1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/smp.h> 22 #include <linux/module.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Broadcast support for broken x86 hardware, where the local apic 28 * timer stops in C3 state. 29 */ 30 31 static struct tick_device tick_broadcast_device; 32 static cpumask_var_t tick_broadcast_mask; 33 static cpumask_var_t tick_broadcast_on; 34 static cpumask_var_t tmpmask; 35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 36 static int tick_broadcast_forced; 37 38 #ifdef CONFIG_TICK_ONESHOT 39 static void tick_broadcast_clear_oneshot(int cpu); 40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); 41 #else 42 static inline void tick_broadcast_clear_oneshot(int cpu) { } 43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } 44 #endif 45 46 /* 47 * Debugging: see timer_list.c 48 */ 49 struct tick_device *tick_get_broadcast_device(void) 50 { 51 return &tick_broadcast_device; 52 } 53 54 struct cpumask *tick_get_broadcast_mask(void) 55 { 56 return tick_broadcast_mask; 57 } 58 59 /* 60 * Start the device in periodic mode 61 */ 62 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 63 { 64 if (bc) 65 tick_setup_periodic(bc, 1); 66 } 67 68 /* 69 * Check, if the device can be utilized as broadcast device: 70 */ 71 static bool tick_check_broadcast_device(struct clock_event_device *curdev, 72 struct clock_event_device *newdev) 73 { 74 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || 75 (newdev->features & CLOCK_EVT_FEAT_PERCPU) || 76 (newdev->features & CLOCK_EVT_FEAT_C3STOP)) 77 return false; 78 79 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && 80 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 81 return false; 82 83 return !curdev || newdev->rating > curdev->rating; 84 } 85 86 /* 87 * Conditionally install/replace broadcast device 88 */ 89 void tick_install_broadcast_device(struct clock_event_device *dev) 90 { 91 struct clock_event_device *cur = tick_broadcast_device.evtdev; 92 93 if (!tick_check_broadcast_device(cur, dev)) 94 return; 95 96 if (!try_module_get(dev->owner)) 97 return; 98 99 clockevents_exchange_device(cur, dev); 100 if (cur) 101 cur->event_handler = clockevents_handle_noop; 102 tick_broadcast_device.evtdev = dev; 103 if (!cpumask_empty(tick_broadcast_mask)) 104 tick_broadcast_start_periodic(dev); 105 /* 106 * Inform all cpus about this. We might be in a situation 107 * where we did not switch to oneshot mode because the per cpu 108 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack 109 * of a oneshot capable broadcast device. Without that 110 * notification the systems stays stuck in periodic mode 111 * forever. 112 */ 113 if (dev->features & CLOCK_EVT_FEAT_ONESHOT) 114 tick_clock_notify(); 115 } 116 117 /* 118 * Check, if the device is the broadcast device 119 */ 120 int tick_is_broadcast_device(struct clock_event_device *dev) 121 { 122 return (dev && tick_broadcast_device.evtdev == dev); 123 } 124 125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) 126 { 127 int ret = -ENODEV; 128 129 if (tick_is_broadcast_device(dev)) { 130 raw_spin_lock(&tick_broadcast_lock); 131 ret = __clockevents_update_freq(dev, freq); 132 raw_spin_unlock(&tick_broadcast_lock); 133 } 134 return ret; 135 } 136 137 138 static void err_broadcast(const struct cpumask *mask) 139 { 140 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); 141 } 142 143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev) 144 { 145 if (!dev->broadcast) 146 dev->broadcast = tick_broadcast; 147 if (!dev->broadcast) { 148 pr_warn_once("%s depends on broadcast, but no broadcast function available\n", 149 dev->name); 150 dev->broadcast = err_broadcast; 151 } 152 } 153 154 /* 155 * Check, if the device is disfunctional and a place holder, which 156 * needs to be handled by the broadcast device. 