xref: /linux/kernel/time/tick-broadcast.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33 static int tick_broadcast_force;
34 
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_clear_oneshot(int cpu);
37 #else
38 static inline void tick_broadcast_clear_oneshot(int cpu) { }
39 #endif
40 
41 /*
42  * Debugging: see timer_list.c
43  */
44 struct tick_device *tick_get_broadcast_device(void)
45 {
46 	return &tick_broadcast_device;
47 }
48 
49 cpumask_t *tick_get_broadcast_mask(void)
50 {
51 	return &tick_broadcast_mask;
52 }
53 
54 /*
55  * Start the device in periodic mode
56  */
57 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
58 {
59 	if (bc)
60 		tick_setup_periodic(bc, 1);
61 }
62 
63 /*
64  * Check, if the device can be utilized as broadcast device:
65  */
66 int tick_check_broadcast_device(struct clock_event_device *dev)
67 {
68 	if ((tick_broadcast_device.evtdev &&
69 	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
70 	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
71 		return 0;
72 
73 	clockevents_exchange_device(NULL, dev);
74 	tick_broadcast_device.evtdev = dev;
75 	if (!cpus_empty(tick_broadcast_mask))
76 		tick_broadcast_start_periodic(dev);
77 	return 1;
78 }
79 
80 /*
81  * Check, if the device is the broadcast device
82  */
83 int tick_is_broadcast_device(struct clock_event_device *dev)
84 {
85 	return (dev && tick_broadcast_device.evtdev == dev);
86 }
87 
88 /*
89  * Check, if the device is disfunctional and a place holder, which
90  * needs to be handled by the broadcast device.
91  */
92 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
93 {
94 	unsigned long flags;
95 	int ret = 0;
96 
97 	spin_lock_irqsave(&tick_broadcast_lock, flags);
98 
99 	/*
100 	 * Devices might be registered with both periodic and oneshot
101 	 * mode disabled. This signals, that the device needs to be
102 	 * operated from the broadcast device and is a placeholder for
103 	 * the cpu local device.
104 	 */
105 	if (!tick_device_is_functional(dev)) {
106 		dev->event_handler = tick_handle_periodic;
107 		cpu_set(cpu, tick_broadcast_mask);
108 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
109 		ret = 1;
110 	} else {
111 		/*
112 		 * When the new device is not affected by the stop
113 		 * feature and the cpu is marked in the broadcast mask
114 		 * then clear the broadcast bit.
115 		 */
116 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
117 			int cpu = smp_processor_id();
118 
119 			cpu_clear(cpu, tick_broadcast_mask);
120 			tick_broadcast_clear_oneshot(cpu);
121 		}
122 	}
123 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
124 	return ret;
125 }
126 
127 /*
128  * Broadcast the event to the cpus, which are set in the mask
129  */
130 static void tick_do_broadcast(cpumask_t mask)
131 {
132 	int cpu = smp_processor_id();
133 	struct tick_device *td;
134 
135 	/*
136 	 * Check, if the current cpu is in the mask
137 	 */
138 	if (cpu_isset(cpu, mask)) {
139 		cpu_clear(cpu, mask);
140 		td = &per_cpu(tick_cpu_device, cpu);
141 		td->evtdev->event_handler(td->evtdev);
142 	}
143 
144 	if (!cpus_empty(mask)) {
145 		/*
146 		 * It might be necessary to actually check whether the devices
147 		 * have different broadcast functions. For now, just use the
148 		 * one of the first device. This works as long as we have this
149 		 * misfeature only on x86 (lapic)
150 		 */
151 		cpu = first_cpu(mask);
152 		td = &per_cpu(tick_cpu_device, cpu);
153 		td->evtdev->broadcast(mask);
154 	}
155 }
156 
157 /*
158  * Periodic broadcast:
159  * - invoke the broadcast handlers
160  */
161 static void tick_do_periodic_broadcast(void)
162 {
163 	cpumask_t mask;
164 
165 	spin_lock(&tick_broadcast_lock);
166 
167 	cpus_and(mask, cpu_online_map, tick_broadcast_mask);
168 	tick_do_broadcast(mask);
169 
170 	spin_unlock(&tick_broadcast_lock);
171 }
172 
173 /*
174  * Event handler for periodic broadcast ticks
175  */
176 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
177 {
178 	ktime_t next;
179 
180 	tick_do_periodic_broadcast();
181 
182 	/*
183 	 * The device is in periodic mode. No reprogramming necessary:
184 	 */
185 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 		return;
187 
188 	/*
189 	 * Setup the next period for devices, which do not have
190 	 * periodic mode. We read dev->next_event first and add to it
191 	 * when the event alrady expired. clockevents_program_event()
192 	 * sets dev->next_event only when the event is really
193 	 * programmed to the device.
