xref: /linux/kernel/time/tick-broadcast.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33 
34 #ifdef CONFIG_TICK_ONESHOT
35 static void tick_broadcast_clear_oneshot(int cpu);
36 #else
37 static inline void tick_broadcast_clear_oneshot(int cpu) { }
38 #endif
39 
40 /*
41  * Debugging: see timer_list.c
42  */
43 struct tick_device *tick_get_broadcast_device(void)
44 {
45 	return &tick_broadcast_device;
46 }
47 
48 cpumask_t *tick_get_broadcast_mask(void)
49 {
50 	return &tick_broadcast_mask;
51 }
52 
53 /*
54  * Start the device in periodic mode
55  */
56 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
57 {
58 	if (bc)
59 		tick_setup_periodic(bc, 1);
60 }
61 
62 /*
63  * Check, if the device can be utilized as broadcast device:
64  */
65 int tick_check_broadcast_device(struct clock_event_device *dev)
66 {
67 	if ((tick_broadcast_device.evtdev &&
68 	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
69 	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
70 		return 0;
71 
72 	clockevents_exchange_device(NULL, dev);
73 	tick_broadcast_device.evtdev = dev;
74 	if (!cpus_empty(tick_broadcast_mask))
75 		tick_broadcast_start_periodic(dev);
76 	return 1;
77 }
78 
79 /*
80  * Check, if the device is the broadcast device
81  */
82 int tick_is_broadcast_device(struct clock_event_device *dev)
83 {
84 	return (dev && tick_broadcast_device.evtdev == dev);
85 }
86 
87 /*
88  * Check, if the device is disfunctional and a place holder, which
89  * needs to be handled by the broadcast device.
90  */
91 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
92 {
93 	unsigned long flags;
94 	int ret = 0;
95 
96 	spin_lock_irqsave(&tick_broadcast_lock, flags);
97 
98 	/*
99 	 * Devices might be registered with both periodic and oneshot
100 	 * mode disabled. This signals, that the device needs to be
101 	 * operated from the broadcast device and is a placeholder for
102 	 * the cpu local device.
103 	 */
104 	if (!tick_device_is_functional(dev)) {
105 		dev->event_handler = tick_handle_periodic;
106 		cpu_set(cpu, tick_broadcast_mask);
107 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
108 		ret = 1;
109 	} else {
110 		/*
111 		 * When the new device is not affected by the stop
112 		 * feature and the cpu is marked in the broadcast mask
113 		 * then clear the broadcast bit.
114 		 */
115 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
116 			int cpu = smp_processor_id();
117 
118 			cpu_clear(cpu, tick_broadcast_mask);
119 			tick_broadcast_clear_oneshot(cpu);
120 		}
121 	}
122 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
123 	return ret;
124 }
125 
126 /*
127  * Broadcast the event to the cpus, which are set in the mask
128  */
129 int tick_do_broadcast(cpumask_t mask)
130 {
131 	int ret = 0, cpu = smp_processor_id();
132 	struct tick_device *td;
133 
134 	/*
135 	 * Check, if the current cpu is in the mask
136 	 */
137 	if (cpu_isset(cpu, mask)) {
138 		cpu_clear(cpu, mask);
139 		td = &per_cpu(tick_cpu_device, cpu);
140 		td->evtdev->event_handler(td->evtdev);
141 		ret = 1;
142 	}
143 
144 	if (!cpus_empty(mask)) {
145 		/*
146 		 * It might be necessary to actually check whether the devices
147 		 * have different broadcast functions. For now, just use the
148 		 * one of the first device. This works as long as we have this
149 		 * misfeature only on x86 (lapic)
