xref: /linux/kernel/time/tick-common.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20 
21 #include <asm/irq_regs.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Tick devices
27  */
28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
29 /*
30  * Tick next event: keeps track of the tick time
31  */
32 ktime_t tick_next_period;
33 ktime_t tick_period;
34 
35 /*
36  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
37  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
38  * variable has two functions:
39  *
40  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
41  *    timekeeping lock all at once. Only the CPU which is assigned to do the
42  *    update is handling it.
43  *
44  * 2) Hand off the duty in the NOHZ idle case by setting the value to
45  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
46  *    at it will take over and keep the time keeping alive.  The handover
47  *    procedure also covers cpu hotplug.
48  */
49 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
50 #ifdef CONFIG_NO_HZ_FULL
51 /*
52  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
53  * tick_do_timer_cpu and it should be taken over by an eligible secondary
54  * when one comes online.
55  */
56 static int tick_do_timer_boot_cpu __read_mostly = -1;
57 #endif
58 
59 /*
60  * Debugging: see timer_list.c
61  */
62 struct tick_device *tick_get_device(int cpu)
63 {
64 	return &per_cpu(tick_cpu_device, cpu);
65 }
66 
67 /**
68  * tick_is_oneshot_available - check for a oneshot capable event device
69  */
70 int tick_is_oneshot_available(void)
71 {
72 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
73 
74 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
75 		return 0;
76 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
77 		return 1;
78 	return tick_broadcast_oneshot_available();
79 }
80 
81 /*
82  * Periodic tick
83  */
84 static void tick_periodic(int cpu)
85 {
86 	if (tick_do_timer_cpu == cpu) {
87 		write_seqlock(&jiffies_lock);
88 
89 		/* Keep track of the next tick event */
90 		tick_next_period = ktime_add(tick_next_period, tick_period);
91 
92 		do_timer(1);
93 		write_sequnlock(&jiffies_lock);
94 		update_wall_time();
95 	}
96 
97 	update_process_times(user_mode(get_irq_regs()));
98 	profile_tick(CPU_PROFILING);
99 }
100 
101 /*
102  * Event handler for periodic ticks
103  */
104 void tick_handle_periodic(struct clock_event_device *dev)
105 {
106 	int cpu = smp_processor_id();
107 	ktime_t next = dev->next_event;
108 
109 	tick_periodic(cpu);
110 
111 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
112 	/*
113 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
114 	 * update_process_times() -> run_local_timers() ->
115 	 * hrtimer_run_queues().
116 	 */
117 	if (dev->event_handler != tick_handle_periodic)
118 		return;
119 #endif
120 
121 	if (!clockevent_state_oneshot(dev))
122 		return;
123 	for (;;) {
124 		/*
125 		 * Setup the next period for devices, which do not have
126 		 * periodic mode:
127 		 */
128 		next = ktime_add(next, tick_period);
129 
130 		if (!clockevents_program_event(dev, next, false))
131 			return;
132 		/*
133 		 * Have to be careful here. If we're in oneshot mode,
134 		 * before we call tick_periodic() in a loop, we need
135 		 * to be sure we're using a real hardware clocksource.
136 		 * Otherwise we could get trapped in an infinite
137 		 * loop, as the tick_periodic() increments jiffies,
138 		 * which then will increment time, possibly causing
139 		 * the loop to trigger again and again.
