1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/smp.h> 22 #include <linux/module.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Broadcast support for broken x86 hardware, where the local apic 28 * timer stops in C3 state. 29 */ 30 31 static struct tick_device tick_broadcast_device; 32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly; 33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly; 34 static cpumask_var_t tmpmask __cpumask_var_read_mostly; 35 static int tick_broadcast_forced; 36 37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 38 39 #ifdef CONFIG_TICK_ONESHOT 40 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc); 41 static void tick_broadcast_clear_oneshot(int cpu); 42 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); 43 #else 44 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); } 45 static inline void tick_broadcast_clear_oneshot(int cpu) { } 46 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } 47 #endif 48 49 /* 50 * Debugging: see timer_list.c 51 */ 52 struct tick_device *tick_get_broadcast_device(void) 53 { 54 return &tick_broadcast_device; 55 } 56 57 struct cpumask *tick_get_broadcast_mask(void) 58 { 59 return tick_broadcast_mask; 60 } 61 62 /* 63 * Start the device in periodic mode 64 */ 65 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 66 { 67 if (bc) 68 tick_setup_periodic(bc, 1); 69 } 70 71 /* 72 * Check, if the device can be utilized as broadcast device: 73 */ 74 static bool tick_check_broadcast_device(struct clock_event_device *curdev, 75 struct clock_event_device *newdev) 76 { 77 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || 78 (newdev->features & CLOCK_EVT_FEAT_PERCPU) || 79 (newdev->features & CLOCK_EVT_FEAT_C3STOP)) 80 return false; 81 82 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && 83 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 84 return false; 85 86 return !curdev || newdev->rating > curdev->rating; 87 } 88 89 /* 90 * Conditionally install/replace broadcast device 91 */ 92 void tick_install_broadcast_device(struct clock_event_device *dev) 93 { 94 struct clock_event_device *cur = tick_broadcast_device.evtdev; 95 96 if (!tick_check_broadcast_device(cur, dev)) 97 return; 98 99 if (!try_module_get(dev->owner)) 100 return; 101 102 clockevents_exchange_device(cur, dev); 103 if (cur) 104 cur->event_handler = clockevents_handle_noop; 105 tick_broadcast_device.evtdev = dev; 106 if (!cpumask_empty(tick_broadcast_mask)) 107 tick_broadcast_start_periodic(dev); 108 /* 109 * Inform all cpus about this. We might be in a situation 110 * where we did not switch to oneshot mode because the per cpu 111 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack 112 * of a oneshot capable broadcast device. Without that 113 * notification the systems stays stuck in periodic mode 114 * forever. 115 */ 116 if (dev->features & CLOCK_EVT_FEAT_ONESHOT) 117 tick_clock_notify(); 118 } 119 120 /* 121 * Check, if the device is the broadcast device 122 */ 123 int tick_is_broadcast_device(struct clock_event_device *dev) 124 { 125 return (dev && tick_broadcast_device.evtdev == dev); 126 } 127 128 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) 129 { 130 int ret = -ENODEV; 131 132 if (tick_is_broadcast_device(dev)) { 133 raw_spin_lock(&tick_broadcast_lock); 134 ret = __clockevents_update_freq(dev, freq); 135 raw_spin_unlock(&tick_broadcast_lock); 136 } 137 return ret; 138 } 139 140 141 static void err_broadcast(const struct cpumask *mask) 142 { 143 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); 144 } 145 146 static void tick_device_setup_broadcast_func(struct clock_event_device *dev) 147 { 148 if (!dev->broadcast) 149 dev->broadcast = tick_broadcast; 150 if (!dev->broadcast) { 151 pr_warn_once("%s depends on broadcast, but no broadcast function available\n", 152 dev->name); 153 dev->broadcast = err_broadcast; 154 } 155 } 156 157 /* 158 * Check, if the device is disfunctional and a place holder, which 159 * needs to be handled by the broadcast device. 