xref: /linux/kernel/time/tick-broadcast.c (revision 66a0e2d579dbec5c676cfe446234ffebb267c564)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30 
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37 
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45 
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51 	return &tick_broadcast_device;
52 }
53 
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56 	return tick_broadcast_mask;
57 }
58 
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64 	if (bc)
65 		tick_setup_periodic(bc, 1);
66 }
67 
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72 					struct clock_event_device *newdev)
73 {
74 	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75 	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76 	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77 		return false;
78 
79 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80 	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81 		return false;
82 
83 	return !curdev || newdev->rating > curdev->rating;
84 }
85 
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91 	struct clock_event_device *cur = tick_broadcast_device.evtdev;
92 
93 	if (!tick_check_broadcast_device(cur, dev))
94 		return;
95 
96 	if (!try_module_get(dev->owner))
97 		return;
98 
99 	clockevents_exchange_device(cur, dev);
100 	if (cur)
101 		cur->event_handler = clockevents_handle_noop;
102 	tick_broadcast_device.evtdev = dev;
103 	if (!cpumask_empty(tick_broadcast_mask))
104 		tick_broadcast_start_periodic(dev);
105 	/*
106 	 * Inform all cpus about this. We might be in a situation
107 	 * where we did not switch to oneshot mode because the per cpu
108 	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109 	 * of a oneshot capable broadcast device. Without that
110 	 * notification the systems stays stuck in periodic mode
111 	 * forever.
112 	 */
113 	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114 		tick_clock_notify();
115 }
116 
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122 	return (dev && tick_broadcast_device.evtdev == dev);
123 }
124 
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127 	int ret = -ENODEV;
128 
129 	if (tick_is_broadcast_device(dev)) {
130 		raw_spin_lock(&tick_broadcast_lock);
131 		ret = __clockevents_update_freq(dev, freq);
132 		raw_spin_unlock(&tick_broadcast_lock);
133 	}
134 	return ret;
135 }
136 
137 
138 static void err_broadcast(const struct cpumask *mask)
139 {
140 	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142 
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145 	if (!dev->broadcast)
146 		dev->broadcast = tick_broadcast;
147 	if (!dev->broadcast) {
148 		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149 			     dev->name);
150 		dev->broadcast = err_broadcast;
151 	}
152 }
153 
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
161 	unsigned long flags;
162 	int ret = 0;
163 
164 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165 
166 	/*
167 	 * Devices might be registered with both periodic and oneshot
168 	 * mode disabled. This signals, that the device needs to be
169 	 * operated from the broadcast device and is a placeholder for
170 	 * the cpu local device.
171 	 */
172 	if (!tick_device_is_functional(dev)) {
173 		dev->event_handler = tick_handle_periodic;
174 		tick_device_setup_broadcast_func(dev);
175 		cpumask_set_cpu(cpu, tick_broadcast_mask);
176 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177 			tick_broadcast_start_periodic(bc);
178 		else
179 			tick_broadcast_setup_oneshot(bc);
180 		ret = 1;
181 	} else {
182 		/*
183 		 * Clear the broadcast bit for this cpu if the
184 		 * device is not power state affected.
185 		 */
186 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
188 		else
189 			tick_device_setup_broadcast_func(dev);
190 
191 		/*
192 		 * Clear the broadcast bit if the CPU is not in
193 		 * periodic broadcast on state.
194 		 */
195 		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
197 
198 		switch (tick_broadcast_device.mode) {
199 		case TICKDEV_MODE_ONESHOT:
200 			/*
201 			 * If the system is in oneshot mode we can
202 			 * unconditionally clear the oneshot mask bit,
203 			 * because the CPU is running and therefore
204 			 * not in an idle state which causes the power
205 			 * state affected device to stop. Let the
206 			 * caller initialize the device.
