xref: /linux/kernel/time/tick-broadcast.c (revision 40d3057ac036f2501c1930728a6179be4fca577b)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33 static int tick_broadcast_force;
34 
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_clear_oneshot(int cpu);
37 #else
38 static inline void tick_broadcast_clear_oneshot(int cpu) { }
39 #endif
40 
41 /*
42  * Debugging: see timer_list.c
43  */
44 struct tick_device *tick_get_broadcast_device(void)
45 {
46 	return &tick_broadcast_device;
47 }
48 
49 cpumask_t *tick_get_broadcast_mask(void)
50 {
51 	return &tick_broadcast_mask;
52 }
53 
54 /*
55  * Start the device in periodic mode
56  */
57 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
58 {
59 	if (bc)
60 		tick_setup_periodic(bc, 1);
61 }
62 
63 /*
64  * Check, if the device can be utilized as broadcast device:
65  */
66 int tick_check_broadcast_device(struct clock_event_device *dev)
67 {
68 	if ((tick_broadcast_device.evtdev &&
69 	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
70 	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
71 		return 0;
72 
73 	clockevents_exchange_device(NULL, dev);
74 	tick_broadcast_device.evtdev = dev;
75 	if (!cpus_empty(tick_broadcast_mask))
76 		tick_broadcast_start_periodic(dev);
77 	return 1;
78 }
79 
80 /*
81  * Check, if the device is the broadcast device
82  */
83 int tick_is_broadcast_device(struct clock_event_device *dev)
84 {
85 	return (dev && tick_broadcast_device.evtdev == dev);
86 }
87 
88 /*
89  * Check, if the device is disfunctional and a place holder, which
90  * needs to be handled by the broadcast device.
91  */
92 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
93 {
94 	unsigned long flags;
95 	int ret = 0;
96 
97 	spin_lock_irqsave(&tick_broadcast_lock, flags);
98 
99 	/*
100 	 * Devices might be registered with both periodic and oneshot
101 	 * mode disabled. This signals, that the device needs to be
102 	 * operated from the broadcast device and is a placeholder for
103 	 * the cpu local device.
104 	 */
105 	if (!tick_device_is_functional(dev)) {
106 		dev->event_handler = tick_handle_periodic;
107 		cpu_set(cpu, tick_broadcast_mask);
108 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
109 		ret = 1;
110 	} else {
111 		/*
112 		 * When the new device is not affected by the stop
113 		 * feature and the cpu is marked in the broadcast mask
114 		 * then clear the broadcast bit.
115 		 */
116 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
117 			int cpu = smp_processor_id();
118 
119 			cpu_clear(cpu, tick_broadcast_mask);
120 			tick_broadcast_clear_oneshot(cpu);
121 		}
122 	}
123 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
124 	return ret;
125 }
126 
127 /*
128  * Broadcast the event to the cpus, which are set in the mask
129  */
130 static void tick_do_broadcast(cpumask_t mask)
131 {
132 	int cpu = smp_processor_id();
133 	struct tick_device *td;
134 
135 	/*
136 	 * Check, if the current cpu is in the mask
137 	 */
138 	if (cpu_isset(cpu, mask)) {
139 		cpu_clear(cpu, mask);
140 		td = &per_cpu(tick_cpu_device, cpu);
141 		td->evtdev->event_handler(td->evtdev);
142 	}
143 
144 	if (!cpus_empty(mask)) {
145 		/*
146 		 * It might be necessary to actually check whether the devices
147 		 * have different broadcast functions. For now, just use the
148 		 * one of the first device. This works as long as we have this
149 		 * misfeature only on x86 (lapic)
150 		 */
151 		cpu = first_cpu(mask);
152 		td = &per_cpu(tick_cpu_device, cpu);
153 		td->evtdev->broadcast(mask);
154 	}
155 }
156 
157 /*
158  * Periodic broadcast:
159  * - invoke the broadcast handlers
160  */
161 static void tick_do_periodic_broadcast(void)
162 {
163 	cpumask_t mask;
164 
165 	spin_lock(&tick_broadcast_lock);
166 
167 	cpus_and(mask, cpu_online_map, tick_broadcast_mask);
168 	tick_do_broadcast(mask);
169 
170 	spin_unlock(&tick_broadcast_lock);
171 }
172 
173 /*
174  * Event handler for periodic broadcast ticks
175  */
176 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
177 {
178 	ktime_t next;
179 
180 	tick_do_periodic_broadcast();
181 
182 	/*
183 	 * The device is in periodic mode. No reprogramming necessary:
184 	 */
185 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 		return;
187 
188 	/*
189 	 * Setup the next period for devices, which do not have
190 	 * periodic mode. We read dev->next_event first and add to it
191 	 * when the event alrady expired. clockevents_program_event()
192 	 * sets dev->next_event only when the event is really
193 	 * programmed to the device.