157 */ 158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 159 { 160 struct clock_event_device *bc = tick_broadcast_device.evtdev; 161 unsigned long flags; 162 int ret = 0; 163 164 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 165 166 /* 167 * Devices might be registered with both periodic and oneshot 168 * mode disabled. This signals, that the device needs to be 169 * operated from the broadcast device and is a placeholder for 170 * the cpu local device. 171 */ 172 if (!tick_device_is_functional(dev)) { 173 dev->event_handler = tick_handle_periodic; 174 tick_device_setup_broadcast_func(dev); 175 cpumask_set_cpu(cpu, tick_broadcast_mask); 176 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 177 tick_broadcast_start_periodic(bc); 178 else 179 tick_broadcast_setup_oneshot(bc); 180 ret = 1; 181 } else { 182 /* 183 * Clear the broadcast bit for this cpu if the 184 * device is not power state affected. 185 */ 186 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 187 cpumask_clear_cpu(cpu, tick_broadcast_mask); 188 else 189 tick_device_setup_broadcast_func(dev); 190 191 /* 192 * Clear the broadcast bit if the CPU is not in 193 * periodic broadcast on state. 194 */ 195 if (!cpumask_test_cpu(cpu, tick_broadcast_on)) 196 cpumask_clear_cpu(cpu, tick_broadcast_mask); 197 198 switch (tick_broadcast_device.mode) { 199 case TICKDEV_MODE_ONESHOT: 200 /* 201 * If the system is in oneshot mode we can 202 * unconditionally clear the oneshot mask bit, 203 * because the CPU is running and therefore 204 * not in an idle state which causes the power 205 * state affected device to stop. Let the 206 * caller initialize the device. 207 */ 208 tick_broadcast_clear_oneshot(cpu); 209 ret = 0; 210 break; 211 212 case TICKDEV_MODE_PERIODIC: 213 /* 214 * If the system is in periodic mode, check 215 * whether the broadcast device can be 216 * switched off now. 217 */ 218 if (cpumask_empty(tick_broadcast_mask) && bc) 219 clockevents_shutdown(bc); 220 /* 221 * If we kept the cpu in the broadcast mask, 222 * tell the caller to leave the per cpu device 223 * in shutdown state. The periodic interrupt 224 * is delivered by the broadcast device, if 225 * the broadcast device exists and is not 226 * hrtimer based. 227 */ 228 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 229 ret = cpumask_test_cpu(cpu, tick_broadcast_mask); 230 break; 231 default: 232 break; 233 } 234 } 235 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 236 return ret; 237 } 238 239 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 240 int tick_receive_broadcast(void) 241 { 242 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 243 struct clock_event_device *evt = td->evtdev; 244 245 if (!evt) 246 return -ENODEV; 247 248 if (!evt->event_handler) 249 return -EINVAL; 250 251 evt->event_handler(evt); 252 return 0; 253 } 254 #endif 255 256 /* 257 * Broadcast the event to the cpus, which are set in the mask (mangled). 258 */ 259 static bool tick_do_broadcast(struct cpumask *mask) 260 { 261 int cpu = smp_processor_id(); 262 struct tick_device *td; 263 bool local = false; 264 265 /* 266 * Check, if the current cpu is in the mask 267 */ 268 if (cpumask_test_cpu(cpu, mask)) { 269 struct clock_event_device *bc = tick_broadcast_device.evtdev; 270 271 cpumask_clear_cpu(cpu, mask); 272 /* 273 * We only run the local handler, if the broadcast 274 * device is not hrtimer based. Otherwise we run into 275 * a hrtimer recursion. 276 * 277 * local timer_interrupt() 278 * local_handler() 279 * expire_hrtimers() 280 * bc_handler() 281 * local_handler() 282 * expire_hrtimers() 283 */ 284 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER); 285 } 286 287 if (!cpumask_empty(mask)) { 288 /* 289 * It might be necessary to actually check whether the devices 290 * have different broadcast functions. For now, just use the 291 * one of the first device. This works as long as we have this 292 * misfeature only on x86 (lapic) 293 */ 294 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 295 td->evtdev->broadcast(mask); 296 } 297 return local; 298 } 299 300 /* 301 * Periodic broadcast: 302 * - invoke the broadcast handlers 303 */ 304 static bool tick_do_periodic_broadcast(void) 305 { 306 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); 