207 			 */
208 			tick_broadcast_clear_oneshot(cpu);
209 			ret = 0;
210 			break;
211 
212 		case TICKDEV_MODE_PERIODIC:
213 			/*
214 			 * If the system is in periodic mode, check
215 			 * whether the broadcast device can be
216 			 * switched off now.
217 			 */
218 			if (cpumask_empty(tick_broadcast_mask) && bc)
219 				clockevents_shutdown(bc);
220 			/*
221 			 * If we kept the cpu in the broadcast mask,
222 			 * tell the caller to leave the per cpu device
223 			 * in shutdown state. The periodic interrupt
224 			 * is delivered by the broadcast device, if
225 			 * the broadcast device exists and is not
226 			 * hrtimer based.
227 			 */
228 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
229 				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
230 			break;
231 		default:
232 			break;
233 		}
234 	}
235 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
236 	return ret;
237 }
238 
239 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
240 int tick_receive_broadcast(void)
241 {
242 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
243 	struct clock_event_device *evt = td->evtdev;
244 
245 	if (!evt)
246 		return -ENODEV;
247 
248 	if (!evt->event_handler)
249 		return -EINVAL;
250 
251 	evt->event_handler(evt);
252 	return 0;
253 }
254 #endif
255 
256 /*
257  * Broadcast the event to the cpus, which are set in the mask (mangled).
258  */
259 static bool tick_do_broadcast(struct cpumask *mask)
260 {
261 	int cpu = smp_processor_id();
262 	struct tick_device *td;
263 	bool local = false;
264 
265 	/*
266 	 * Check, if the current cpu is in the mask
267 	 */
268 	if (cpumask_test_cpu(cpu, mask)) {
269 		struct clock_event_device *bc = tick_broadcast_device.evtdev;
270 
271 		cpumask_clear_cpu(cpu, mask);
272 		/*
273 		 * We only run the local handler, if the broadcast
274 		 * device is not hrtimer based. Otherwise we run into
275 		 * a hrtimer recursion.
276 		 *
277 		 * local timer_interrupt()
278 		 *   local_handler()
279 		 *     expire_hrtimers()
280 		 *       bc_handler()
281 		 *         local_handler()
282 		 *	     expire_hrtimers()
283 		 */
284 		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
285 	}
286 
287 	if (!cpumask_empty(mask)) {
288 		/*
289 		 * It might be necessary to actually check whether the devices
290 		 * have different broadcast functions. For now, just use the
291 		 * one of the first device. This works as long as we have this
292 		 * misfeature only on x86 (lapic)
293 		 */
294 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
295 		td->evtdev->broadcast(mask);
296 	}
297 	return local;
298 }
299 
300 /*
301  * Periodic broadcast:
302  * - invoke the broadcast handlers
303  */
304 static bool tick_do_periodic_broadcast(void)
305 {
306 	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
307 	return tick_do_broadcast(tmpmask);
308 }
309 
310 /*
311  * Event handler for periodic broadcast ticks
312  */
313 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
314 {
315 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
316 	bool bc_local;
317 
318 	raw_spin_lock(&tick_broadcast_lock);
319 
320 	/* Handle spurious interrupts gracefully */
321 	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
322 		raw_spin_unlock(&tick_broadcast_lock);
323 		return;
324 	}
325 
326 	bc_local = tick_do_periodic_broadcast();
327 
328 	if (clockevent_state_oneshot(dev)) {
329 		ktime_t next = ktime_add(dev->next_event, tick_period);
330 
331 		clockevents_program_event(dev, next, true);
332 	}
333 	raw_spin_unlock(&tick_broadcast_lock);
334 
335 	/*
336 	 * We run the handler of the local cpu after dropping
337 	 * tick_broadcast_lock because the handler might deadlock when
338 	 * trying to switch to oneshot mode.