194 	 */
195 	for (next = dev->next_event; ;) {
196 		next = ktime_add(next, tick_period);
197 
198 		if (!clockevents_program_event(dev, next, ktime_get()))
199 			return;
200 		tick_do_periodic_broadcast();
201 	}
202 }
203 
204 /*
205  * Powerstate information: The system enters/leaves a state, where
206  * affected devices might stop
207  */
208 static void tick_do_broadcast_on_off(void *why)
209 {
210 	struct clock_event_device *bc, *dev;
211 	struct tick_device *td;
212 	unsigned long flags, *reason = why;
213 	int cpu, bc_stopped;
214 
215 	spin_lock_irqsave(&tick_broadcast_lock, flags);
216 
217 	cpu = smp_processor_id();
218 	td = &per_cpu(tick_cpu_device, cpu);
219 	dev = td->evtdev;
220 	bc = tick_broadcast_device.evtdev;
221 
222 	/*
223 	 * Is the device not affected by the powerstate ?
224 	 */
225 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
226 		goto out;
227 
228 	if (!tick_device_is_functional(dev))
229 		goto out;
230 
231 	bc_stopped = cpus_empty(tick_broadcast_mask);
232 
233 	switch (*reason) {
234 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
235 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236 		if (!cpu_isset(cpu, tick_broadcast_mask)) {
237 			cpu_set(cpu, tick_broadcast_mask);
238 			if (tick_broadcast_device.mode ==
239 			    TICKDEV_MODE_PERIODIC)
240 				clockevents_shutdown(dev);
241 		}
242 		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
243 			tick_broadcast_force = 1;
244 		break;
245 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
246 		if (!tick_broadcast_force &&
247 		    cpu_isset(cpu, tick_broadcast_mask)) {
248 			cpu_clear(cpu, tick_broadcast_mask);
249 			if (tick_broadcast_device.mode ==
250 			    TICKDEV_MODE_PERIODIC)
251 				tick_setup_periodic(dev, 0);
252 		}
253 		break;
254 	}
255 
256 	if (cpus_empty(tick_broadcast_mask)) {
257 		if (!bc_stopped)
258 			clockevents_shutdown(bc);
259 	} else if (bc_stopped) {
260 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
261 			tick_broadcast_start_periodic(bc);
262 		else
263 			tick_broadcast_setup_oneshot(bc);
264 	}
265 out:
266 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
267 }
268 
269 /*
270  * Powerstate information: The system enters/leaves a state, where
271  * affected devices might stop.
