xref: /linux/kernel/time/tick-broadcast.c (revision ba6e8564f459211117ce300eae2c7fdd23befe34)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33 
34 /*
35  * Debugging: see timer_list.c
36  */
37 struct tick_device *tick_get_broadcast_device(void)
38 {
39 	return &tick_broadcast_device;
40 }
41 
42 cpumask_t *tick_get_broadcast_mask(void)
43 {
44 	return &tick_broadcast_mask;
45 }
46 
47 /*
48  * Start the device in periodic mode
49  */
50 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
51 {
52 	if (bc && bc->mode == CLOCK_EVT_MODE_SHUTDOWN)
53 		tick_setup_periodic(bc, 1);
54 }
55 
56 /*
57  * Check, if the device can be utilized as broadcast device:
58  */
59 int tick_check_broadcast_device(struct clock_event_device *dev)
60 {
61 	if (tick_broadcast_device.evtdev ||
62 	    (dev->features & CLOCK_EVT_FEAT_C3STOP))
63 		return 0;
64 
65 	clockevents_exchange_device(NULL, dev);
66 	tick_broadcast_device.evtdev = dev;
67 	if (!cpus_empty(tick_broadcast_mask))
68 		tick_broadcast_start_periodic(dev);
69 	return 1;
70 }
71 
72 /*
73  * Check, if the device is the broadcast device
74  */
75 int tick_is_broadcast_device(struct clock_event_device *dev)
76 {
77 	return (dev && tick_broadcast_device.evtdev == dev);
78 }
79 
80 /*
81  * Check, if the device is disfunctional and a place holder, which
82  * needs to be handled by the broadcast device.
83  */
84 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
85 {
86 	unsigned long flags;
87 	int ret = 0;
88 
89 	spin_lock_irqsave(&tick_broadcast_lock, flags);
90 
91 	/*
92 	 * Devices might be registered with both periodic and oneshot
93 	 * mode disabled. This signals, that the device needs to be
94 	 * operated from the broadcast device and is a placeholder for
95 	 * the cpu local device.
96 	 */
97 	if (!tick_device_is_functional(dev)) {
98 		dev->event_handler = tick_handle_periodic;
99 		cpu_set(cpu, tick_broadcast_mask);
100 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
101 		ret = 1;
102 	}
103 
104 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
105 	return ret;
106 }
107 
108 /*
109  * Broadcast the event to the cpus, which are set in the mask
110  */
111 int tick_do_broadcast(cpumask_t mask)
112 {
113 	int ret = 0, cpu = smp_processor_id();
114 	struct tick_device *td;
115 
116 	/*
117 	 * Check, if the current cpu is in the mask
118 	 */
119 	if (cpu_isset(cpu, mask)) {
120 		cpu_clear(cpu, mask);
121 		td = &per_cpu(tick_cpu_device, cpu);
122 		td->evtdev->event_handler(td->evtdev);
123 		ret = 1;
124 	}
125 
126 	if (!cpus_empty(mask)) {
127 		/*
128 		 * It might be necessary to actually check whether the devices
129 		 * have different broadcast functions. For now, just use the
130 		 * one of the first device. This works as long as we have this
131 		 * misfeature only on x86 (lapic)
132 		 */
133 		cpu = first_cpu(mask);
134 		td = &per_cpu(tick_cpu_device, cpu);
135 		td->evtdev->broadcast(mask);
136 		ret = 1;
137 	}
138 	return ret;
139 }
140 
141 /*
142  * Periodic broadcast:
143  * - invoke the broadcast handlers
144  */
145 static void tick_do_periodic_broadcast(void)
146 {
147 	cpumask_t mask;
148 
149 	spin_lock(&tick_broadcast_lock);
150 
151 	cpus_and(mask, cpu_online_map, tick_broadcast_mask);
152 	tick_do_broadcast(mask);
153 
154 	spin_unlock(&tick_broadcast_lock);
155 }
156 
157 /*
158  * Event handler for periodic broadcast ticks
159  */
160 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
161 {
162 	dev->next_event.tv64 = KTIME_MAX;
163 
164 	tick_do_periodic_broadcast();
165 
166 	/*
167 	 * The device is in periodic mode. No reprogramming necessary:
168 	 */
169 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
170 		return;
171 
172 	/*
173 	 * Setup the next period for devices, which do not have
174 	 * periodic mode:
175 	 */
176 	for (;;) {
177 		ktime_t next = ktime_add(dev->next_event, tick_period);
178 
179 		if (!clockevents_program_event(dev, next, ktime_get()))
180 			return;
181 		tick_do_periodic_broadcast();
182 	}
183 }
184 
185 /*
186  * Powerstate information: The system enters/leaves a state, where
187  * affected devices might stop
188  */
189 static void tick_do_broadcast_on_off(void *why)
190 {
191 	struct clock_event_device *bc, *dev;
192 	struct tick_device *td;
193 	unsigned long flags, *reason = why;
194 	int cpu;
195 
196 	spin_lock_irqsave(&tick_broadcast_lock, flags);
197 
198 	cpu = smp_processor_id();
199 	td = &per_cpu(tick_cpu_device, cpu);
200 	dev = td->evtdev;
201 	bc = tick_broadcast_device.evtdev;
202 
203 	/*
204 	 * Is the device in broadcast mode forever or is it not
205 	 * affected by the powerstate ?