339 	 */
340 	if (bc_local)
341 		td->evtdev->event_handler(td->evtdev);
342 }
343 
344 /**
345  * tick_broadcast_control - Enable/disable or force broadcast mode
346  * @mode:	The selected broadcast mode
347  *
348  * Called when the system enters a state where affected tick devices
349  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
350  */
351 void tick_broadcast_control(enum tick_broadcast_mode mode)
352 {
353 	struct clock_event_device *bc, *dev;
354 	struct tick_device *td;
355 	int cpu, bc_stopped;
356 	unsigned long flags;
357 
358 	/* Protects also the local clockevent device. */
359 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
360 	td = this_cpu_ptr(&tick_cpu_device);
361 	dev = td->evtdev;
362 
363 	/*
364 	 * Is the device not affected by the powerstate ?
365 	 */
366 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
367 		goto out;
368 
369 	if (!tick_device_is_functional(dev))
370 		goto out;
371 
372 	cpu = smp_processor_id();
373 	bc = tick_broadcast_device.evtdev;
374 	bc_stopped = cpumask_empty(tick_broadcast_mask);
375 
376 	switch (mode) {
377 	case TICK_BROADCAST_FORCE:
378 		tick_broadcast_forced = 1;
379 	case TICK_BROADCAST_ON:
380 		cpumask_set_cpu(cpu, tick_broadcast_on);
381 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
382 			/*
383 			 * Only shutdown the cpu local device, if:
384 			 *
385 			 * - the broadcast device exists
386 			 * - the broadcast device is not a hrtimer based one
387 			 * - the broadcast device is in periodic mode to
388 			 *   avoid a hickup during switch to oneshot mode
389 			 */
390 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
391 			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
392 				clockevents_shutdown(dev);
393 		}
394 		break;
395 
396 	case TICK_BROADCAST_OFF:
397 		if (tick_broadcast_forced)
398 			break;
399 		cpumask_clear_cpu(cpu, tick_broadcast_on);
400 		if (!tick_device_is_functional(dev))
401 			break;
402 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
403 			if (tick_broadcast_device.mode ==
404 			    TICKDEV_MODE_PERIODIC)
405 				tick_setup_periodic(dev, 0);
406 		}
407 		break;
408 	}
409 
410 	if (bc) {
411 		if (cpumask_empty(tick_broadcast_mask)) {
412 			if (!bc_stopped)
413 				clockevents_shutdown(bc);
414 		} else if (bc_stopped) {
415 			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
416 				tick_broadcast_start_periodic(bc);
417 			else
418 				tick_broadcast_setup_oneshot(bc);
419 		}
420 	}
421 out:
422 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
423 }
424 EXPORT_SYMBOL_GPL(tick_broadcast_control);
425 
426 /*
427  * Set the periodic handler depending on broadcast on/off
428  */
429 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
430 {
431 	if (!broadcast)
432 		dev->event_handler = tick_handle_periodic;
433 	else
434 		dev->event_handler = tick_handle_periodic_broadcast;
435 }
436 
437 #ifdef CONFIG_HOTPLUG_CPU
438 /*
439  * Remove a CPU from broadcasting
440  */
441 void tick_shutdown_broadcast(unsigned int cpu)
442 {
443 	struct clock_event_device *bc;
444 	unsigned long flags;
445 
446 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
447 
448 	bc = tick_broadcast_device.evtdev;
449 	cpumask_clear_cpu(cpu, tick_broadcast_mask);
450 	cpumask_clear_cpu(cpu, tick_broadcast_on);
451 
452 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
453 		if (bc && cpumask_empty(tick_broadcast_mask))
454 			clockevents_shutdown(bc);
455 	}
456 
457 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
458 }
459 #endif
460 
461 void tick_suspend_broadcast(void)
462 {
463 	struct clock_event_device *bc;
464 	unsigned long flags;
465 
466 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
467 
468 	bc = tick_broadcast_device.evtdev;
469 	if (bc)
470 		clockevents_shutdown(bc);
471 
472 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
473 }
474 
475 /*
476  * This is called from tick_resume_local() on a resuming CPU. That's
477  * called from the core resume function, tick_unfreeze() and the magic XEN
478  * resume hackery.