150 		 */
151 		cpu = first_cpu(mask);
152 		td = &per_cpu(tick_cpu_device, cpu);
153 		td->evtdev->broadcast(mask);
154 		ret = 1;
155 	}
156 	return ret;
157 }
158 
159 /*
160  * Periodic broadcast:
161  * - invoke the broadcast handlers
162  */
163 static void tick_do_periodic_broadcast(void)
164 {
165 	cpumask_t mask;
166 
167 	spin_lock(&tick_broadcast_lock);
168 
169 	cpus_and(mask, cpu_online_map, tick_broadcast_mask);
170 	tick_do_broadcast(mask);
171 
172 	spin_unlock(&tick_broadcast_lock);
173 }
174 
175 /*
176  * Event handler for periodic broadcast ticks
177  */
178 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
179 {
180 	tick_do_periodic_broadcast();
181 
182 	/*
183 	 * The device is in periodic mode. No reprogramming necessary:
184 	 */
185 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 		return;
187 
188 	/*
189 	 * Setup the next period for devices, which do not have
190 	 * periodic mode:
191 	 */
192 	for (;;) {
193 		ktime_t next = ktime_add(dev->next_event, tick_period);
194 
195 		if (!clockevents_program_event(dev, next, ktime_get()))
196 			return;
197 		tick_do_periodic_broadcast();
198 	}
199 }
200 
201 /*
202  * Powerstate information: The system enters/leaves a state, where
203  * affected devices might stop
204  */
205 static void tick_do_broadcast_on_off(void *why)
206 {
207 	struct clock_event_device *bc, *dev;
208 	struct tick_device *td;
209 	unsigned long flags, *reason = why;
210 	int cpu;
211 
212 	spin_lock_irqsave(&tick_broadcast_lock, flags);
213 
214 	cpu = smp_processor_id();
215 	td = &per_cpu(tick_cpu_device, cpu);
216 	dev = td->evtdev;
217 	bc = tick_broadcast_device.evtdev;
218 
219 	/*
220 	 * Is the device not affected by the powerstate ?
221 	 */
222 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
223 		goto out;
224 
225 	/*
226 	 * Defect device ?
227 	 */
228 	if (!tick_device_is_functional(dev)) {
229 		/*
230 		 * AMD C1E wreckage fixup:
231 		 *
232 		 * Device was registered functional in the first
233 		 * place. Now the secondary CPU detected the C1E
234 		 * misfeature and notifies us to fix it up
235 		 */
236 		if (*reason != CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
237 			goto out;
238 	}
239 
240 	switch (*reason) {
241 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
242 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
243 		if (!cpu_isset(cpu, tick_broadcast_mask)) {
244 			cpu_set(cpu, tick_broadcast_mask);
245 			if (td->mode == TICKDEV_MODE_PERIODIC)
246 				clockevents_set_mode(dev,
247 						     CLOCK_EVT_MODE_SHUTDOWN);
248 		}
249 		break;
250 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
251 		if (cpu_isset(cpu, tick_broadcast_mask)) {
252 			cpu_clear(cpu, tick_broadcast_mask);
253 			if (td->mode == TICKDEV_MODE_PERIODIC)
254 				tick_setup_periodic(dev, 0);
255 		}
256 		break;
257 	}
258 
259 	if (cpus_empty(tick_broadcast_mask))
260 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
261 	else {
262 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
263 			tick_broadcast_start_periodic(bc);
264 		else
265 			tick_broadcast_setup_oneshot(bc);
266 	}
267 out:
268 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
269 }
270 
271 /*
272  * Powerstate information: The system enters/leaves a state, where
273  * affected devices might stop.
