1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/irq.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/tick.h> 22 23 #include "tick-internal.h" 24 25 /* 26 * Broadcast support for broken x86 hardware, where the local apic 27 * timer stops in C3 state. 28 */ 29 30 struct tick_device tick_broadcast_device; 31 static cpumask_t tick_broadcast_mask; 32 static DEFINE_SPINLOCK(tick_broadcast_lock); 33 34 #ifdef CONFIG_TICK_ONESHOT 35 static void tick_broadcast_clear_oneshot(int cpu); 36 #else 37 static inline void tick_broadcast_clear_oneshot(int cpu) { } 38 #endif 39 40 /* 41 * Debugging: see timer_list.c 42 */ 43 struct tick_device *tick_get_broadcast_device(void) 44 { 45 return &tick_broadcast_device; 46 } 47 48 cpumask_t *tick_get_broadcast_mask(void) 49 { 50 return &tick_broadcast_mask; 51 } 52 53 /* 54 * Start the device in periodic mode 55 */ 56 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 57 { 58 if (bc) 59 tick_setup_periodic(bc, 1); 60 } 61 62 /* 63 * Check, if the device can be utilized as broadcast device: 64 */ 65 int tick_check_broadcast_device(struct clock_event_device *dev) 66 { 67 if ((tick_broadcast_device.evtdev && 68 tick_broadcast_device.evtdev->rating >= dev->rating) || 69 (dev->features & CLOCK_EVT_FEAT_C3STOP)) 70 return 0; 71 72 clockevents_exchange_device(NULL, dev); 73 tick_broadcast_device.evtdev = dev; 74 if (!cpus_empty(tick_broadcast_mask)) 75 tick_broadcast_start_periodic(dev); 76 return 1; 77 } 78 79 /* 80 * Check, if the device is the broadcast device 81 */ 82 int tick_is_broadcast_device(struct clock_event_device *dev) 83 { 84 return (dev && tick_broadcast_device.evtdev == dev); 85 } 86 87 /* 88 * Check, if the device is disfunctional and a place holder, which 89 * needs to be handled by the broadcast device. 90 */ 91 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 92 { 93 unsigned long flags; 94 int ret = 0; 95 96 spin_lock_irqsave(&tick_broadcast_lock, flags); 97 98 /* 99 * Devices might be registered with both periodic and oneshot 100 * mode disabled. This signals, that the device needs to be 101 * operated from the broadcast device and is a placeholder for 102 * the cpu local device. 103 */ 104 if (!tick_device_is_functional(dev)) { 105 dev->event_handler = tick_handle_periodic; 106 cpu_set(cpu, tick_broadcast_mask); 107 tick_broadcast_start_periodic(tick_broadcast_device.evtdev); 108 ret = 1; 109 } else { 110 /* 111 * When the new device is not affected by the stop 112 * feature and the cpu is marked in the broadcast mask 113 * then clear the broadcast bit. 114 */ 115 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) { 116 int cpu = smp_processor_id(); 117 118 cpu_clear(cpu, tick_broadcast_mask); 119 tick_broadcast_clear_oneshot(cpu); 120 } 121 } 122 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 123 return ret; 124 } 125 126 /* 127 * Broadcast the event to the cpus, which are set in the mask 128 */ 129 int tick_do_broadcast(cpumask_t mask) 130 { 131 int ret = 0, cpu = smp_processor_id(); 132 struct tick_device *td; 133 134 /* 135 * Check, if the current cpu is in the mask 136 */ 137 if (cpu_isset(cpu, mask)) { 138 cpu_clear(cpu, mask); 139 td = &per_cpu(tick_cpu_device, cpu); 140 td->evtdev->event_handler(td->evtdev); 141 ret = 1; 142 } 143 144 if (!cpus_empty(mask)) { 145 /* 146 * It might be necessary to actually check whether the devices 147 * have different broadcast functions. For now, just use the 148 * one of the first device. This works as long as we have this 149 * misfeature only on x86 (lapic) 150 */ 151 cpu = first_cpu(mask); 152 td = &per_cpu(tick_cpu_device, cpu); 153 