160 */ 161 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 162 { 163 struct clock_event_device *bc = tick_broadcast_device.evtdev; 164 unsigned long flags; 165 int ret = 0; 166 167 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 168 169 /* 170 * Devices might be registered with both periodic and oneshot 171 * mode disabled. This signals, that the device needs to be 172 * operated from the broadcast device and is a placeholder for 173 * the cpu local device. 174 */ 175 if (!tick_device_is_functional(dev)) { 176 dev->event_handler = tick_handle_periodic; 177 tick_device_setup_broadcast_func(dev); 178 cpumask_set_cpu(cpu, tick_broadcast_mask); 179 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 180 tick_broadcast_start_periodic(bc); 181 else 182 tick_broadcast_setup_oneshot(bc); 183 ret = 1; 184 } else { 185 /* 186 * Clear the broadcast bit for this cpu if the 187 * device is not power state affected. 188 */ 189 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 190 cpumask_clear_cpu(cpu, tick_broadcast_mask); 191 else 192 tick_device_setup_broadcast_func(dev); 193 194 /* 195 * Clear the broadcast bit if the CPU is not in 196 * periodic broadcast on state. 197 */ 198 if (!cpumask_test_cpu(cpu, tick_broadcast_on)) 199 cpumask_clear_cpu(cpu, tick_broadcast_mask); 200 201 switch (tick_broadcast_device.mode) { 202 case TICKDEV_MODE_ONESHOT: 203 /* 204 * If the system is in oneshot mode we can 205 * unconditionally clear the oneshot mask bit, 206 * because the CPU is running and therefore 207 * not in an idle state which causes the power 208 * state affected device to stop. Let the 209 * caller initialize the device. 210 */ 211 tick_broadcast_clear_oneshot(cpu); 212 ret = 0; 213 break; 214 215 case TICKDEV_MODE_PERIODIC: 216 /* 217 * If the system is in periodic mode, check 218 * whether the broadcast device can be 219 * switched off now. 220 */ 221 if (cpumask_empty(tick_broadcast_mask) && bc) 222 clockevents_shutdown(bc); 223 /* 224 * If we kept the cpu in the broadcast mask, 225 * tell the caller to leave the per cpu device 226 * in shutdown state. The periodic interrupt 227 * is delivered by the broadcast device, if 228 * the broadcast device exists and is not 229 * hrtimer based. 230 */ 231 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 232 ret = cpumask_test_cpu(cpu, tick_broadcast_mask); 233 break; 234 default: 235 break; 236 } 237 } 238 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 239 return ret; 240 } 241 242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 243 int tick_receive_broadcast(void) 244 { 245 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 246 struct clock_event_device *evt = td->evtdev; 247 248 if (!evt) 249 return -ENODEV; 250 251 if (!evt->event_handler) 252 return -EINVAL; 253 254 evt->event_handler(evt); 255 return 0; 256 } 257 #endif 258 259 /* 260 * Broadcast the event to the cpus, which are set in the mask (mangled). 261 */ 262 static bool tick_do_broadcast(struct cpumask *mask) 263 { 264 int cpu = smp_processor_id(); 265 struct tick_device *td; 266 bool local = false; 267 268 /* 269 * Check, if the current cpu is in the mask 270 */ 271 if (cpumask_test_cpu(cpu, mask)) { 272 struct clock_event_device *bc = tick_broadcast_device.evtdev; 273 274 cpumask_clear_cpu(cpu, mask); 275 /* 276 * We only run the local handler, if the broadcast 277 * device is not hrtimer based. Otherwise we run into 278 * a hrtimer recursion. 279 * 280 * local timer_interrupt() 281 * local_handler() 282 * expire_hrtimers() 283 * bc_handler() 284 * local_handler() 285 * expire_hrtimers() 286 */ 287 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER); 288 } 289 290 if (!cpumask_empty(mask)) { 291 /* 292 * It might be necessary to actually check whether the devices 293 * have different broadcast functions. For now, just use the 294 * one of the first device. This works as long as we have this 295 * misfeature only on x86 (lapic) 296 */ 297 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 298 td->evtdev->broadcast(mask); 299 } 300 return local; 301 } 302 303 /* 304 * Periodic broadcast: 305 * - invoke the broadcast handlers 306 */ 307 static bool