140 		 */
141 		if (timekeeping_valid_for_hres())
142 			tick_periodic(cpu);
143 	}
144 }
145 
146 /*
147  * Setup the device for a periodic tick
148  */
149 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
150 {
151 	tick_set_periodic_handler(dev, broadcast);
152 
153 	/* Broadcast setup ? */
154 	if (!tick_device_is_functional(dev))
155 		return;
156 
157 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
158 	    !tick_broadcast_oneshot_active()) {
159 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
160 	} else {
161 		unsigned int seq;
162 		ktime_t next;
163 
164 		do {
165 			seq = read_seqbegin(&jiffies_lock);
166 			next = tick_next_period;
167 		} while (read_seqretry(&jiffies_lock, seq));
168 
169 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
170 
171 		for (;;) {
172 			if (!clockevents_program_event(dev, next, false))
173 				return;
174 			next = ktime_add(next, tick_period);
175 		}
176 	}
177 }
178 
179 #ifdef CONFIG_NO_HZ_FULL
180 static void giveup_do_timer(void *info)
181 {
182 	int cpu = *(unsigned int *)info;
183 
184 	WARN_ON(tick_do_timer_cpu != smp_processor_id());
185 
186 	tick_do_timer_cpu = cpu;
187 }
188 
189 static void tick_take_do_timer_from_boot(void)
190 {
191 	int cpu = smp_processor_id();
192 	int from = tick_do_timer_boot_cpu;
193 
194 	if (from >= 0 && from != cpu)
195 		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
196 }
197 #endif
198 
199 /*
200  * Setup the tick device
201  */
202 static void tick_setup_device(struct tick_device *td,
203 			      struct clock_event_device *newdev, int cpu,
204 			      const struct cpumask *cpumask)
205 {
206 	void (*handler)(struct clock_event_device *) = NULL;
207 	ktime_t next_event = 0;
208 
209 	/*
210 	 * First device setup ?
211 	 */
212 	if (!td->evtdev) {
213 		/*
214 		 * If no cpu took the do_timer update, assign it to
215 		 * this cpu:
216 		 */
217 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
218 			tick_do_timer_cpu = cpu;
219 
220 			tick_next_period = ktime_get();
221 			tick_period = NSEC_PER_SEC / HZ;
222 #ifdef CONFIG_NO_HZ_FULL
223 			/*
224 			 * The boot CPU may be nohz_full, in which case set
225 			 * tick_do_timer_boot_cpu so the first housekeeping
226 			 * secondary that comes up will take do_timer from
227 			 * us.
228 			 */
229 			if (tick_nohz_full_cpu(cpu))
230 				tick_do_timer_boot_cpu = cpu;
231 
232 		} else if (tick_do_timer_boot_cpu != -1 &&
233 						!tick_nohz_full_cpu(cpu)) {
234 			tick_take_do_timer_from_boot();
235 			tick_do_timer_boot_cpu = -1;
236 			WARN_ON(tick_do_timer_cpu != cpu);
237 #endif
238 		}
239 
240 		/*
241 		 * Startup in periodic mode first.
242 		 */
243 		td->mode = TICKDEV_MODE_PERIODIC;
244 	} else {
245 		handler = td->evtdev->event_handler;
246 		next_event = td->evtdev->next_event;
247 		td->evtdev->event_handler = clockevents_handle_noop;
248 	}
249 
250 	td->evtdev = newdev;
251 
252 	/*
253 	 * When the device is not per cpu, pin the interrupt to the
254 	 * current cpu:
255 	 */
256 	if (!cpumask_equal(newdev->cpumask, cpumask))
257 		irq_set_affinity(newdev->irq, cpumask);
258 
259 	/*
260 	 * When global broadcasting is active, check if the current
261 	 * device is registered as a placeholder for broadcast mode.
262 	 * This allows us to handle this x86 misfeature in a generic
263 	 * way. This function also returns !=0 when we keep the
264 	 * current active broadcast state for this CPU.
265 	 */
266 	if (tick_device_uses_broadcast(newdev, cpu))
267 		return;
268 
269 	if (td->mode == TICKDEV_MODE_PERIODIC)
270 		tick_setup_periodic(newdev, 0);
271 	else
272 		tick_setup_oneshot(newdev, handler, next_event);
273 }
274 
275 void tick_install_replacement(struct clock_event_device *newdev)
276 {
277 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
278 	int cpu = smp_processor_id();
279 
280 	clockevents_exchange_device(td->evtdev, newdev);
281 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
282 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
283 		tick_oneshot_notify();
284 }
285 
286 static bool tick_check_percpu(struct clock_event_device *curdev,
287 			      struct clock_event_device *newdev, int cpu)
288 {
289 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
290 		return false;
291 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
292 		return true;
293 	/* Check if irq affinity can be set */
294 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
295 		return false;
296 	/* Prefer an existing cpu local device */
297 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
298 		return false;
299 	return true;
300 }
301 
302 static bool tick_check_preferred(struct clock_event_device *curdev,
303 				 struct clock_event_device *newdev)
304 {
305 	/* Prefer oneshot capable device */
306 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
307 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
308 			return false;
309 		if (tick_oneshot_mode_active())
310 			return false;
311 	}
312 
313 	/*
314 	 * Use the higher rated one, but prefer a CPU local device with a lower
315 	 * rating than a non-CPU local device
316 	 */
317 	return !curdev ||
318 		newdev->rating > curdev->rating ||
319 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
320 }
321 
322 /*
323  * Check whether the new device is a better fit than curdev. curdev
324  * can be NULL !