274  */
275 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
276 {
277 	int cpu = get_cpu();
278 
279 	if (!cpu_isset(*oncpu, cpu_online_map)) {
280 		printk(KERN_ERR "tick-braodcast: ignoring broadcast for "
281 		       "offline CPU #%d\n", *oncpu);
282 	} else {
283 
284 		if (cpu == *oncpu)
285 			tick_do_broadcast_on_off(&reason);
286 		else
287 			smp_call_function_single(*oncpu,
288 						 tick_do_broadcast_on_off,
289 						 &reason, 1, 1);
290 	}
291 	put_cpu();
292 }
293 
294 /*
295  * Set the periodic handler depending on broadcast on/off
296  */
297 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
298 {
299 	if (!broadcast)
300 		dev->event_handler = tick_handle_periodic;
301 	else
302 		dev->event_handler = tick_handle_periodic_broadcast;
303 }
304 
305 /*
306  * Remove a CPU from broadcasting
307  */
308 void tick_shutdown_broadcast(unsigned int *cpup)
309 {
310 	struct clock_event_device *bc;
311 	unsigned long flags;
312 	unsigned int cpu = *cpup;
313 
314 	spin_lock_irqsave(&tick_broadcast_lock, flags);
315 
316 	bc = tick_broadcast_device.evtdev;
317 	cpu_clear(cpu, tick_broadcast_mask);
318 
319 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
320 		if (bc && cpus_empty(tick_broadcast_mask))
321 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
322 	}
323 
324 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
325 }
326 
327 void tick_suspend_broadcast(void)
328 {
329 	struct clock_event_device *bc;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&tick_broadcast_lock, flags);
333 
334 	bc = tick_broadcast_device.evtdev;
335 	if (bc)
336 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
337 
338 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
339 }
340 
341 int tick_resume_broadcast(void)
342 {
343 	struct clock_event_device *bc;
344 	unsigned long flags;
345 	int broadcast = 0;
346 
347 	spin_lock_irqsave(&tick_broadcast_lock, flags);
348 
349 	bc = tick_broadcast_device.evtdev;
350 
351 	if (bc) {
352 		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
353 
354 		switch (tick_broadcast_device.mode) {
355 		case TICKDEV_MODE_PERIODIC:
356 			if(!cpus_empty(tick_broadcast_mask))
357 				tick_broadcast_start_periodic(bc);
358 			broadcast = cpu_isset(smp_processor_id(),
359 					      tick_broadcast_mask);
360 			break;
361 		case TICKDEV_MODE_ONESHOT:
362 			broadcast = tick_resume_broadcast_oneshot(bc);
363 			break;
364 		}
365 	}
366 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
367 
368 	return broadcast;
369 }
370 
371 
372 #ifdef CONFIG_TICK_ONESHOT
373 
374 static cpumask_t tick_broadcast_oneshot_mask;
375 
376 /*
377  * Debugging: see timer_list.c
378  */
379 cpumask_t *tick_get_broadcast_oneshot_mask(void)
380 {
381 	return &tick_broadcast_oneshot_mask;
382 }
383 
384 static int tick_broadcast_set_event(ktime_t expires, int force)
385 {
386 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
387 	ktime_t now = ktime_get();
388 	int res;
389 
390 	for(;;) {
391 		res = clockevents_program_event(bc, expires, now);
392 		if (!res || !force)
393 			return res;
394 		now = ktime_get();
395 		expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
396 	}
397 }
398 
399 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
400 {
401 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
402 	return 0;
403 }
404 
405 /*
406  * Reprogram the broadcast device:
407  *
408  * Called with tick_broadcast_lock held and interrupts disabled.
409  */
410 static int tick_broadcast_reprogram(void)
411 {
412 	ktime_t expires = { .tv64 = KTIME_MAX };
413 	struct tick_device *td;
414 	int cpu;
415 
416 	/*
417 	 * Find the event which expires next:
418 	 */
419 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
420 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
421 		td = &per_cpu(tick_cpu_device, cpu);
422 		if (td->evtdev->next_event.tv64 < expires.tv64)
423 			expires = td->evtdev->next_event;
424 	}
425 
426 	if (expires.tv64 == KTIME_MAX)
427 		return 0;
428 
429 	return tick_broadcast_set_event(expires, 0);
430 }
431 
432 /*
433  * Handle oneshot mode broadcasting
434  */
435 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
436 {
437 	struct tick_device *td;
438 	cpumask_t mask;
439 	ktime_t now;
440 	int cpu;
441 
442 	spin_lock(&tick_broadcast_lock);
443 again:
444 	dev->next_event.tv64 = KTIME_MAX;
445 	mask = CPU_MASK_NONE;
446 	now = ktime_get();
447 	/* Find all expired events */
448 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
449 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
450 		td = &per_cpu(tick_cpu_device, cpu);
451 		if (td->evtdev->next_event.tv64 <= now.tv64)
452 			cpu_set(cpu, mask);
453 	}
454 
455 	/*
456 	 * Wakeup the cpus which have an expired event. The broadcast
457 	 * device is reprogrammed in the return from idle code.