272  */
273 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
274 {
275 	if (!cpu_isset(*oncpu, cpu_online_map))
276 		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
277 		       "offline CPU #%d\n", *oncpu);
278 	else
279 		smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
280 					 &reason, 1);
281 }
282 
283 /*
284  * Set the periodic handler depending on broadcast on/off
285  */
286 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
287 {
288 	if (!broadcast)
289 		dev->event_handler = tick_handle_periodic;
290 	else
291 		dev->event_handler = tick_handle_periodic_broadcast;
292 }
293 
294 /*
295  * Remove a CPU from broadcasting
296  */
297 void tick_shutdown_broadcast(unsigned int *cpup)
298 {
299 	struct clock_event_device *bc;
300 	unsigned long flags;
301 	unsigned int cpu = *cpup;
302 
303 	spin_lock_irqsave(&tick_broadcast_lock, flags);
304 
305 	bc = tick_broadcast_device.evtdev;
306 	cpu_clear(cpu, tick_broadcast_mask);
307 
308 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
309 		if (bc && cpus_empty(tick_broadcast_mask))
310 			clockevents_shutdown(bc);
311 	}
312 
313 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
314 }
315 
316 void tick_suspend_broadcast(void)
317 {
318 	struct clock_event_device *bc;
319 	unsigned long flags;
320 
321 	spin_lock_irqsave(&tick_broadcast_lock, flags);
322 
323 	bc = tick_broadcast_device.evtdev;
324 	if (bc)
325 		clockevents_shutdown(bc);
326 
327 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
328 }
329 
330 int tick_resume_broadcast(void)
331 {
332 	struct clock_event_device *bc;
333 	unsigned long flags;
334 	int broadcast = 0;
335 
336 	spin_lock_irqsave(&tick_broadcast_lock, flags);
337 
338 	bc = tick_broadcast_device.evtdev;
339 
340 	if (bc) {
341 		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
342 
343 		switch (tick_broadcast_device.mode) {
344 		case TICKDEV_MODE_PERIODIC:
345 			if(!cpus_empty(tick_broadcast_mask))
346 				tick_broadcast_start_periodic(bc);
347 			broadcast = cpu_isset(smp_processor_id(),
348 					      tick_broadcast_mask);
349 			break;
350 		case TICKDEV_MODE_ONESHOT:
351 			broadcast = tick_resume_broadcast_oneshot(bc);
352 			break;
353 		}
354 	}
355 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
356 
357 	return broadcast;
358 }
359 
360 
361 #ifdef CONFIG_TICK_ONESHOT
362 
363 static cpumask_t tick_broadcast_oneshot_mask;
364 
365 /*
366  * Debugging: see timer_list.c
367  */
368 cpumask_t *tick_get_broadcast_oneshot_mask(void)
369 {
370 	return &tick_broadcast_oneshot_mask;
371 }
372 
373 static int tick_broadcast_set_event(ktime_t expires, int force)
374 {
375 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
376 
377 	return tick_dev_program_event(bc, expires, force);
378 }
379 
380 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
381 {
382 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
383 	return 0;
384 }
385 
386 /*
387  * Called from irq_enter() when idle was interrupted to reenable the
388  * per cpu device.
389  */
390 void tick_check_oneshot_broadcast(int cpu)
391 {
392 	if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
393 		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
394 
395 		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
396 	}
397 }
398 
399 /*
400  * Handle oneshot mode broadcasting
401  */
402 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
403 {
404 	struct tick_device *td;
405 	cpumask_t mask;
406 	ktime_t now, next_event;
407 	int cpu;
408 
409 	spin_lock(&tick_broadcast_lock);
410 again:
411 	dev->next_event.tv64 = KTIME_MAX;
412 	next_event.tv64 = KTIME_MAX;
413 	mask = CPU_MASK_NONE;
414 	now = ktime_get();
415 	/* Find all expired events */
416 	for_each_cpu_mask_nr(cpu, tick_broadcast_oneshot_mask) {
417 		td = &per_cpu(tick_cpu_device, cpu);
418 		if (td->evtdev->next_event.tv64 <= now.tv64)
419 			cpu_set(cpu, mask);
420 		else if (td->evtdev->next_event.tv64 < next_event.tv64)
421 			next_event.tv64 = td->evtdev->next_event.tv64;
422 	}
423 
424 	/*
425 	 * Wakeup the cpus which have an expired event.
426 	 */
427 	tick_do_broadcast(mask);
428 
429 	/*
430 	 * Two reasons for reprogram:
431 	 *
432 	 * - The global event did not expire any CPU local
433 	 * events. This happens in dyntick mode, as the maximum PIT
434 	 * delta is quite small.