325  */
326 bool tick_check_replacement(struct clock_event_device *curdev,
327 			    struct clock_event_device *newdev)
328 {
329 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
330 		return false;
331 
332 	return tick_check_preferred(curdev, newdev);
333 }
334 
335 /*
336  * Check, if the new registered device should be used. Called with
337  * clockevents_lock held and interrupts disabled.
338  */
339 void tick_check_new_device(struct clock_event_device *newdev)
340 {
341 	struct clock_event_device *curdev;
342 	struct tick_device *td;
343 	int cpu;
344 
345 	cpu = smp_processor_id();
346 	td = &per_cpu(tick_cpu_device, cpu);
347 	curdev = td->evtdev;
348 
349 	/* cpu local device ? */
350 	if (!tick_check_percpu(curdev, newdev, cpu))
351 		goto out_bc;
352 
353 	/* Preference decision */
354 	if (!tick_check_preferred(curdev, newdev))
355 		goto out_bc;
356 
357 	if (!try_module_get(newdev->owner))
358 		return;
359 
360 	/*
361 	 * Replace the eventually existing device by the new
362 	 * device. If the current device is the broadcast device, do
363 	 * not give it back to the clockevents layer !
364 	 */
365 	if (tick_is_broadcast_device(curdev)) {
366 		clockevents_shutdown(curdev);
367 		curdev = NULL;
368 	}
369 	clockevents_exchange_device(curdev, newdev);
370 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
371 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
372 		tick_oneshot_notify();
373 	return;
374 
375 out_bc:
376 	/*
377 	 * Can the new device be used as a broadcast device ?
378 	 */
379 	tick_install_broadcast_device(newdev);
380 }
381 
382 /**
383  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
384  * @state:	The target state (enter/exit)
385  *
386  * The system enters/leaves a state, where affected devices might stop
387  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
388  *
389  * Called with interrupts disabled, so clockevents_lock is not
390  * required here because the local clock event device cannot go away
391  * under us.
392  */
393 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
394 {
395 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
396 
397 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
398 		return 0;
399 
400 	return __tick_broadcast_oneshot_control(state);
401 }
402 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
403 
404 #ifdef CONFIG_HOTPLUG_CPU
405 /*
406  * Transfer the do_timer job away from a dying cpu.
407  *
408  * Called with interrupts disabled. Not locking required. If
409  * tick_do_timer_cpu is owned by this cpu, nothing can change it.
410  */
411 void tick_handover_do_timer(void)
412 {
413 	if (tick_do_timer_cpu == smp_processor_id()) {
414 		int cpu = cpumask_first(cpu_online_mask);
415 
416 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
417 			TICK_DO_TIMER_NONE;
418 	}
419 }
420 
421 /*
422  * Shutdown an event device on a given cpu:
423  *
424  * This is called on a life CPU, when a CPU is dead. So we cannot
425  * access the hardware device itself.
426  * We just set the mode and remove it from the lists.
427  */
428 void tick_shutdown(unsigned int cpu)
429 {
430 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
431 	struct clock_event_device *dev = td->evtdev;
432 
433 	td->mode = TICKDEV_MODE_PERIODIC;
434 	if (dev) {
435 		/*
436 		 * Prevent that the clock events layer tries to call
437 		 * the set mode function!