206 	 */
207 	if (!dev || !tick_device_is_functional(dev) ||
208 	    !(dev->features & CLOCK_EVT_FEAT_C3STOP))
209 		goto out;
210 
211 	if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_ON) {
212 		if (!cpu_isset(cpu, tick_broadcast_mask)) {
213 			cpu_set(cpu, tick_broadcast_mask);
214 			if (td->mode == TICKDEV_MODE_PERIODIC)
215 				clockevents_set_mode(dev,
216 						     CLOCK_EVT_MODE_SHUTDOWN);
217 		}
218 	} else {
219 		if (cpu_isset(cpu, tick_broadcast_mask)) {
220 			cpu_clear(cpu, tick_broadcast_mask);
221 			if (td->mode == TICKDEV_MODE_PERIODIC)
222 				tick_setup_periodic(dev, 0);
223 		}
224 	}
225 
226 	if (cpus_empty(tick_broadcast_mask))
227 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
228 	else {
229 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
230 			tick_broadcast_start_periodic(bc);
231 		else
232 			tick_broadcast_setup_oneshot(bc);
233 	}
234 out:
235 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
236 }
237 
238 /*
239  * Powerstate information: The system enters/leaves a state, where
240  * affected devices might stop.
241  */
242 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
243 {
244 	int cpu = get_cpu();
245 
246 	if (cpu == *oncpu)
247 		tick_do_broadcast_on_off(&reason);
248 	else
249 		smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
250 					 &reason, 1, 1);
251 	put_cpu();
252 }
253 
254 /*
255  * Set the periodic handler depending on broadcast on/off
256  */
257 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
258 {
259 	if (!broadcast)
260 		dev->event_handler = tick_handle_periodic;
261 	else
262 		dev->event_handler = tick_handle_periodic_broadcast;
263 }
264 
265 /*
266  * Remove a CPU from broadcasting
267  */
268 void tick_shutdown_broadcast(unsigned int *cpup)
269 {
270 	struct clock_event_device *bc;
271 	unsigned long flags;
272 	unsigned int cpu = *cpup;
273 
274 	spin_lock_irqsave(&tick_broadcast_lock, flags);
275 
276 	bc = tick_broadcast_device.evtdev;
277 	cpu_clear(cpu, tick_broadcast_mask);
278 
279 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
280 		if (bc && cpus_empty(tick_broadcast_mask))
281 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
282 	}
283 
284 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
285 }
286 
287 void tick_suspend_broadcast(void)
288 {
289 	struct clock_event_device *bc;
290 	unsigned long flags;
291 
292 	spin_lock_irqsave(&tick_broadcast_lock, flags);
293 
294 	bc = tick_broadcast_device.evtdev;
295 	if (bc && tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
296 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
297 
298 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
299 }
300 
301 int tick_resume_broadcast(void)
302 {
303 	struct clock_event_device *bc;
304 	unsigned long flags;
305 	int broadcast = 0;
306 
307 	spin_lock_irqsave(&tick_broadcast_lock, flags);
308 
309 	bc = tick_broadcast_device.evtdev;
310 
311 	if (bc) {
312 		switch (tick_broadcast_device.mode) {
313 		case TICKDEV_MODE_PERIODIC:
314 			if(!cpus_empty(tick_broadcast_mask))
315 				tick_broadcast_start_periodic(bc);
316 			broadcast = cpu_isset(smp_processor_id(),
317 					      tick_broadcast_mask);
318 			break;
319 		case TICKDEV_MODE_ONESHOT:
320 			broadcast = tick_resume_broadcast_oneshot(bc);
321 			break;
322 		}
323 	}
324 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
325 
326 	return broadcast;
327 }
328 
329 
330 #ifdef CONFIG_TICK_ONESHOT
331 
332 static cpumask_t tick_broadcast_oneshot_mask;
333 
334 /*
335  * Debugging: see timer_list.c
336  */
337 cpumask_t *tick_get_broadcast_oneshot_mask(void)
338 {
339 	return &tick_broadcast_oneshot_mask;
340 }
341 
342 static int tick_broadcast_set_event(ktime_t expires, int force)
343 {
344 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
345 	ktime_t now = ktime_get();
346 	int res;
347 
348 	for(;;) {
349 		res = clockevents_program_event(bc, expires, now);
350 		if (!res || !force)
351 			return res;
352 		now = ktime_get();
353 		expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
354 	}
355 }
356 
357 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
358 {
359 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
360 
361 	if(!cpus_empty(tick_broadcast_oneshot_mask))
362 		tick_broadcast_set_event(ktime_get(), 1);
363 
364 	return cpu_isset(smp_processor_id(), tick_broadcast_oneshot_mask);
365 }
366 
367 /*
368  * Reprogram the broadcast device:
369  *
370  * Called with tick_broadcast_lock held and interrupts disabled.