479  *
480  * In none of these cases the broadcast device mode can change and the
481  * bit of the resuming CPU in the broadcast mask is safe as well.
482  */
483 bool tick_resume_check_broadcast(void)
484 {
485 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
486 		return false;
487 	else
488 		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
489 }
490 
491 void tick_resume_broadcast(void)
492 {
493 	struct clock_event_device *bc;
494 	unsigned long flags;
495 
496 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
497 
498 	bc = tick_broadcast_device.evtdev;
499 
500 	if (bc) {
501 		clockevents_tick_resume(bc);
502 
503 		switch (tick_broadcast_device.mode) {
504 		case TICKDEV_MODE_PERIODIC:
505 			if (!cpumask_empty(tick_broadcast_mask))
506 				tick_broadcast_start_periodic(bc);
507 			break;
508 		case TICKDEV_MODE_ONESHOT:
509 			if (!cpumask_empty(tick_broadcast_mask))
510 				tick_resume_broadcast_oneshot(bc);
511 			break;
512 		}
513 	}
514 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
515 }
516 
517 #ifdef CONFIG_TICK_ONESHOT
518 
519 static cpumask_var_t tick_broadcast_oneshot_mask;
520 static cpumask_var_t tick_broadcast_pending_mask;
521 static cpumask_var_t tick_broadcast_force_mask;
522 
523 /*
524  * Exposed for debugging: see timer_list.c
525  */
526 struct cpumask *tick_get_broadcast_oneshot_mask(void)
527 {
528 	return tick_broadcast_oneshot_mask;
529 }
530 
531 /*
532  * Called before going idle with interrupts disabled. Checks whether a
533  * broadcast event from the other core is about to happen. We detected
534  * that in tick_broadcast_oneshot_control(). The callsite can use this
535  * to avoid a deep idle transition as we are about to get the
536  * broadcast IPI right away.
537  */
538 int tick_check_broadcast_expired(void)
539 {
540 	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
541 }
542 
543 /*
544  * Set broadcast interrupt affinity
545  */
546 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
547 					const struct cpumask *cpumask)
548 {
549 	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
550 		return;
551 
552 	if (cpumask_equal(bc->cpumask, cpumask))
553 		return;
554 
555 	bc->cpumask = cpumask;
556 	irq_set_affinity(bc->irq, bc->cpumask);
557 }
558 
559 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
560 				     ktime_t expires)
561 {
562 	if (!clockevent_state_oneshot(bc))
563 		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
564 
565 	clockevents_program_event(bc, expires, 1);
566 	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
567 }
568 
569 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
570 {
571 	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
572 }
573 
574 /*
575  * Called from irq_enter() when idle was interrupted to reenable the
576  * per cpu device.
577  */
578 void tick_check_oneshot_broadcast_this_cpu(void)
579 {
580 	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
581 		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
582 
583 		/*
584 		 * We might be in the middle of switching over from
585 		 * periodic to oneshot. If the CPU has not yet
586 		 * switched over, leave the device alone.
587 		 */
588 		if (td->mode == TICKDEV_MODE_ONESHOT) {
589 			clockevents_switch_state(td->evtdev,
590 					      CLOCK_EVT_STATE_ONESHOT);
591 		}
592 	}
593 }
594 
595 /*
596  * Handle oneshot mode broadcasting
597  */
598 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
599 {
600 	struct tick_device *td;
601 	ktime_t now, next_event;
602 	int cpu, next_cpu = 0;
603 	bool bc_local;
604 
605 	raw_spin_lock(&tick_broadcast_lock);
606 	dev->next_event = KTIME_MAX;
607 	next_event = KTIME_MAX;
608 	cpumask_clear(tmpmask);
609 	now = ktime_get();
610 	/* Find all expired events */
611 	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
612 		td = &per_cpu(tick_cpu_device, cpu);
613 		if (td->evtdev->next_event <= now) {
614 			cpumask_set_cpu(cpu, tmpmask);
615 			/*
616 			 * Mark the remote cpu in the pending mask, so
617 			 * it can avoid reprogramming the cpu local
618 			 * timer in tick_broadcast_oneshot_control().