438 		 */
439 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
440 		clockevents_exchange_device(dev, NULL);
441 		dev->event_handler = clockevents_handle_noop;
442 		td->evtdev = NULL;
443 	}
444 }
445 #endif
446 
447 /**
448  * tick_suspend_local - Suspend the local tick device
449  *
450  * Called from the local cpu for freeze with interrupts disabled.
451  *
452  * No locks required. Nothing can change the per cpu device.
453  */
454 void tick_suspend_local(void)
455 {
456 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
457 
458 	clockevents_shutdown(td->evtdev);
459 }
460 
461 /**
462  * tick_resume_local - Resume the local tick device
463  *
464  * Called from the local CPU for unfreeze or XEN resume magic.
465  *
466  * No locks required. Nothing can change the per cpu device.
467  */
468 void tick_resume_local(void)
469 {
470 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
471 	bool broadcast = tick_resume_check_broadcast();
472 
473 	clockevents_tick_resume(td->evtdev);
474 	if (!broadcast) {
475 		if (td->mode == TICKDEV_MODE_PERIODIC)
476 			tick_setup_periodic(td->evtdev, 0);
477 		else
478 			tick_resume_oneshot();
479 	}
480 }
481 
482 /**
483  * tick_suspend - Suspend the tick and the broadcast device
484  *
485  * Called from syscore_suspend() via timekeeping_suspend with only one
486  * CPU online and interrupts disabled or from tick_unfreeze() under
487  * tick_freeze_lock.
488  *
489  * No locks required. Nothing can change the per cpu device.
490  */
491 void tick_suspend(void)
492 {
493 	tick_suspend_local();
494 	tick_suspend_broadcast();
495 }
496 
497 /**
498  * tick_resume - Resume the tick and the broadcast device
499  *
500  * Called from syscore_resume() via timekeeping_resume with only one
501  * CPU online and interrupts disabled.
502  *
503  * No locks required. Nothing can change the per cpu device.
504  */
505 void tick_resume(void)
506 {
507 	tick_resume_broadcast();
508 	tick_resume_local();
509 }
510 
511 #ifdef CONFIG_SUSPEND
512 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
513 static unsigned int tick_freeze_depth;
514 
515 /**
516  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
517  *
518  * Check if this is the last online CPU executing the function and if so,
519  * suspend timekeeping.  Otherwise suspend the local tick.
520  *
521  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
522  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
523  */
524 void tick_freeze(void)
525 {
526 	raw_spin_lock(&tick_freeze_lock);
527 
528 	tick_freeze_depth++;
529 	if (tick_freeze_depth == num_online_cpus()) {
530 		trace_suspend_resume(TPS("timekeeping_freeze"),
531 				     smp_processor_id(), true);
532 		system_state = SYSTEM_SUSPEND;
533 		sched_clock_suspend();
534 		timekeeping_suspend();
535 	} else {
536 		tick_suspend_local();
537 	}
538 
539 	raw_spin_unlock(&tick_freeze_lock);
540 }
541 
542 /**
543  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
544  *
545  * Check if this is the first CPU executing the function and if so, resume
546  * timekeeping.  Otherwise resume the local tick.
547  *
548  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
549  * Interrupts must not be enabled after the preceding %tick_freeze().
550  */
551 void tick_unfreeze(void)
552 {
553 	raw_spin_lock(&tick_freeze_lock);
554 
555 	if (tick_freeze_depth == num_online_cpus()) {
556 		timekeeping_resume();
557 		sched_clock_resume();
558 		system_state = SYSTEM_RUNNING;
559 		trace_suspend_resume(TPS("timekeeping_freeze"),
560 				     smp_processor_id(), false);
561 	} else {
562 		touch_softlockup_watchdog();
563 		tick_resume_local();
564 	}
565 
566 	tick_freeze_depth--;
567 
568 	raw_spin_unlock(&tick_freeze_lock);
569 }
570 #endif /* CONFIG_SUSPEND */
571 
572 /**
573  * tick_init - initialize the tick control
574  */
575 void __init tick_init(void)
576 {
577 	tick_broadcast_init();
578 	tick_nohz_init();
579 }
580