tick_do_periodic_broadcast(void) 308 { 309 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); 310 return tick_do_broadcast(tmpmask); 311 } 312 313 /* 314 * Event handler for periodic broadcast ticks 315 */ 316 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 317 { 318 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 319 bool bc_local; 320 321 raw_spin_lock(&tick_broadcast_lock); 322 323 /* Handle spurious interrupts gracefully */ 324 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) { 325 raw_spin_unlock(&tick_broadcast_lock); 326 return; 327 } 328 329 bc_local = tick_do_periodic_broadcast(); 330 331 if (clockevent_state_oneshot(dev)) { 332 ktime_t next = ktime_add(dev->next_event, tick_period); 333 334 clockevents_program_event(dev, next, true); 335 } 336 raw_spin_unlock(&tick_broadcast_lock); 337 338 /* 339 * We run the handler of the local cpu after dropping 340 * tick_broadcast_lock because the handler might deadlock when 341 * trying to switch to oneshot mode. 342 */ 343 if (bc_local) 344 td->evtdev->event_handler(td->evtdev); 345 } 346 347 /** 348 * tick_broadcast_control - Enable/disable or force broadcast mode 349 * @mode: The selected broadcast mode 350 * 351 * Called when the system enters a state where affected tick devices 352 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. 353 */ 354 void tick_broadcast_control(enum tick_broadcast_mode mode) 355 { 356 struct clock_event_device *bc, *dev; 357 struct tick_device *td; 358 int cpu, bc_stopped; 359 unsigned long flags; 360 361 /* Protects also the local clockevent device. */ 362 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 363 td = this_cpu_ptr(&tick_cpu_device); 364 dev = td->evtdev; 365 366 /* 367 * Is the device not affected by the powerstate ? 368 */ 369 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 370 goto out; 371 372 if (!tick_device_is_functional(dev)) 373 goto out; 374 375 cpu = smp_processor_id(); 376 bc = tick_broadcast_device.evtdev; 377 bc_stopped = cpumask_empty(tick_broadcast_mask); 378 379 switch (mode) { 380 case TICK_BROADCAST_FORCE: 381 tick_broadcast_forced = 1; 382 case TICK_BROADCAST_ON: 383 cpumask_set_cpu(cpu, tick_broadcast_on); 384 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { 385 /* 386 * Only shutdown the cpu local device, if: 387 * 388 * - the broadcast device exists 389 * - the broadcast device is not a hrtimer based one 390 * - the broadcast device is in periodic mode to 391 * avoid a hickup during switch to oneshot mode 392 */ 393 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) && 394 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 395 clockevents_shutdown(dev); 396 } 397 break; 398 399 case TICK_BROADCAST_OFF: 400 if (tick_broadcast_forced) 401 break; 402 cpumask_clear_cpu(cpu, tick_broadcast_on); 403 if (!tick_device_is_functional(dev)) 404 break; 405 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { 406 if (tick_broadcast_device.mode == 407 TICKDEV_MODE_PERIODIC) 408 tick_setup_periodic(dev, 0); 409 } 410 break; 411 } 412 413 if (bc) { 414 if (cpumask_empty(tick_broadcast_mask)) { 415 if (!bc_stopped) 416 clockevents_shutdown(bc); 417 } else if (bc_stopped) { 418 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 419 tick_broadcast_start_periodic(bc); 420 else 421 tick_broadcast_setup_oneshot(bc); 422 } 423 } 424 out: 425 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 426 } 427 EXPORT_SYMBOL_GPL(tick_broadcast_control); 428 429 /* 430 * Set the periodic handler depending on broadcast on/off 431 */ 432 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 433 { 434 if (!broadcast) 435 dev->event_handler = tick_handle_periodic; 436 else 437 dev->event_handler = tick_handle_periodic_broadcast; 438 } 439 440 #ifdef CONFIG_HOTPLUG_CPU 441 /* 442 * Remove a CPU from broadcasting 443 */ 444 void tick_shutdown_broadcast(unsigned int cpu) 445 { 446 struct clock_event_device *bc; 447 unsigned long flags; 448 449 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 450 451 bc = tick_broadcast_device.evtdev; 452 cpumask_clear_cpu(cpu, tick_broadcast_mask); 453 