619 			 */
620 			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
621 		} else if (td->evtdev->next_event < next_event) {
622 			next_event = td->evtdev->next_event;
623 			next_cpu = cpu;
624 		}
625 	}
626 
627 	/*
628 	 * Remove the current cpu from the pending mask. The event is
629 	 * delivered immediately in tick_do_broadcast() !
630 	 */
631 	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
632 
633 	/* Take care of enforced broadcast requests */
634 	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
635 	cpumask_clear(tick_broadcast_force_mask);
636 
637 	/*
638 	 * Sanity check. Catch the case where we try to broadcast to
639 	 * offline cpus.
640 	 */
641 	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
642 		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
643 
644 	/*
645 	 * Wakeup the cpus which have an expired event.
646 	 */
647 	bc_local = tick_do_broadcast(tmpmask);
648 
649 	/*
650 	 * Two reasons for reprogram:
651 	 *
652 	 * - The global event did not expire any CPU local
653 	 * events. This happens in dyntick mode, as the maximum PIT
654 	 * delta is quite small.
655 	 *
656 	 * - There are pending events on sleeping CPUs which were not
657 	 * in the event mask
658 	 */
659 	if (next_event != KTIME_MAX)
660 		tick_broadcast_set_event(dev, next_cpu, next_event);
661 
662 	raw_spin_unlock(&tick_broadcast_lock);
663 
664 	if (bc_local) {
665 		td = this_cpu_ptr(&tick_cpu_device);
666 		td->evtdev->event_handler(td->evtdev);
667 	}
668 }
669 
670 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
671 {
672 	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
673 		return 0;
674 	if (bc->next_event == KTIME_MAX)
675 		return 0;
676 	return bc->bound_on == cpu ? -EBUSY : 0;
677 }
678 
679 static void broadcast_shutdown_local(struct clock_event_device *bc,
680 				     struct clock_event_device *dev)
681 {
682 	/*
683 	 * For hrtimer based broadcasting we cannot shutdown the cpu
684 	 * local device if our own event is the first one to expire or
685 	 * if we own the broadcast timer.
686 	 */
687 	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
688 		if (broadcast_needs_cpu(bc, smp_processor_id()))
689 			return;
690 		if (dev->next_event < bc->next_event)
691 			return;
692 	}
693 	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
694 }
695 
696 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
697 {
698 	struct clock_event_device *bc, *dev;
699 	int cpu, ret = 0;
700 	ktime_t now;
701 
702 	/*
703 	 * If there is no broadcast device, tell the caller not to go
704 	 * into deep idle.
705 	 */
706 	if (!tick_broadcast_device.evtdev)
707 		return -EBUSY;
708 
709 	dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
710 
711 	raw_spin_lock(&tick_broadcast_lock);
712 	bc = tick_broadcast_device.evtdev;
713 	cpu = smp_processor_id();
714 
715 	if (state == TICK_BROADCAST_ENTER) {
716 		/*
717 		 * If the current CPU owns the hrtimer broadcast
718 		 * mechanism, it cannot go deep idle and we do not add
719 		 * the CPU to the broadcast mask. We don't have to go
720 		 * through the EXIT path as the local timer is not
721 		 * shutdown.
722 		 */
723 		ret = broadcast_needs_cpu(bc, cpu);
724 		if (ret)
725 			goto out;
726 
727 		/*
728 		 * If the broadcast device is in periodic mode, we
729 		 * return.
