and interrupts disabled. 338 */ 339 void tick_check_new_device(struct clock_event_device *newdev) 340 { 341 struct clock_event_device *curdev; 342 struct tick_device *td; 343 int cpu; 344 345 cpu = smp_processor_id(); 346 td = &per_cpu(tick_cpu_device, cpu); 347 curdev = td->evtdev; 348 349 if (!tick_check_replacement(curdev, newdev)) 350 goto out_bc; 351 352 if (!try_module_get(newdev->owner)) 353 return; 354 355 /* 356 * Replace the eventually existing device by the new 357 * device. If the current device is the broadcast device, do 358 * not give it back to the clockevents layer ! 359 */ 360 if (tick_is_broadcast_device(curdev)) { 361 clockevents_shutdown(curdev); 362 curdev = NULL; 363 } 364 clockevents_exchange_device(curdev, newdev); 365 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 366 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 367 tick_oneshot_notify(); 368 return; 369 370 out_bc: 371 /* 372 * Can the new device be used as a broadcast device ? 373 */ 374 tick_install_broadcast_device(newdev, cpu); 375 } 376 377 /** 378 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 379 * @state: The target state (enter/exit) 380 * 381 * The system enters/leaves a state, where affected devices might stop 382 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 383 * 384 * Called with interrupts disabled, so clockevents_lock is not 385 * required here because the local clock event device cannot go away 386 * under us. 387 */ 388 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 389 { 390 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 391 392 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 393 return 0; 394 395 return __tick_broadcast_oneshot_control(state); 396 } 397 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 398 399 #ifdef CONFIG_HOTPLUG_CPU 400 void tick_assert_timekeeping_handover(void) 401 { 402 WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id()); 403 } 404 /* 405 * Stop the tick and transfer the timekeeping job away from a dying cpu. 406 */ 407 int tick_cpu_dying(unsigned int dying_cpu) 408 { 409 /* 410 * If the current CPU is the timekeeper, it's the only one that can 411 * safely hand over its duty. Also all online CPUs are in stop 412 * machine, guaranteed not to be idle, therefore there is no 413 * concurrency and it's safe to pick any online successor. 414 */ 415 if (tick_do_timer_cpu == dying_cpu) 416 tick_do_timer_cpu = cpumask_first(cpu_online_mask); 417 418 /* Make sure the CPU won't try to retake the timekeeping duty */ 419 tick_sched_timer_dying(dying_cpu); 420 421 /* Remove CPU from timer broadcasting */ 422 tick_offline_cpu(dying_cpu); 423 424 return 0; 425 } 426 427 /* 428 * Shutdown an event device on a given cpu: 429 * 430 * This is called on a life CPU, when a CPU is dead. So we cannot 431 * access the hardware device itself. 432 * We just set the mode and remove it from the lists. 433 */ 434 void tick_shutdown(unsigned int cpu) 435 { 436 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 437 struct clock_event_device *dev = td->evtdev; 438 439 td->mode = TICKDEV_MODE_PERIODIC; 440 if (dev) { 441 /* 442 * Prevent that the clock events layer tries to call 443 * the set mode function! 444 */ 445 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 446 clockevents_exchange_device(dev, NULL); 447 dev->event_handler = clockevents_handle_noop; 448 td->evtdev = NULL; 449 } 450 } 451 #endif 452 453 /** 454 * tick_suspend_local - Suspend the local tick device 455 * 456 * Called from the local cpu for freeze with interrupts disabled. 457 * 458 * No locks required. Nothing can change the per cpu device. 459 */ 460 void tick_suspend_local(void) 461 { 462 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 463 464 clockevents_shutdown(td->evtdev); 465 } 466 467 /** 468 * tick_resume_local - Resume the local tick device 469 * 470 * Called from the local CPU for unfreeze or XEN resume magic. 471 * 472 * No locks required. Nothing can change the per cpu device. 473 */ 474 void tick_resume_local(void) 475 { 476 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 477 bool broadcast = tick_resume_check_broadcast(); 478 479 clockevents_tick_resume(td->evtdev); 480 if (!broadcast) { 481 if (td->mode == TICKDEV_MODE_PERIODIC) 482 tick_setup_periodic(td->evtdev, 0); 483 else 484 tick_resume_oneshot(); 485 } 486 487 /* 488 * Ensure that hrtimers are up to date and the clockevents device 489 * is reprogrammed correctly when high resolution timers are 490 * enabled. 491 */ 492 hrtimers_resume_local(); 493 } 494 495 /** 496 * tick_suspend - Suspend the tick and the broadcast device 497 * 498 * Called from syscore_suspend() via timekeeping_suspend with only one 499 * CPU online and interrupts disabled or from tick_unfreeze() under 500 * tick_freeze_lock. 501 * 502 * No locks required. Nothing can change the per cpu device. 503 */ 504 void tick_suspend(void) 505 { 506 tick_suspend_local(); 507 tick_suspend_broadcast(); 508 } 509 510 /** 511 * tick_resume - Resume the tick and the broadcast device 512 * 513 * Called from syscore_resume() via timekeeping_resume with only one 514 * CPU online and interrupts disabled. 515 * 516 * No locks required. Nothing can change the per cpu device. 517 */ 518 void tick_resume(void) 519 { 520 tick_resume_broadcast(); 521 tick_resume_local(); 522 } 523 524 #ifdef CONFIG_SUSPEND 525 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 526 static unsigned int tick_freeze_depth; 527 528 /** 529 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 530 * 531 * Check if this is the last online CPU executing the function and if so, 532 * suspend timekeeping. Otherwise suspend the local tick. 533 * 534 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 535 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 536 */ 537 void tick_freeze(void) 538 { 539 raw_spin_lock(&tick_freeze_lock); 540 541 tick_freeze_depth++; 542 if (tick_freeze_depth == num_online_cpus()) { 543 trace_suspend_resume(TPS("timekeeping_freeze"), 544 smp_processor_id(), true); 545 system_state = SYSTEM_SUSPEND; 546 sched_clock_suspend(); 547 timekeeping_suspend(); 548 } else { 549 tick_suspend_local(); 550 } 551 552 raw_spin_unlock(&tick_freeze_lock); 553 } 554 555 /** 556 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 557 * 558 * Check if this is the first CPU executing the function and if so, resume 559 * timekeeping. Otherwise resume the local tick. 560 * 561 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 562 * Interrupts must not be enabled after the preceding %tick_freeze(). 563 */ 564 void tick_unfreeze(void) 565 { 566 raw_spin_lock(&tick_freeze_lock); 567 568 if (tick_freeze_depth == num_online_cpus()) { 569 timekeeping_resume(); 570 sched_clock_resume(); 571 system_state = SYSTEM_RUNNING; 572 trace_suspend_resume(TPS("timekeeping_freeze"), 573 smp_processor_id(), false); 574 } else { 575 touch_softlockup_watchdog(); 576 tick_resume_local(); 577 } 578 579 tick_freeze_depth--; 580 581 raw_spin_unlock(&tick_freeze_lock); 582 } 583 #endif /* CONFIG_SUSPEND */ 584 585 /** 586 * tick_init - initialize the tick control 587 */ 588 void __init tick_init(void) 589 { 590 tick_broadcast_init(); 591 tick_nohz_init(); 592 } 593