cpumask_clear_cpu(cpu, tick_broadcast_on); 454 455 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 456 if (bc && cpumask_empty(tick_broadcast_mask)) 457 clockevents_shutdown(bc); 458 } 459 460 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 461 } 462 #endif 463 464 void tick_suspend_broadcast(void) 465 { 466 struct clock_event_device *bc; 467 unsigned long flags; 468 469 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 470 471 bc = tick_broadcast_device.evtdev; 472 if (bc) 473 clockevents_shutdown(bc); 474 475 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 476 } 477 478 /* 479 * This is called from tick_resume_local() on a resuming CPU. That's 480 * called from the core resume function, tick_unfreeze() and the magic XEN 481 * resume hackery. 482 * 483 * In none of these cases the broadcast device mode can change and the 484 * bit of the resuming CPU in the broadcast mask is safe as well. 485 */ 486 bool tick_resume_check_broadcast(void) 487 { 488 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) 489 return false; 490 else 491 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); 492 } 493 494 void tick_resume_broadcast(void) 495 { 496 struct clock_event_device *bc; 497 unsigned long flags; 498 499 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 500 501 bc = tick_broadcast_device.evtdev; 502 503 if (bc) { 504 clockevents_tick_resume(bc); 505 506 switch (tick_broadcast_device.mode) { 507 case TICKDEV_MODE_PERIODIC: 508 if (!cpumask_empty(tick_broadcast_mask)) 509 tick_broadcast_start_periodic(bc); 510 break; 511 case TICKDEV_MODE_ONESHOT: 512 if (!cpumask_empty(tick_broadcast_mask)) 513 tick_resume_broadcast_oneshot(bc); 514 break; 515 } 516 } 517 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 518 } 519 520 #ifdef CONFIG_TICK_ONESHOT 521 522 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly; 523 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly; 524 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly; 525 526 /* 527 * Exposed for debugging: see timer_list.c 528 */ 529 struct cpumask *tick_get_broadcast_oneshot_mask(void) 530 { 531 return tick_broadcast_oneshot_mask; 532 } 533 534 /* 535 * Called before going idle with interrupts disabled. Checks whether a 536 * broadcast event from the other core is about to happen. We detected 537 * that in tick_broadcast_oneshot_control(). The callsite can use this 538 * to avoid a deep idle transition as we are about to get the 539 * broadcast IPI right away. 540 */ 541 int tick_check_broadcast_expired(void) 542 { 543 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); 544 } 545 546 /* 547 * Set broadcast interrupt affinity 548 */ 549 static void tick_broadcast_set_affinity(struct clock_event_device *bc, 550 const struct cpumask *cpumask) 551 { 552 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) 553 return; 554 555 if (cpumask_equal(bc->cpumask, cpumask)) 556 return; 557 558 bc->cpumask = cpumask; 559 irq_set_affinity(bc->irq, bc->cpumask); 560 } 561 562 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, 563 ktime_t expires) 564 { 565 if (!clockevent_state_oneshot(bc)) 566 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 567 568 clockevents_program_event(bc, expires, 1); 569 tick_broadcast_set_affinity(bc, cpumask_of(cpu)); 570 } 571 572 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) 573 { 574 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 575 } 576 577 /* 578 * Called from irq_enter() when idle was interrupted to reenable the 579 * per cpu device. 580 */ 581 void tick_check_oneshot_broadcast_this_cpu(void) 582 { 583 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { 584 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 585 586 /* 587 * We might be in the middle of switching over from 588 * periodic to oneshot. If the CPU has not yet 589 * switched over, leave the device alone. 