371  */
372 static int tick_broadcast_reprogram(void)
373 {
374 	ktime_t expires = { .tv64 = KTIME_MAX };
375 	struct tick_device *td;
376 	int cpu;
377 
378 	/*
379 	 * Find the event which expires next:
380 	 */
381 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
382 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
383 		td = &per_cpu(tick_cpu_device, cpu);
384 		if (td->evtdev->next_event.tv64 < expires.tv64)
385 			expires = td->evtdev->next_event;
386 	}
387 
388 	if (expires.tv64 == KTIME_MAX)
389 		return 0;
390 
391 	return tick_broadcast_set_event(expires, 0);
392 }
393 
394 /*
395  * Handle oneshot mode broadcasting
396  */
397 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
398 {
399 	struct tick_device *td;
400 	cpumask_t mask;
401 	ktime_t now;
402 	int cpu;
403 
404 	spin_lock(&tick_broadcast_lock);
405 again:
406 	dev->next_event.tv64 = KTIME_MAX;
407 	mask = CPU_MASK_NONE;
408 	now = ktime_get();
409 	/* Find all expired events */
410 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
411 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
412 		td = &per_cpu(tick_cpu_device, cpu);
413 		if (td->evtdev->next_event.tv64 <= now.tv64)
414 			cpu_set(cpu, mask);
415 	}
416 
417 	/*
418 	 * Wakeup the cpus which have an expired event. The broadcast
419 	 * device is reprogrammed in the return from idle code.
420 	 */
421 	if (!tick_do_broadcast(mask)) {
422 		/*
423 		 * The global event did not expire any CPU local
424 		 * events. This happens in dyntick mode, as the
425 		 * maximum PIT delta is quite small.
426 		 */
427 		if (tick_broadcast_reprogram())
428 			goto again;
429 	}
430 	spin_unlock(&tick_broadcast_lock);
431 }
432 
433 /*
434  * Powerstate information: The system enters/leaves a state, where
435  * affected devices might stop
436  */
437 void tick_broadcast_oneshot_control(unsigned long reason)
438 {
439 	struct clock_event_device *bc, *dev;
440 	struct tick_device *td;
441 	unsigned long flags;
442 	int cpu;
443 
444 	spin_lock_irqsave(&tick_broadcast_lock, flags);
445 
446 	/*
447 	 * Periodic mode does not care about the enter/exit of power
448 	 * states
449 	 */
450 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
451 		goto out;
452 
453 	bc = tick_broadcast_device.evtdev;
454 	cpu = smp_processor_id();
455 	td = &per_cpu(tick_cpu_device, cpu);
456 	dev = td->evtdev;
457 
458 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
459 		goto out;
460 
461 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
462 		if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
463 			cpu_set(cpu, tick_broadcast_oneshot_mask);
464 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
465 			if (dev->next_event.tv64 < bc->next_event.tv64)
466 				tick_broadcast_set_event(dev->next_event, 1);
467 		}
468 	} else {
469 		if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
470 			cpu_clear(cpu, tick_broadcast_oneshot_mask);
471 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
472 			if (dev->next_event.tv64 != KTIME_MAX)
473 				tick_program_event(dev->next_event, 1);
474 		}
475 	}
476 
477 out:
478 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
479 }
480 
481 /**
482  * tick_broadcast_setup_highres - setup the broadcast device for highres
483  */
484 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
485 {
486 	if (bc->mode != CLOCK_EVT_MODE_ONESHOT) {
487 		bc->event_handler = tick_handle_oneshot_broadcast;
488 		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
489 		bc->next_event.tv64 = KTIME_MAX;
490 	}
491 }
492 
493 /*
494  * Select oneshot operating mode for the broadcast device
495  */
496 void tick_broadcast_switch_to_oneshot(void)
497 {
498 	struct clock_event_device *bc;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(&tick_broadcast_lock, flags);
502 
503 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
504 	bc = tick_broadcast_device.evtdev;
505 	if (bc)
506 		tick_broadcast_setup_oneshot(bc);
507 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
508 }
509 
510 
511 /*
512  * Remove a dead CPU from broadcasting
513  */
514 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
515 {
516 	struct clock_event_device *bc;
517 	unsigned long flags;
518 	unsigned int cpu = *cpup;
519 
520 	spin_lock_irqsave(&tick_broadcast_lock, flags);
521 
522 	bc = tick_broadcast_device.evtdev;
523 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
524 
525 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) {
526 		if (bc && cpus_empty(tick_broadcast_oneshot_mask))
527 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
528 	}
529 
530 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
531 }
532 
533 #endif
534