458 	 */
459 	if (!tick_do_broadcast(mask)) {
460 		/*
461 		 * The global event did not expire any CPU local
462 		 * events. This happens in dyntick mode, as the
463 		 * maximum PIT delta is quite small.
464 		 */
465 		if (tick_broadcast_reprogram())
466 			goto again;
467 	}
468 	spin_unlock(&tick_broadcast_lock);
469 }
470 
471 /*
472  * Powerstate information: The system enters/leaves a state, where
473  * affected devices might stop
474  */
475 void tick_broadcast_oneshot_control(unsigned long reason)
476 {
477 	struct clock_event_device *bc, *dev;
478 	struct tick_device *td;
479 	unsigned long flags;
480 	int cpu;
481 
482 	spin_lock_irqsave(&tick_broadcast_lock, flags);
483 
484 	/*
485 	 * Periodic mode does not care about the enter/exit of power
486 	 * states
487 	 */
488 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
489 		goto out;
490 
491 	bc = tick_broadcast_device.evtdev;
492 	cpu = smp_processor_id();
493 	td = &per_cpu(tick_cpu_device, cpu);
494 	dev = td->evtdev;
495 
496 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
497 		goto out;
498 
499 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
500 		if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
501 			cpu_set(cpu, tick_broadcast_oneshot_mask);
502 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
503 			if (dev->next_event.tv64 < bc->next_event.tv64)
504 				tick_broadcast_set_event(dev->next_event, 1);
505 		}
506 	} else {
507 		if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
508 			cpu_clear(cpu, tick_broadcast_oneshot_mask);
509 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
510 			if (dev->next_event.tv64 != KTIME_MAX)
511 				tick_program_event(dev->next_event, 1);
512 		}
513 	}
514 
515 out:
516 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
517 }
518 
519 /*
520  * Reset the one shot broadcast for a cpu
521  *
522  * Called with tick_broadcast_lock held
523  */
524 static void tick_broadcast_clear_oneshot(int cpu)
525 {
526 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
527 }
528 
529 /**
530  * tick_broadcast_setup_highres - setup the broadcast device for highres
531  */
532 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
533 {
534 	bc->event_handler = tick_handle_oneshot_broadcast;
535 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
536 	bc->next_event.tv64 = KTIME_MAX;
537 }
538 
539 /*
540  * Select oneshot operating mode for the broadcast device
541  */
542 void tick_broadcast_switch_to_oneshot(void)
543 {
544 	struct clock_event_device *bc;
545 	unsigned long flags;
546 
547 	spin_lock_irqsave(&tick_broadcast_lock, flags);
548 
549 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
550 	bc = tick_broadcast_device.evtdev;
551 	if (bc)
552 		tick_broadcast_setup_oneshot(bc);
553 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
554 }
555 
556 
557 /*
558  * Remove a dead CPU from broadcasting
559  */
560 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
561 {
562 	unsigned long flags;
563 	unsigned int cpu = *cpup;
564 
565 	spin_lock_irqsave(&tick_broadcast_lock, flags);
566 
567 	/*
568 	 * Clear the broadcast mask flag for the dead cpu, but do not
569 	 * stop the broadcast device!
570 	 */
571 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
572 
573 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
574 }
575 
576 #endif
577