590 */ 591 if (td->mode == TICKDEV_MODE_ONESHOT) { 592 clockevents_switch_state(td->evtdev, 593 CLOCK_EVT_STATE_ONESHOT); 594 } 595 } 596 } 597 598 /* 599 * Handle oneshot mode broadcasting 600 */ 601 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 602 { 603 struct tick_device *td; 604 ktime_t now, next_event; 605 int cpu, next_cpu = 0; 606 bool bc_local; 607 608 raw_spin_lock(&tick_broadcast_lock); 609 dev->next_event = KTIME_MAX; 610 next_event = KTIME_MAX; 611 cpumask_clear(tmpmask); 612 now = ktime_get(); 613 /* Find all expired events */ 614 for_each_cpu(cpu, tick_broadcast_oneshot_mask) { 615 /* 616 * Required for !SMP because for_each_cpu() reports 617 * unconditionally CPU0 as set on UP kernels. 618 */ 619 if (!IS_ENABLED(CONFIG_SMP) && 620 cpumask_empty(tick_broadcast_oneshot_mask)) 621 break; 622 623 td = &per_cpu(tick_cpu_device, cpu); 624 if (td->evtdev->next_event <= now) { 625 cpumask_set_cpu(cpu, tmpmask); 626 /* 627 * Mark the remote cpu in the pending mask, so 628 * it can avoid reprogramming the cpu local 629 * timer in tick_broadcast_oneshot_control(). 630 */ 631 cpumask_set_cpu(cpu, tick_broadcast_pending_mask); 632 } else if (td->evtdev->next_event < next_event) { 633 next_event = td->evtdev->next_event; 634 next_cpu = cpu; 635 } 636 } 637 638 /* 639 * Remove the current cpu from the pending mask. The event is 640 * delivered immediately in tick_do_broadcast() ! 641 */ 642 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); 643 644 /* Take care of enforced broadcast requests */ 645 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); 646 cpumask_clear(tick_broadcast_force_mask); 647 648 /* 649 * Sanity check. Catch the case where we try to broadcast to 650 * offline cpus. 651 */ 652 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) 653 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 654 655 /* 656 * Wakeup the cpus which have an expired event. 657 */ 658 bc_local = tick_do_broadcast(tmpmask); 659 660 /* 661 * Two reasons for reprogram: 662 * 663 * - The global event did not expire any CPU local 664 * events. This happens in dyntick mode, as the maximum PIT 665 * delta is quite small. 666 * 667 * - There are pending events on sleeping CPUs which were not 668 * in the event mask 669 */ 670 if (next_event != KTIME_MAX) 671 tick_broadcast_set_event(dev, next_cpu, next_event); 672 673 raw_spin_unlock(&tick_broadcast_lock); 674 675 if (bc_local) { 676 td = this_cpu_ptr(&tick_cpu_device); 677 td->evtdev->event_handler(td->evtdev); 678 } 679 } 680 681 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) 682 { 683 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 684 return 0; 685 if (bc->next_event == KTIME_MAX) 686 return 0; 687 return bc->bound_on == cpu ? -EBUSY : 0; 688 } 689 690 static void broadcast_shutdown_local(struct clock_event_device *bc, 691 struct clock_event_device *dev) 692 { 693 /* 694 * For hrtimer based broadcasting we cannot shutdown the cpu 695 * local device if our own event is the first one to expire or 696 * if we own the broadcast timer. 697 */ 698 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { 699 if (broadcast_needs_cpu(bc, smp_processor_id())) 700 return; 701 if (dev->next_event < bc->next_event) 702 return; 703 } 704 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 705 } 706 707 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 708 { 709 struct clock_event_device *bc, *dev; 710 int cpu, ret = 0; 711 ktime_t now; 712 713 /* 714 * If there is no broadcast device, tell the caller not to go 715 * into deep idle. 716 */ 717 if (!tick_broadcast_device.evtdev) 718 return -EBUSY; 719 720 dev = this_cpu_ptr(&tick_cpu_device)->evtdev; 721 722 raw_spin_lock(&tick_broadcast_lock); 723 bc = tick_broadcast_device.evtdev; 724 cpu = smp_processor_id(); 725 726 if (state == TICK_BROADCAST_ENTER) { 727 /* 728 * If the current CPU owns the hrtimer broadcast 729 * mechanism, it cannot go deep idle and we do not add 730 * the CPU to the broadcast mask. We don't have to go 731 * through the EXIT path as the local timer is not 732 * shutdown. 733 */ 734 ret = broadcast_needs_cpu(bc, cpu); 735 if (ret) 736 goto out; 737 738 /* 739 * If the broadcast device is in periodic mode, we 740 * return. 