307 return tick_do_broadcast(tmpmask); 308 } 309 310 /* 311 * Event handler for periodic broadcast ticks 312 */ 313 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 314 { 315 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 316 bool bc_local; 317 318 raw_spin_lock(&tick_broadcast_lock); 319 320 /* Handle spurious interrupts gracefully */ 321 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) { 322 raw_spin_unlock(&tick_broadcast_lock); 323 return; 324 } 325 326 bc_local = tick_do_periodic_broadcast(); 327 328 if (clockevent_state_oneshot(dev)) { 329 ktime_t next = ktime_add(dev->next_event, tick_period); 330 331 clockevents_program_event(dev, next, true); 332 } 333 raw_spin_unlock(&tick_broadcast_lock); 334 335 /* 336 * We run the handler of the local cpu after dropping 337 * tick_broadcast_lock because the handler might deadlock when 338 * trying to switch to oneshot mode. 339 */ 340 if (bc_local) 341 td->evtdev->event_handler(td->evtdev); 342 } 343 344 /** 345 * tick_broadcast_control - Enable/disable or force broadcast mode 346 * @mode: The selected broadcast mode 347 * 348 * Called when the system enters a state where affected tick devices 349 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. 350 */ 351 void tick_broadcast_control(enum tick_broadcast_mode mode) 352 { 353 struct clock_event_device *bc, *dev; 354 struct tick_device *td; 355 int cpu, bc_stopped; 356 unsigned long flags; 357 358 /* Protects also the local clockevent device. */ 359 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 360 td = this_cpu_ptr(&tick_cpu_device); 361 dev = td->evtdev; 362 363 /* 364 * Is the device not affected by the powerstate ? 365 */ 366 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 367 goto out; 368 369 if (!tick_device_is_functional(dev)) 370 goto out; 371 372 cpu = smp_processor_id(); 373 bc = tick_broadcast_device.evtdev; 374 bc_stopped = cpumask_empty(tick_broadcast_mask); 375 376 switch (mode) { 377 case TICK_BROADCAST_FORCE: 378 tick_broadcast_forced = 1; 379 case TICK_BROADCAST_ON: 380 cpumask_set_cpu(cpu, tick_broadcast_on); 381 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { 382 /* 383 * Only shutdown the cpu local device, if: 384 * 385 * - the broadcast device exists 386 * - the broadcast device is not a hrtimer based one 387 * - the broadcast device is in periodic mode to 388 * avoid a hickup during switch to oneshot mode 389 */ 390 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) && 391 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 392 clockevents_shutdown(dev); 393 } 394 break; 395 396 case TICK_BROADCAST_OFF: 397 if (tick_broadcast_forced) 398 break; 399 cpumask_clear_cpu(cpu, tick_broadcast_on); 400 if (!tick_device_is_functional(dev)) 401 break; 402 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { 403 if (tick_broadcast_device.mode == 404 TICKDEV_MODE_PERIODIC) 405 tick_setup_periodic(dev, 0); 406 } 407 break; 408 } 409 410 if (bc) { 411 if (cpumask_empty(tick_broadcast_mask)) { 412 if (!bc_stopped) 413 clockevents_shutdown(bc); 414 } else if (bc_stopped) { 415 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 416 tick_broadcast_start_periodic(bc); 417 else 418 tick_broadcast_setup_oneshot(bc); 419 } 420 } 421 out: 422 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 423 } 424 EXPORT_SYMBOL_GPL(tick_broadcast_control); 425 426 /* 427 * Set the periodic handler depending on broadcast on/off 428 */ 429 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 430 { 431 if (!broadcast) 432 dev->event_handler = tick_handle_periodic; 433 else 434 dev->event_handler = tick_handle_periodic_broadcast; 435 } 436 437 #ifdef CONFIG_HOTPLUG_CPU 438 /* 439 * Remove a CPU from broadcasting 440 */ 441 void tick_shutdown_broadcast(unsigned int cpu) 442 { 443 struct clock_event_device *bc; 444 unsigned long flags; 445 446 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 447 448 bc = tick_broadcast_device.evtdev; 449 cpumask_clear_cpu(cpu, tick_broadcast_mask); 450 cpumask_clear_cpu(cpu, tick_broadcast_on); 