194 	 */
195 	for (next = dev->next_event; ;) {
196 		next = ktime_add(next, tick_period);
197 
198 		if (!clockevents_program_event(dev, next, ktime_get()))
199 			return;
200 		tick_do_periodic_broadcast();
201 	}
202 }
203 
204 /*
205  * Powerstate information: The system enters/leaves a state, where
206  * affected devices might stop
207  */
208 static void tick_do_broadcast_on_off(void *why)
209 {
210 	struct clock_event_device *bc, *dev;
211 	struct tick_device *td;
212 	unsigned long flags, *reason = why;
213 	int cpu, bc_stopped;
214 
215 	spin_lock_irqsave(&tick_broadcast_lock, flags);
216 
217 	cpu = smp_processor_id();
218 	td = &per_cpu(tick_cpu_device, cpu);
219 	dev = td->evtdev;
220 	bc = tick_broadcast_device.evtdev;
221 
222 	/*
223 	 * Is the device not affected by the powerstate ?
224 	 */
225 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
226 		goto out;
227 
228 	if (!tick_device_is_functional(dev))
229 		goto out;
230 
231 	bc_stopped = cpus_empty(tick_broadcast_mask);
232 
233 	switch (*reason) {
234 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
235 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236 		if (!cpu_isset(cpu, tick_broadcast_mask)) {
237 			cpu_set(cpu, tick_broadcast_mask);
238 			if (td->mode == TICKDEV_MODE_PERIODIC)
239 				clockevents_set_mode(dev,
240 						     CLOCK_EVT_MODE_SHUTDOWN);
241 		}
242 		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
243 			tick_broadcast_force = 1;
244 		break;
245 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
246 		if (!tick_broadcast_force &&
247 		    cpu_isset(cpu, tick_broadcast_mask)) {
248 			cpu_clear(cpu, tick_broadcast_mask);
249 			if (td->mode == TICKDEV_MODE_PERIODIC)
250 				tick_setup_periodic(dev, 0);
251 		}
252 		break;
253 	}
254 
255 	if (cpus_empty(tick_broadcast_mask)) {
256 		if (!bc_stopped)
257 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
258 	} else if (bc_stopped) {
259 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
260 			tick_broadcast_start_periodic(bc);
261 		else
262 			tick_broadcast_setup_oneshot(bc);
263 	}
264 out:
265 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
266 }
267 
268 /*
269  * Powerstate information: The system enters/leaves a state, where
270  * affected devices might stop.