td->evtdev->broadcast(mask); 154 ret = 1; 155 } 156 return ret; 157 } 158 159 /* 160 * Periodic broadcast: 161 * - invoke the broadcast handlers 162 */ 163 static void tick_do_periodic_broadcast(void) 164 { 165 cpumask_t mask; 166 167 spin_lock(&tick_broadcast_lock); 168 169 cpus_and(mask, cpu_online_map, tick_broadcast_mask); 170 tick_do_broadcast(mask); 171 172 spin_unlock(&tick_broadcast_lock); 173 } 174 175 /* 176 * Event handler for periodic broadcast ticks 177 */ 178 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 179 { 180 tick_do_periodic_broadcast(); 181 182 /* 183 * The device is in periodic mode. No reprogramming necessary: 184 */ 185 if (dev->mode == CLOCK_EVT_MODE_PERIODIC) 186 return; 187 188 /* 189 * Setup the next period for devices, which do not have 190 * periodic mode: 191 */ 192 for (;;) { 193 ktime_t next = ktime_add(dev->next_event, tick_period); 194 195 if (!clockevents_program_event(dev, next, ktime_get())) 196 return; 197 tick_do_periodic_broadcast(); 198 } 199 } 200 201 /* 202 * Powerstate information: The system enters/leaves a state, where 203 * affected devices might stop 204 */ 205 static void tick_do_broadcast_on_off(void *why) 206 { 207 struct clock_event_device *bc, *dev; 208 struct tick_device *td; 209 unsigned long flags, *reason = why; 210 int cpu; 211 212 spin_lock_irqsave(&tick_broadcast_lock, flags); 213 214 cpu = smp_processor_id(); 215 td = &per_cpu(tick_cpu_device, cpu); 216 dev = td->evtdev; 217 bc = tick_broadcast_device.evtdev; 218 219 /* 220 * Is the device not affected by the powerstate ? 221 */ 222 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 223 goto out; 224 225 /* 226 * Defect device ? 227 */ 228 if (!tick_device_is_functional(dev)) { 229 /* 230 * AMD C1E wreckage fixup: 231 * 232 * Device was registered functional in the first 233 * place. Now the secondary CPU detected the C1E 234 * misfeature and notifies us to fix it up 235 */ 236 if (*reason != CLOCK_EVT_NOTIFY_BROADCAST_FORCE) 237 goto out; 238 } 239 240 switch (*reason) { 241 case CLOCK_EVT_NOTIFY_BROADCAST_ON: 242 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 243 if (!cpu_isset(cpu, tick_broadcast_mask)) { 244 cpu_set(cpu, tick_broadcast_mask); 245 if (td->mode == TICKDEV_MODE_PERIODIC) 246 clockevents_set_mode(dev, 247 CLOCK_EVT_MODE_SHUTDOWN); 248 } 249 break; 250 case CLOCK_EVT_NOTIFY_BROADCAST_OFF: 251 if (cpu_isset(cpu, tick_broadcast_mask)) { 252 cpu_clear(cpu, tick_broadcast_mask); 253 if (td->mode == TICKDEV_MODE_PERIODIC) 254 tick_setup_periodic(dev, 0); 255 } 256 break; 257 } 258 259 if (cpus_empty(tick_broadcast_mask)) 260 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 261 else { 262 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 263 tick_broadcast_start_periodic(bc); 264 else 265 tick_broadcast_setup_oneshot(bc); 266 } 267 out: 268 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 269 } 270 271 /* 272 * Powerstate information: The system enters/leaves a state, where 273 * affected devices might stop. 274 */ 275 void tick_broadcast_on_off(unsigned long reason, int *oncpu) 276 { 277 int cpu = get_cpu(); 278 279 if (!cpu_isset(*oncpu, cpu_online_map)) { 280 printk(KERN_ERR "tick-braodcast: ignoring broadcast for " 281 "offline CPU #%d\n", *oncpu); 282 } else { 283 284 if (cpu == *oncpu) 285 tick_do_broadcast_on_off(&reason); 286 else 287 smp_call_function_single(*oncpu, 288 tick_do_broadcast_on_off, 289 &reason, 1, 1); 290 } 291 put_cpu(); 292 } 293 294 /* 295 * Set the periodic handler depending on broadcast on/off 296 */ 297 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 298 { 299 if (!broadcast) 300 dev->event_handler = tick_handle_periodic; 301 else 302 dev->event_handler = tick_handle_periodic_broadcast; 303 } 304 305 /* 306 * Remove a CPU from broadcasting 307 */ 308 void tick_shutdown_broadcast(unsigned int *cpup) 309 { 310 struct clock_event_device *bc; 311 unsigned long flags; 312 unsigned int cpu = *cpup; 313 314 spin_lock_irqsave(&tick_broadcast_lock, flags); 315 316 bc = tick_broadcast_device.evtdev; 317 cpu_clear(cpu, tick_broadcast_mask); 318 319 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 320 if (bc && cpus_empty(tick_broadcast_mask)) 321 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 322 } 323 324 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 325 } 326 327 void tick_suspend_broadcast(void) 328 { 329 struct clock_event_device *bc; 330 unsigned long flags; 331 332 spin_lock_irqsave(&tick_broadcast_lock, flags); 333 334 bc = tick_broadcast_device.evtdev; 335 if (bc) 336 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 337 338 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 339 } 340 341 int tick_resume_broadcast(void) 342 { 343 struct clock_event_device *bc; 344 unsigned long flags; 345 int broadcast = 0; 346 347 spin_lock_irqsave(&tick_broadcast_lock, flags); 348 349 bc = tick_broadcast_device.evtdev; 350 351 if (bc) { 352 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); 353 354 switch (tick_broadcast_device.mode) { 355 case TICKDEV_MODE_PERIODIC: 356 if(!cpus_empty(tick_broadcast_mask)) 357 tick_broadcast_start_periodic(bc); 358 broadcast = cpu_isset(smp_processor_id(), 359 tick_broadcast_mask); 360 break; 361 case TICKDEV_MODE_ONESHOT: 362 broadcast = tick_resume_broadcast_oneshot(bc); 363 break; 364 } 365 } 366 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 367 368 return broadcast; 369 } 370 371 372 #ifdef CONFIG_TICK_ONESHOT 373 374 static cpumask_t tick_broadcast_oneshot_mask; 375 376 /* 377 * Debugging: see timer_list.c 378 */ 379 cpumask_t *tick_get_broadcast_oneshot_mask(void) 380 { 381 return &tick_broadcast_oneshot_mask; 382 } 383 384 static int tick_broadcast_set_event(ktime_t expires, int force) 385 { 386 struct clock_event_device *bc = tick_broadcast_device.evtdev; 387 ktime_t now = ktime_get(); 388 int res; 389 390 for(;;) { 391 res = clockevents_program_event(bc, expires, now); 392 if (!res || !force) 393 return res; 394 now = ktime_get(); 395 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns)); 396 } 397 } 398 399 int tick_resume_broadcast_oneshot(struct clock_event_device *bc) 400 { 401 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 402 return 0; 403 } 404 405 /* 406 * Reprogram the broadcast device: 407 * 408 * Called with tick_broadcast_lock held and interrupts disabled. 409 */ 410 static int tick_broadcast_reprogram(void) 411 { 412 ktime_t expires = { .tv64 = KTIME_MAX }; 413 struct tick_device *td; 414 int cpu; 415 416 /* 417 * Find the event which expires next: 418 */ 419 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS; 420 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) { 421 td = &per_cpu(tick_cpu_device, cpu); 422 if (td->evtdev->next_event.tv64 < expires.tv64) 423 expires = td->evtdev->next_event; 424 } 425 426 if (expires.tv64 == KTIME_MAX) 427 return 0; 428 429 return tick_broadcast_set_event(expires, 0); 430 } 431 432 /* 433 * Handle oneshot mode broadcasting 434 */ 435 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 436 { 437 struct tick_device *td; 438 cpumask_t mask; 439 ktime_t now; 440 int cpu; 441 442 spin_lock(&tick_broadcast_lock); 443 again: 444 dev->next_event.tv64 = KTIME_MAX; 445 mask = CPU_MASK_NONE; 446 now = ktime_get(); 447 /* Find all