730 		 */
731 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
732 			/* If it is a hrtimer based broadcast, return busy */
733 			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
734 				ret = -EBUSY;
735 			goto out;
736 		}
737 
738 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
739 			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
740 
741 			/* Conditionally shut down the local timer. */
742 			broadcast_shutdown_local(bc, dev);
743 
744 			/*
745 			 * We only reprogram the broadcast timer if we
746 			 * did not mark ourself in the force mask and
747 			 * if the cpu local event is earlier than the
748 			 * broadcast event. If the current CPU is in
749 			 * the force mask, then we are going to be
750 			 * woken by the IPI right away; we return
751 			 * busy, so the CPU does not try to go deep
752 			 * idle.
753 			 */
754 			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
755 				ret = -EBUSY;
756 			} else if (dev->next_event < bc->next_event) {
757 				tick_broadcast_set_event(bc, cpu, dev->next_event);
758 				/*
759 				 * In case of hrtimer broadcasts the
760 				 * programming might have moved the
761 				 * timer to this cpu. If yes, remove
762 				 * us from the broadcast mask and
763 				 * return busy.
764 				 */
765 				ret = broadcast_needs_cpu(bc, cpu);
766 				if (ret) {
767 					cpumask_clear_cpu(cpu,
768 						tick_broadcast_oneshot_mask);
769 				}
770 			}
771 		}
772 	} else {
773 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
774 			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
775 			/*
776 			 * The cpu which was handling the broadcast
777 			 * timer marked this cpu in the broadcast
778 			 * pending mask and fired the broadcast
779 			 * IPI. So we are going to handle the expired
780 			 * event anyway via the broadcast IPI
781 			 * handler. No need to reprogram the timer
782 			 * with an already expired event.
783 			 */
784 			if (cpumask_test_and_clear_cpu(cpu,
785 				       tick_broadcast_pending_mask))
786 				goto out;
787 
788 			/*
789 			 * Bail out if there is no next event.
790 			 */
791 			if (dev->next_event == KTIME_MAX)
792 				goto out;
793 			/*
794 			 * If the pending bit is not set, then we are
795 			 * either the CPU handling the broadcast
796 			 * interrupt or we got woken by something else.
797 			 *
798 			 * We are not longer in the broadcast mask, so
799 			 * if the cpu local expiry time is already
800 			 * reached, we would reprogram the cpu local
801 			 * timer with an already expired event.
802 			 *
803 			 * This can lead to a ping-pong when we return
804 			 * to idle and therefor rearm the broadcast
805 			 * timer before the cpu local timer was able
806 			 * to fire. This happens because the forced
807 			 * reprogramming makes sure that the event
808 			 * will happen in the future and depending on
809 			 * the min_delta setting this might be far
810 			 * enough out that the ping-pong starts.
811 			 *
812 			 * If the cpu local next_event has expired
813 			 * then we know that the broadcast timer
814 			 * next_event has expired as well and
815 			 * broadcast is about to be handled. So we
816 			 * avoid reprogramming and enforce that the
817 			 * broadcast handler, which did not run yet,
818 			 * will invoke the cpu local handler.
819 			 *
820 			 * We cannot call the handler directly from
821 			 * here, because we might be in a NOHZ phase
822 			 * and we did not go through the irq_enter()
823 			 * nohz fixups.
824 			 */
825 			now = ktime_get();
826 			if (dev->next_event <= now) {
827 				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
828 				goto out;
829 			}
830 			/*
831 			 * We got woken by something else. Reprogram
832 			 * the cpu local timer device.