271  */
272 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
273 {
274 	if (!cpu_isset(*oncpu, cpu_online_map))
275 		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
276 		       "offline CPU #%d\n", *oncpu);
277 	else
278 		smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
279 					 &reason, 1);
280 }
281 
282 /*
283  * Set the periodic handler depending on broadcast on/off
284  */
285 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
286 {
287 	if (!broadcast)
288 		dev->event_handler = tick_handle_periodic;
289 	else
290 		dev->event_handler = tick_handle_periodic_broadcast;
291 }
292 
293 /*
294  * Remove a CPU from broadcasting
295  */
296 void tick_shutdown_broadcast(unsigned int *cpup)
297 {
298 	struct clock_event_device *bc;
299 	unsigned long flags;
300 	unsigned int cpu = *cpup;
301 
302 	spin_lock_irqsave(&tick_broadcast_lock, flags);
303 
304 	bc = tick_broadcast_device.evtdev;
305 	cpu_clear(cpu, tick_broadcast_mask);
306 
307 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
308 		if (bc && cpus_empty(tick_broadcast_mask))
309 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
310 	}
311 
312 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
313 }
314 
315 void tick_suspend_broadcast(void)
316 {
317 	struct clock_event_device *bc;
318 	unsigned long flags;
319 
320 	spin_lock_irqsave(&tick_broadcast_lock, flags);
321 
322 	bc = tick_broadcast_device.evtdev;
323 	if (bc)
324 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
325 
326 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
327 }
328 
329 int tick_resume_broadcast(void)
330 {
331 	struct clock_event_device *bc;
332 	unsigned long flags;
333 	int broadcast = 0;
334 
335 	spin_lock_irqsave(&tick_broadcast_lock, flags);
336 
337 	bc = tick_broadcast_device.evtdev;
338 
339 	if (bc) {
340 		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
341 
342 		switch (tick_broadcast_device.mode) {
343 		case TICKDEV_MODE_PERIODIC:
344 			if(!cpus_empty(tick_broadcast_mask))
345 				tick_broadcast_start_periodic(bc);
346 			broadcast = cpu_isset(smp_processor_id(),
347 					      tick_broadcast_mask);
348 			break;
349 		case TICKDEV_MODE_ONESHOT:
350 			broadcast = tick_resume_broadcast_oneshot(bc);
351 			break;
352 		}
353 	}
354 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
355 
356 	return broadcast;
357 }
358 
359 
360 #ifdef CONFIG_TICK_ONESHOT
361 
362 static cpumask_t tick_broadcast_oneshot_mask;
363 
364 /*
365  * Debugging: see timer_list.c
366  */
367 cpumask_t *tick_get_broadcast_oneshot_mask(void)
368 {
369 	return &tick_broadcast_oneshot_mask;
370 }
371 
372 static int tick_broadcast_set_event(ktime_t expires, int force)
373 {
374 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
375 
376 	return tick_dev_program_event(bc, expires, force);
377 }
378 
379 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
380 {
381 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
382 	return 0;
383 }
384 
385 /*
386  * Handle oneshot mode broadcasting
387  */
388 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
389 {
390 	struct tick_device *td;
391 	cpumask_t mask;
392 	ktime_t now, next_event;
393 	int cpu;
394 
395 	spin_lock(&tick_broadcast_lock);
396 again:
397 	dev->next_event.tv64 = KTIME_MAX;
398 	next_event.tv64 = KTIME_MAX;
399 	mask = CPU_MASK_NONE;
400 	now = ktime_get();
401 	/* Find all expired events */
402 	for_each_cpu_mask_nr(cpu, tick_broadcast_oneshot_mask) {
403 		td = &per_cpu(tick_cpu_device, cpu);
404 		if (td->evtdev->next_event.tv64 <= now.tv64)
405 			cpu_set(cpu, mask);
406 		else if (td->evtdev->next_event.tv64 < next_event.tv64)
407 			next_event.tv64 = td->evtdev->next_event.tv64;
408 	}
409 
410 	/*
411 	 * Wakeup the cpus which have an expired event.
412 	 */
413 	tick_do_broadcast(mask);
414 
415 	/*
416 	 * Two reasons for reprogram:
417 	 *
418 	 * - The global event did not expire any CPU local
419 	 * events. This happens in dyntick mode, as the maximum PIT
420 	 * delta is quite small.