435 	 *
436 	 * - There are pending events on sleeping CPUs which were not
437 	 * in the event mask
438 	 */
439 	if (next_event.tv64 != KTIME_MAX) {
440 		/*
441 		 * Rearm the broadcast device. If event expired,
442 		 * repeat the above
443 		 */
444 		if (tick_broadcast_set_event(next_event, 0))
445 			goto again;
446 	}
447 	spin_unlock(&tick_broadcast_lock);
448 }
449 
450 /*
451  * Powerstate information: The system enters/leaves a state, where
452  * affected devices might stop
453  */
454 void tick_broadcast_oneshot_control(unsigned long reason)
455 {
456 	struct clock_event_device *bc, *dev;
457 	struct tick_device *td;
458 	unsigned long flags;
459 	int cpu;
460 
461 	spin_lock_irqsave(&tick_broadcast_lock, flags);
462 
463 	/*
464 	 * Periodic mode does not care about the enter/exit of power
465 	 * states
466 	 */
467 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
468 		goto out;
469 
470 	bc = tick_broadcast_device.evtdev;
471 	cpu = smp_processor_id();
472 	td = &per_cpu(tick_cpu_device, cpu);
473 	dev = td->evtdev;
474 
475 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
476 		goto out;
477 
478 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
479 		if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
480 			cpu_set(cpu, tick_broadcast_oneshot_mask);
481 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
482 			if (dev->next_event.tv64 < bc->next_event.tv64)
483 				tick_broadcast_set_event(dev->next_event, 1);
484 		}
485 	} else {
486 		if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
487 			cpu_clear(cpu, tick_broadcast_oneshot_mask);
488 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
489 			if (dev->next_event.tv64 != KTIME_MAX)
490 				tick_program_event(dev->next_event, 1);
491 		}
492 	}
493 
494 out:
495 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
496 }
497 
498 /*
499  * Reset the one shot broadcast for a cpu
500  *
501  * Called with tick_broadcast_lock held
502  */
503 static void tick_broadcast_clear_oneshot(int cpu)
504 {
505 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
506 }
507 
508 static void tick_broadcast_init_next_event(cpumask_t *mask, ktime_t expires)
509 {
510 	struct tick_device *td;
511 	int cpu;
512 
513 	for_each_cpu_mask_nr(cpu, *mask) {
514 		td = &per_cpu(tick_cpu_device, cpu);
515 		if (td->evtdev)
516 			td->evtdev->next_event = expires;
517 	}
518 }
519 
520 /**
521  * tick_broadcast_setup_oneshot - setup the broadcast device
522  */
523 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
524 {
525 	/* Set it up only once ! */
526 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
527 		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
528 		int cpu = smp_processor_id();
529 		cpumask_t mask;
530 
531 		bc->event_handler = tick_handle_oneshot_broadcast;
532 		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
533 
534 		/* Take the do_timer update */
535 		tick_do_timer_cpu = cpu;
536 
537 		/*
538 		 * We must be careful here. There might be other CPUs
539 		 * waiting for periodic broadcast. We need to set the
540 		 * oneshot_mask bits for those and program the
541 		 * broadcast device to fire.
542 		 */
543 		mask = tick_broadcast_mask;
544 		cpu_clear(cpu, mask);
545 		cpus_or(tick_broadcast_oneshot_mask,
546 			tick_broadcast_oneshot_mask, mask);
547 
548 		if (was_periodic && !cpus_empty(mask)) {
549 			tick_broadcast_init_next_event(&mask, tick_next_period);
550 			tick_broadcast_set_event(tick_next_period, 1);
551 		} else
552 			bc->next_event.tv64 = KTIME_MAX;
553 	}
554 }
555 
556 /*
557  * Select oneshot operating mode for the broadcast device
558  */
559 void tick_broadcast_switch_to_oneshot(void)
560 {
561 	struct clock_event_device *bc;
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(&tick_broadcast_lock, flags);
565 
566 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
567 	bc = tick_broadcast_device.evtdev;
568 	if (bc)
569 		tick_broadcast_setup_oneshot(bc);
570 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
571 }
572 
573 
574 /*
575  * Remove a dead CPU from broadcasting
576  */
577 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
578 {
579 	unsigned long flags;
580 	unsigned int cpu = *cpup;
581 
582 	spin_lock_irqsave(&tick_broadcast_lock, flags);
583 
584 	/*
585 	 * Clear the broadcast mask flag for the dead cpu, but do not
586 	 * stop the broadcast device!
587 	 */
588 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
589 
590 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
591 }
592 
593 /*
594  * Check, whether the broadcast device is in one shot mode
595  */
596 int tick_broadcast_oneshot_active(void)
597 {
598 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
599 }
600 
601 #endif
602