833 			 */
834 			tick_program_event(dev->next_event, 1);
835 		}
836 	}
837 out:
838 	raw_spin_unlock(&tick_broadcast_lock);
839 	return ret;
840 }
841 
842 /*
843  * Reset the one shot broadcast for a cpu
844  *
845  * Called with tick_broadcast_lock held
846  */
847 static void tick_broadcast_clear_oneshot(int cpu)
848 {
849 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
850 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
851 }
852 
853 static void tick_broadcast_init_next_event(struct cpumask *mask,
854 					   ktime_t expires)
855 {
856 	struct tick_device *td;
857 	int cpu;
858 
859 	for_each_cpu(cpu, mask) {
860 		td = &per_cpu(tick_cpu_device, cpu);
861 		if (td->evtdev)
862 			td->evtdev->next_event = expires;
863 	}
864 }
865 
866 /**
867  * tick_broadcast_setup_oneshot - setup the broadcast device
868  */
869 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
870 {
871 	int cpu = smp_processor_id();
872 
873 	if (!bc)
874 		return;
875 
876 	/* Set it up only once ! */
877 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
878 		int was_periodic = clockevent_state_periodic(bc);
879 
880 		bc->event_handler = tick_handle_oneshot_broadcast;
881 
882 		/*
883 		 * We must be careful here. There might be other CPUs
884 		 * waiting for periodic broadcast. We need to set the
885 		 * oneshot_mask bits for those and program the
886 		 * broadcast device to fire.
887 		 */
888 		cpumask_copy(tmpmask, tick_broadcast_mask);
889 		cpumask_clear_cpu(cpu, tmpmask);
890 		cpumask_or(tick_broadcast_oneshot_mask,
891 			   tick_broadcast_oneshot_mask, tmpmask);
892 
893 		if (was_periodic && !cpumask_empty(tmpmask)) {
894 			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
895 			tick_broadcast_init_next_event(tmpmask,
896 						       tick_next_period);
897 			tick_broadcast_set_event(bc, cpu, tick_next_period);
898 		} else
899 			bc->next_event = KTIME_MAX;
900 	} else {
901 		/*
902 		 * The first cpu which switches to oneshot mode sets
903 		 * the bit for all other cpus which are in the general
904 		 * (periodic) broadcast mask. So the bit is set and
905 		 * would prevent the first broadcast enter after this
906 		 * to program the bc device.
907 		 */
908 		tick_broadcast_clear_oneshot(cpu);
909 	}
910 }
911 
912 /*
913  * Select oneshot operating mode for the broadcast device
914  */
915 void tick_broadcast_switch_to_oneshot(void)
916 {
917 	struct clock_event_device *bc;
918 	unsigned long flags;
919 
920 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
921 
922 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
923 	bc = tick_broadcast_device.evtdev;
924 	if (bc)
925 		tick_broadcast_setup_oneshot(bc);
926 
927 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
928 }
929 
930 #ifdef CONFIG_HOTPLUG_CPU
931 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
932 {
933 	struct clock_event_device *bc;
934 	unsigned long flags;
935 
936 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
937 	bc = tick_broadcast_device.evtdev;
938 
939 	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
940 		/* This moves the broadcast assignment to this CPU: */
941 		clockevents_program_event(bc, bc->next_event, 1);
942 	}
943 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
944 }
945 
946 /*
947  * Remove a dead CPU from broadcasting
948  */
949 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
950 {
951 	unsigned long flags;
952 
953 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
954 
955 	/*
956 	 * Clear the broadcast masks for the dead cpu, but do not stop
957 	 * the broadcast device!
958 	 */
959 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
960 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
961 	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
962 
963 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
964 }
965 #endif
966 
967 /*
968  * Check, whether the broadcast device is in one shot mode
969  */
970 int tick_broadcast_oneshot_active(void)
971 {
972 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
973 }
974 
975 /*
976  * Check whether the broadcast device supports oneshot.
977  */
978 bool tick_broadcast_oneshot_available(void)
979 {
980 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
981 
982 	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
983 }
984 
985 #else
986 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
987 {
988 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
989 
990 	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
991 		return -EBUSY;
992 
993 	return 0;
994 }
995 #endif
996 
997 void __init tick_broadcast_init(void)
998 {
999 	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1000 	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1001 	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1002 #ifdef CONFIG_TICK_ONESHOT
1003 	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1004 	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1005 	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1006 #endif
1007 }
1008