451 452 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 453 if (bc && cpumask_empty(tick_broadcast_mask)) 454 clockevents_shutdown(bc); 455 } 456 457 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 458 } 459 #endif 460 461 void tick_suspend_broadcast(void) 462 { 463 struct clock_event_device *bc; 464 unsigned long flags; 465 466 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 467 468 bc = tick_broadcast_device.evtdev; 469 if (bc) 470 clockevents_shutdown(bc); 471 472 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 473 } 474 475 /* 476 * This is called from tick_resume_local() on a resuming CPU. That's 477 * called from the core resume function, tick_unfreeze() and the magic XEN 478 * resume hackery. 479 * 480 * In none of these cases the broadcast device mode can change and the 481 * bit of the resuming CPU in the broadcast mask is safe as well. 482 */ 483 bool tick_resume_check_broadcast(void) 484 { 485 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) 486 return false; 487 else 488 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); 489 } 490 491 void tick_resume_broadcast(void) 492 { 493 struct clock_event_device *bc; 494 unsigned long flags; 495 496 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 497 498 bc = tick_broadcast_device.evtdev; 499 500 if (bc) { 501 clockevents_tick_resume(bc); 502 503 switch (tick_broadcast_device.mode) { 504 case TICKDEV_MODE_PERIODIC: 505 if (!cpumask_empty(tick_broadcast_mask)) 506 tick_broadcast_start_periodic(bc); 507 break; 508 case TICKDEV_MODE_ONESHOT: 509 if (!cpumask_empty(tick_broadcast_mask)) 510 tick_resume_broadcast_oneshot(bc); 511 break; 512 } 513 } 514 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 515 } 516 517 #ifdef CONFIG_TICK_ONESHOT 518 519 static cpumask_var_t tick_broadcast_oneshot_mask; 520 static cpumask_var_t tick_broadcast_pending_mask; 521 static cpumask_var_t tick_broadcast_force_mask; 522 523 /* 524 * Exposed for debugging: see timer_list.c 525 */ 526 struct cpumask *tick_get_broadcast_oneshot_mask(void) 527 { 528 return tick_broadcast_oneshot_mask; 529 } 530 531 /* 532 * Called before going idle with interrupts disabled. Checks whether a 533 * broadcast event from the other core is about to happen. We detected 534 * that in tick_broadcast_oneshot_control(). The callsite can use this 535 * to avoid a deep idle transition as we are about to get the 536 * broadcast IPI right away. 537 */ 538 int tick_check_broadcast_expired(void) 539 { 540 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); 541 } 542 543 /* 544 * Set broadcast interrupt affinity 545 */ 546 static void tick_broadcast_set_affinity(struct clock_event_device *bc, 547 const struct cpumask *cpumask) 548 { 549 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) 550 return; 551 552 if (cpumask_equal(bc->cpumask, cpumask)) 553 return; 554 555 bc->cpumask = cpumask; 556 irq_set_affinity(bc->irq, bc->cpumask); 557 } 558 559 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, 560 ktime_t expires) 561 { 562 if (!clockevent_state_oneshot(bc)) 563 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 564 565 clockevents_program_event(bc, expires, 1); 566 tick_broadcast_set_affinity(bc, cpumask_of(cpu)); 567 } 568 569 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) 570 { 571 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 572 } 573 574 /* 575 * Called from irq_enter() when idle was interrupted to reenable the 576 * per cpu device. 577 */ 578 void tick_check_oneshot_broadcast_this_cpu(void) 579 { 580 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { 581 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 582 583 /* 584 * We might be in the middle of switching over from 585 * periodic to oneshot. If the CPU has not yet 586 * switched over, leave the device alone. 