expired events */ 448 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS; 449 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) { 450 td = &per_cpu(tick_cpu_device, cpu); 451 if (td->evtdev->next_event.tv64 <= now.tv64) 452 cpu_set(cpu, mask); 453 } 454 455 /* 456 * Wakeup the cpus which have an expired event. The broadcast 457 * device is reprogrammed in the return from idle code. 458 */ 459 if (!tick_do_broadcast(mask)) { 460 /* 461 * The global event did not expire any CPU local 462 * events. This happens in dyntick mode, as the 463 * maximum PIT delta is quite small. 464 */ 465 if (tick_broadcast_reprogram()) 466 goto again; 467 } 468 spin_unlock(&tick_broadcast_lock); 469 } 470 471 /* 472 * Powerstate information: The system enters/leaves a state, where 473 * affected devices might stop 474 */ 475 void tick_broadcast_oneshot_control(unsigned long reason) 476 { 477 struct clock_event_device *bc, *dev; 478 struct tick_device *td; 479 unsigned long flags; 480 int cpu; 481 482 spin_lock_irqsave(&tick_broadcast_lock, flags); 483 484 /* 485 * Periodic mode does not care about the enter/exit of power 486 * states 487 */ 488 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 489 goto out; 490 491 bc = tick_broadcast_device.evtdev; 492 cpu = smp_processor_id(); 493 td = &per_cpu(tick_cpu_device, cpu); 494 dev = td->evtdev; 495 496 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 497 goto out; 498 499 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { 500 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) { 501 cpu_set(cpu, tick_broadcast_oneshot_mask); 502 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); 503 if (dev->next_event.tv64 < bc->next_event.tv64) 504 tick_broadcast_set_event(dev->next_event, 1); 505 } 506 } else { 507 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) { 508 cpu_clear(cpu, tick_broadcast_oneshot_mask); 509 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); 510 if (dev->next_event.tv64 != KTIME_MAX) 511 tick_program_event(dev->next_event, 1); 512 } 513 } 514 515 out: 516 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 517 } 518 519 /* 520 * Reset the one shot broadcast for a cpu 521 * 522 * Called with tick_broadcast_lock held 523 */ 524 static void tick_broadcast_clear_oneshot(int cpu) 525 { 526 cpu_clear(cpu, tick_broadcast_oneshot_mask); 527 } 528 529 /** 530 * tick_broadcast_setup_highres - setup the broadcast device for highres 531 */ 532 void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 533 { 534 bc->event_handler = tick_handle_oneshot_broadcast; 535 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 536 bc->next_event.tv64 = KTIME_MAX; 537 } 538 539 /* 540 * Select oneshot operating mode for the broadcast device 541 */ 542 void tick_broadcast_switch_to_oneshot(void) 543 { 544 struct clock_event_device *bc; 545 unsigned long flags; 546 547 spin_lock_irqsave(&tick_broadcast_lock, flags); 548 549 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 550 bc = tick_broadcast_device.evtdev; 551 if (bc) 552 tick_broadcast_setup_oneshot(bc); 553 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 554 } 555 556 557 /* 558 * Remove a dead CPU from broadcasting 559 */ 560 void tick_shutdown_broadcast_oneshot(unsigned int *cpup) 561 { 562 unsigned long flags; 563 unsigned int cpu = *cpup; 564 565 spin_lock_irqsave(&tick_broadcast_lock, flags); 566 567 /* 568 * Clear the broadcast mask flag for the dead cpu, but do not 569 * stop the broadcast device! 570 */ 571 cpu_clear(cpu, tick_broadcast_oneshot_mask); 572 573 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 574 } 575 576 #endif 577