741 */ 742 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 743 /* If it is a hrtimer based broadcast, return busy */ 744 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) 745 ret = -EBUSY; 746 goto out; 747 } 748 749 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { 750 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); 751 752 /* Conditionally shut down the local timer. */ 753 broadcast_shutdown_local(bc, dev); 754 755 /* 756 * We only reprogram the broadcast timer if we 757 * did not mark ourself in the force mask and 758 * if the cpu local event is earlier than the 759 * broadcast event. If the current CPU is in 760 * the force mask, then we are going to be 761 * woken by the IPI right away; we return 762 * busy, so the CPU does not try to go deep 763 * idle. 764 */ 765 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) { 766 ret = -EBUSY; 767 } else if (dev->next_event < bc->next_event) { 768 tick_broadcast_set_event(bc, cpu, dev->next_event); 769 /* 770 * In case of hrtimer broadcasts the 771 * programming might have moved the 772 * timer to this cpu. If yes, remove 773 * us from the broadcast mask and 774 * return busy. 775 */ 776 ret = broadcast_needs_cpu(bc, cpu); 777 if (ret) { 778 cpumask_clear_cpu(cpu, 779 tick_broadcast_oneshot_mask); 780 } 781 } 782 } 783 } else { 784 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { 785 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 786 /* 787 * The cpu which was handling the broadcast 788 * timer marked this cpu in the broadcast 789 * pending mask and fired the broadcast 790 * IPI. So we are going to handle the expired 791 * event anyway via the broadcast IPI 792 * handler. No need to reprogram the timer 793 * with an already expired event. 794 */ 795 if (cpumask_test_and_clear_cpu(cpu, 796 tick_broadcast_pending_mask)) 797 goto out; 798 799 /* 800 * Bail out if there is no next event. 801 */ 802 if (dev->next_event == KTIME_MAX) 803 goto out; 804 /* 805 * If the pending bit is not set, then we are 806 * either the CPU handling the broadcast 807 * interrupt or we got woken by something else. 808 * 809 * We are not longer in the broadcast mask, so 810 * if the cpu local expiry time is already 811 * reached, we would reprogram the cpu local 812 * timer with an already expired event. 813 * 814 * This can lead to a ping-pong when we return 815 * to idle and therefor rearm the broadcast 816 * timer before the cpu local timer was able 817 * to fire. This happens because the forced 818 * reprogramming makes sure that the event 819 * will happen in the future and depending on 820 * the min_delta setting this might be far 821 * enough out that the ping-pong starts. 822 * 823 * If the cpu local next_event has expired 824 * then we know that the broadcast timer 825 * next_event has expired as well and 826 * broadcast is about to be handled. So we 827 * avoid reprogramming and enforce that the 828 * broadcast handler, which did not run yet, 829 * will invoke the cpu local handler. 830 * 831 * We cannot call the handler directly from 832 * here, because we might be in a NOHZ phase 833 * and we did not go through the irq_enter() 834 * nohz fixups. 835 */ 836 now = ktime_get(); 837 if (dev->next_event <= now) { 838 cpumask_set_cpu(cpu, tick_broadcast_force_mask); 839 goto out; 840 } 841 /* 842 * We got woken by something else. Reprogram 843 * the cpu local timer device. 844 */ 845 tick_program_event(dev->next_event, 1); 846 } 847 } 848 out: 849 raw_spin_unlock(&tick_broadcast_lock); 850 return ret; 851 } 852 853 /* 854 * Reset the one shot broadcast for a cpu 855 * 856 * Called with tick_broadcast_lock held 857 */ 858 static void tick_broadcast_clear_oneshot(int cpu) 859 { 860 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 861 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 862 } 863 864 static void tick_broadcast_init_next_event(struct cpumask *mask, 865 ktime_t expires) 866 { 867 struct tick_device *td; 868 int cpu; 869 870 for_each_cpu(cpu, mask) { 871 td = &per_cpu(tick_cpu_device, cpu); 872 if (td->evtdev) 873 td->evtdev->next_event = expires; 874 } 875 } 876 877 /** 878 * tick_broadcast_setup_oneshot - setup the broadcast