587 */ 588 if (td->mode == TICKDEV_MODE_ONESHOT) { 589 clockevents_switch_state(td->evtdev, 590 CLOCK_EVT_STATE_ONESHOT); 591 } 592 } 593 } 594 595 /* 596 * Handle oneshot mode broadcasting 597 */ 598 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 599 { 600 struct tick_device *td; 601 ktime_t now, next_event; 602 int cpu, next_cpu = 0; 603 bool bc_local; 604 605 raw_spin_lock(&tick_broadcast_lock); 606 dev->next_event = KTIME_MAX; 607 next_event = KTIME_MAX; 608 cpumask_clear(tmpmask); 609 now = ktime_get(); 610 /* Find all expired events */ 611 for_each_cpu(cpu, tick_broadcast_oneshot_mask) { 612 td = &per_cpu(tick_cpu_device, cpu); 613 if (td->evtdev->next_event <= now) { 614 cpumask_set_cpu(cpu, tmpmask); 615 /* 616 * Mark the remote cpu in the pending mask, so 617 * it can avoid reprogramming the cpu local 618 * timer in tick_broadcast_oneshot_control(). 619 */ 620 cpumask_set_cpu(cpu, tick_broadcast_pending_mask); 621 } else if (td->evtdev->next_event < next_event) { 622 next_event = td->evtdev->next_event; 623 next_cpu = cpu; 624 } 625 } 626 627 /* 628 * Remove the current cpu from the pending mask. The event is 629 * delivered immediately in tick_do_broadcast() ! 630 */ 631 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); 632 633 /* Take care of enforced broadcast requests */ 634 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); 635 cpumask_clear(tick_broadcast_force_mask); 636 637 /* 638 * Sanity check. Catch the case where we try to broadcast to 639 * offline cpus. 640 */ 641 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) 642 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 643 644 /* 645 * Wakeup the cpus which have an expired event. 646 */ 647 bc_local = tick_do_broadcast(tmpmask); 648 649 /* 650 * Two reasons for reprogram: 651 * 652 * - The global event did not expire any CPU local 653 * events. This happens in dyntick mode, as the maximum PIT 654 * delta is quite small. 655 * 656 * - There are pending events on sleeping CPUs which were not 657 * in the event mask 658 */ 659 if (next_event != KTIME_MAX) 660 tick_broadcast_set_event(dev, next_cpu, next_event); 661 662 raw_spin_unlock(&tick_broadcast_lock); 663 664 if (bc_local) { 665 td = this_cpu_ptr(&tick_cpu_device); 666 td->evtdev->event_handler(td->evtdev); 667 } 668 } 669 670 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) 671 { 672 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 673 return 0; 674 if (bc->next_event == KTIME_MAX) 675 return 0; 676 return bc->bound_on == cpu ? -EBUSY : 0; 677 } 678 679 static void broadcast_shutdown_local(struct clock_event_device *bc, 680 struct clock_event_device *dev) 681 { 682 /* 683 * For hrtimer based broadcasting we cannot shutdown the cpu 684 * local device if our own event is the first one to expire or 685 * if we own the broadcast timer. 686 */ 687 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { 688 if (broadcast_needs_cpu(bc, smp_processor_id())) 689 return; 690 if (dev->next_event < bc->next_event) 691 return; 692 } 693 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 694 } 695 696 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 697 { 698 struct clock_event_device *bc, *dev; 699 int cpu, ret = 0; 700 ktime_t now; 701 702 /* 703 * If there is no broadcast device, tell the caller not to go 704 * into deep idle. 705 */ 706 if (!tick_broadcast_device.evtdev) 707 return -EBUSY; 708 709 dev = this_cpu_ptr(&tick_cpu_device)->evtdev; 710 711 raw_spin_lock(&tick_broadcast_lock); 712 bc = tick_broadcast_device.evtdev; 713 cpu = smp_processor_id(); 714 715 if (state == TICK_BROADCAST_ENTER) { 716 /* 717 * If the current CPU owns the hrtimer broadcast 718 * mechanism, it cannot go deep idle and we do not add 719 * the CPU to the broadcast mask. We don't have to go 720 * through the EXIT path as the local timer is not 721 * shutdown. 722 */ 723 ret = broadcast_needs_cpu(bc, cpu); 724 if (ret) 725 goto out; 726 727 /* 728 * If the broadcast device is in periodic mode, we 729 * return. 