421 	 *
422 	 * - There are pending events on sleeping CPUs which were not
423 	 * in the event mask
424 	 */
425 	if (next_event.tv64 != KTIME_MAX) {
426 		/*
427 		 * Rearm the broadcast device. If event expired,
428 		 * repeat the above
429 		 */
430 		if (tick_broadcast_set_event(next_event, 0))
431 			goto again;
432 	}
433 	spin_unlock(&tick_broadcast_lock);
434 }
435 
436 /*
437  * Powerstate information: The system enters/leaves a state, where
438  * affected devices might stop
439  */
440 void tick_broadcast_oneshot_control(unsigned long reason)
441 {
442 	struct clock_event_device *bc, *dev;
443 	struct tick_device *td;
444 	unsigned long flags;
445 	int cpu;
446 
447 	spin_lock_irqsave(&tick_broadcast_lock, flags);
448 
449 	/*
450 	 * Periodic mode does not care about the enter/exit of power
451 	 * states
452 	 */
453 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
454 		goto out;
455 
456 	bc = tick_broadcast_device.evtdev;
457 	cpu = smp_processor_id();
458 	td = &per_cpu(tick_cpu_device, cpu);
459 	dev = td->evtdev;
460 
461 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
462 		goto out;
463 
464 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
465 		if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
466 			cpu_set(cpu, tick_broadcast_oneshot_mask);
467 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
468 			if (dev->next_event.tv64 < bc->next_event.tv64)
469 				tick_broadcast_set_event(dev->next_event, 1);
470 		}
471 	} else {
472 		if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
473 			cpu_clear(cpu, tick_broadcast_oneshot_mask);
474 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
475 			if (dev->next_event.tv64 != KTIME_MAX)
476 				tick_program_event(dev->next_event, 1);
477 		}
478 	}
479 
480 out:
481 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
482 }
483 
484 /*
485  * Reset the one shot broadcast for a cpu
486  *
487  * Called with tick_broadcast_lock held
488  */
489 static void tick_broadcast_clear_oneshot(int cpu)
490 {
491 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
492 }
493 
494 static void tick_broadcast_init_next_event(cpumask_t *mask, ktime_t expires)
495 {
496 	struct tick_device *td;
497 	int cpu;
498 
499 	for_each_cpu_mask_nr(cpu, *mask) {
500 		td = &per_cpu(tick_cpu_device, cpu);
501 		if (td->evtdev)
502 			td->evtdev->next_event = expires;
503 	}
504 }
505 
506 /**
507  * tick_broadcast_setup_oneshot - setup the broadcast device
508  */
509 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
510 {
511 	/* Set it up only once ! */
512 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
513 		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
514 		int cpu = smp_processor_id();
515 		cpumask_t mask;
516 
517 		bc->event_handler = tick_handle_oneshot_broadcast;
518 		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
519 
520 		/* Take the do_timer update */
521 		tick_do_timer_cpu = cpu;
522 
523 		/*
524 		 * We must be careful here. There might be other CPUs
525 		 * waiting for periodic broadcast. We need to set the
526 		 * oneshot_mask bits for those and program the
527 		 * broadcast device to fire.
528 		 */
529 		mask = tick_broadcast_mask;
530 		cpu_clear(cpu, mask);
531 		cpus_or(tick_broadcast_oneshot_mask,
532 			tick_broadcast_oneshot_mask, mask);
533 
534 		if (was_periodic && !cpus_empty(mask)) {
535 			tick_broadcast_init_next_event(&mask, tick_next_period);
536 			tick_broadcast_set_event(tick_next_period, 1);
537 		} else
538 			bc->next_event.tv64 = KTIME_MAX;
539 	}
540 }
541 
542 /*
543  * Select oneshot operating mode for the broadcast device
544  */
545 void tick_broadcast_switch_to_oneshot(void)
546 {
547 	struct clock_event_device *bc;
548 	unsigned long flags;
549 
550 	spin_lock_irqsave(&tick_broadcast_lock, flags);
551 
552 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
553 	bc = tick_broadcast_device.evtdev;
554 	if (bc)
555 		tick_broadcast_setup_oneshot(bc);
556 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
557 }
558 
559 
560 /*
561  * Remove a dead CPU from broadcasting
562  */
563 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
564 {
565 	unsigned long flags;
566 	unsigned int cpu = *cpup;
567 
568 	spin_lock_irqsave(&tick_broadcast_lock, flags);
569 
570 	/*
571 	 * Clear the broadcast mask flag for the dead cpu, but do not
572 	 * stop the broadcast device!
573 	 */
574 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
575 
576 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
577 }
578 
579 #endif
580