device 879 */ 880 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 881 { 882 int cpu = smp_processor_id(); 883 884 if (!bc) 885 return; 886 887 /* Set it up only once ! */ 888 if (bc->event_handler != tick_handle_oneshot_broadcast) { 889 int was_periodic = clockevent_state_periodic(bc); 890 891 bc->event_handler = tick_handle_oneshot_broadcast; 892 893 /* 894 * We must be careful here. There might be other CPUs 895 * waiting for periodic broadcast. We need to set the 896 * oneshot_mask bits for those and program the 897 * broadcast device to fire. 898 */ 899 cpumask_copy(tmpmask, tick_broadcast_mask); 900 cpumask_clear_cpu(cpu, tmpmask); 901 cpumask_or(tick_broadcast_oneshot_mask, 902 tick_broadcast_oneshot_mask, tmpmask); 903 904 if (was_periodic && !cpumask_empty(tmpmask)) { 905 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 906 tick_broadcast_init_next_event(tmpmask, 907 tick_next_period); 908 tick_broadcast_set_event(bc, cpu, tick_next_period); 909 } else 910 bc->next_event = KTIME_MAX; 911 } else { 912 /* 913 * The first cpu which switches to oneshot mode sets 914 * the bit for all other cpus which are in the general 915 * (periodic) broadcast mask. So the bit is set and 916 * would prevent the first broadcast enter after this 917 * to program the bc device. 918 */ 919 tick_broadcast_clear_oneshot(cpu); 920 } 921 } 922 923 /* 924 * Select oneshot operating mode for the broadcast device 925 */ 926 void tick_broadcast_switch_to_oneshot(void) 927 { 928 struct clock_event_device *bc; 929 unsigned long flags; 930 931 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 932 933 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 934 bc = tick_broadcast_device.evtdev; 935 if (bc) 936 tick_broadcast_setup_oneshot(bc); 937 938 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 939 } 940 941 #ifdef CONFIG_HOTPLUG_CPU 942 void hotplug_cpu__broadcast_tick_pull(int deadcpu) 943 { 944 struct clock_event_device *bc; 945 unsigned long flags; 946 947 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 948 bc = tick_broadcast_device.evtdev; 949 950 if (bc && broadcast_needs_cpu(bc, deadcpu)) { 951 /* This moves the broadcast assignment to this CPU: */ 952 clockevents_program_event(bc, bc->next_event, 1); 953 } 954 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 955 } 956 957 /* 958 * Remove a dead CPU from broadcasting 959 */ 960 void tick_shutdown_broadcast_oneshot(unsigned int cpu) 961 { 962 unsigned long flags; 963 964 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 965 966 /* 967 * Clear the broadcast masks for the dead cpu, but do not stop 968 * the broadcast device! 969 */ 970 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 971 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 972 cpumask_clear_cpu(cpu, tick_broadcast_force_mask); 973 974 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 975 } 976 #endif 977 978 /* 979 * Check, whether the broadcast device is in one shot mode 980 */ 981 int tick_broadcast_oneshot_active(void) 982 { 983 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 984 } 985 986 /* 987 * Check whether the broadcast device supports oneshot. 988 */ 989 bool tick_broadcast_oneshot_available(void) 990 { 991 struct clock_event_device *bc = tick_broadcast_device.evtdev; 992 993 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 994 } 995 996 #else 997 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 998 { 999 struct clock_event_device *bc = tick_broadcast_device.evtdev; 1000 1001 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER)) 1002 return -EBUSY; 1003 1004 return 0; 1005 } 1006 #endif 1007 1008 void __init tick_broadcast_init(void) 1009 { 1010 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); 1011 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); 1012 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); 1013 #ifdef CONFIG_TICK_ONESHOT 1014 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); 1015 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); 1016 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); 1017 #endif 1018 } 1019