730 */ 731 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 732 /* If it is a hrtimer based broadcast, return busy */ 733 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) 734 ret = -EBUSY; 735 goto out; 736 } 737 738 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { 739 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); 740 741 /* Conditionally shut down the local timer. */ 742 broadcast_shutdown_local(bc, dev); 743 744 /* 745 * We only reprogram the broadcast timer if we 746 * did not mark ourself in the force mask and 747 * if the cpu local event is earlier than the 748 * broadcast event. If the current CPU is in 749 * the force mask, then we are going to be 750 * woken by the IPI right away; we return 751 * busy, so the CPU does not try to go deep 752 * idle. 753 */ 754 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) { 755 ret = -EBUSY; 756 } else if (dev->next_event < bc->next_event) { 757 tick_broadcast_set_event(bc, cpu, dev->next_event); 758 /* 759 * In case of hrtimer broadcasts the 760 * programming might have moved the 761 * timer to this cpu. If yes, remove 762 * us from the broadcast mask and 763 * return busy. 764 */ 765 ret = broadcast_needs_cpu(bc, cpu); 766 if (ret) { 767 cpumask_clear_cpu(cpu, 768 tick_broadcast_oneshot_mask); 769 } 770 } 771 } 772 } else { 773 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { 774 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 775 /* 776 * The cpu which was handling the broadcast 777 * timer marked this cpu in the broadcast 778 * pending mask and fired the broadcast 779 * IPI. So we are going to handle the expired 780 * event anyway via the broadcast IPI 781 * handler. No need to reprogram the timer 782 * with an already expired event. 783 */ 784 if (cpumask_test_and_clear_cpu(cpu, 785 tick_broadcast_pending_mask)) 786 goto out; 787 788 /* 789 * Bail out if there is no next event. 790 */ 791 if (dev->next_event == KTIME_MAX) 792 goto out; 793 /* 794 * If the pending bit is not set, then we are 795 * either the CPU handling the broadcast 796 * interrupt or we got woken by something else. 797 * 798 * We are not longer in the broadcast mask, so 799 * if the cpu local expiry time is already 800 * reached, we would reprogram the cpu local 801 * timer with an already expired event. 802 * 803 * This can lead to a ping-pong when we return 804 * to idle and therefor rearm the broadcast 805 * timer before the cpu local timer was able 806 * to fire. This happens because the forced 807 * reprogramming makes sure that the event 808 * will happen in the future and depending on 809 * the min_delta setting this might be far 810 * enough out that the ping-pong starts. 811 * 812 * If the cpu local next_event has expired 813 * then we know that the broadcast timer 814 * next_event has expired as well and 815 * broadcast is about to be handled. So we 816 * avoid reprogramming and enforce that the 817 * broadcast handler, which did not run yet, 818 * will invoke the cpu local handler. 819 * 820 * We cannot call the handler directly from 821 * here, because we might be in a NOHZ phase 822 * and we did not go through the irq_enter() 823 * nohz fixups. 824 */ 825 now = ktime_get(); 826 if (dev->next_event <= now) { 827 cpumask_set_cpu(cpu, tick_broadcast_force_mask); 828 goto out; 829 } 830 /* 831 * We got woken by something else. Reprogram 832 * the cpu local timer device. 833 */ 834 tick_program_event(dev->next_event, 1); 835 } 836 } 837 out: 838 raw_spin_unlock(&tick_broadcast_lock); 839 return ret; 840 } 841 842 /* 843 * Reset the one shot broadcast for a cpu 844 * 845 * Called with tick_broadcast_lock held 846 */ 847 static void tick_broadcast_clear_oneshot(int cpu) 848 { 849 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 850 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 851 } 852 853 static void tick_broadcast_init_next_event(struct cpumask *mask, 854 ktime_t expires) 855 { 856 struct tick_device *td; 857 int cpu; 858 859 for_each_cpu(cpu, mask) { 860 td = &per_cpu(tick_cpu_device, cpu); 861 if (td->evtdev) 862 td->evtdev->next_event = expires; 863 } 864 } 865 866 /** 867 * tick_broadcast_setup_oneshot - setup the broadcast device 868 */ 869 void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 870 { 871 int cpu = smp_processor_id(); 872 873 if (!bc) 874 return; 875 876 /* Set it up only once ! */ 877 if (bc->event_handler != tick_handle_oneshot_broadcast) { 878 int was_periodic = clockevent_state_periodic(bc); 879 880 bc->event_handler = tick_handle_oneshot_broadcast; 881 882 /* 883 * We must be careful here. There might be other CPUs 884 * waiting for periodic broadcast. We need to set the 885 * oneshot_mask bits for those and program the 886 * broadcast device to fire. 887 */ 888 cpumask_copy(tmpmask, tick_broadcast_mask); 889 cpumask_clear_cpu(cpu, tmpmask); 890 cpumask_or(tick_broadcast_oneshot_mask, 891 tick_broadcast_oneshot_mask, tmpmask); 892 893 if (was_periodic && !cpumask_empty(tmpmask)) { 894 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 895 tick_broadcast_init_next_event(tmpmask, 896 tick_next_period); 897 tick_broadcast_set_event(bc, cpu, tick_next_period); 898 } else 899 bc->next_event = KTIME_MAX; 900 } else { 901 /* 902 * The first cpu which switches to oneshot mode sets 903 * the bit for all other cpus which are in the general 904 * (periodic) broadcast mask. So the bit is set and 905 * would prevent the first broadcast enter after this 906 * to program the bc device. 907 */ 908 tick_broadcast_clear_oneshot(cpu); 909 } 910 } 911 912 /* 913 * Select oneshot operating mode for the broadcast device 914 */ 915 void tick_broadcast_switch_to_oneshot(void) 916 { 917 struct clock_event_device *bc; 918 unsigned long flags; 919 920 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 921 922 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 923 bc = tick_broadcast_device.evtdev; 924 if (bc) 925 tick_broadcast_setup_oneshot(bc); 926 927 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 928 } 929 930 #ifdef CONFIG_HOTPLUG_CPU 931 void hotplug_cpu__broadcast_tick_pull(int deadcpu) 932 { 933 struct clock_event_device *bc; 934 unsigned long flags; 935 936 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 937 bc = tick_broadcast_device.evtdev; 938 939 if (bc && broadcast_needs_cpu(bc, deadcpu)) { 940 /* This moves the broadcast assignment to this CPU: */ 941 clockevents_program_event(bc, bc->next_event, 1); 942 } 943 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 944 } 945 946 /* 947 * Remove a dead CPU from broadcasting 948 */ 949 void tick_shutdown_broadcast_oneshot(unsigned int cpu) 950 { 951 unsigned long flags; 952 953 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 954 955 /* 956 * Clear the broadcast masks for the dead cpu, but do not stop 957 * the broadcast device! 958 */ 959 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 960 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 961 cpumask_clear_cpu(cpu, tick_broadcast_force_mask); 962 963 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 964 } 965 #endif 966 967 /* 968 * Check, whether the broadcast device is in one shot mode 969 */ 970 int tick_broadcast_oneshot_active(void) 971 { 972 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 973 } 974 975 /* 976 * Check whether the broadcast device supports oneshot. 977 */ 978 bool tick_broadcast_oneshot_available(void) 979 { 980 struct clock_event_device *bc = tick_broadcast_device.evtdev; 981 982 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 983 } 984 985 #else 986 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 987 { 988 struct clock_event_device *bc = tick_broadcast_device.evtdev; 989 990 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER)) 991 return -EBUSY; 992 993 return 0; 994 } 995 #endif 996 997 void __init tick_broadcast_init(void) 998 { 999 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); 1000 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); 1001 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); 1002 #ifdef CONFIG_TICK_ONESHOT 1003 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); 1004 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); 1005 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); 1006 #endif 1007 } 1008