xref: /linux/kernel/time/tick-broadcast.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33 
34 #ifdef CONFIG_TICK_ONESHOT
35 static void tick_broadcast_clear_oneshot(int cpu);
36 #else
37 static inline void tick_broadcast_clear_oneshot(int cpu) { }
38 #endif
39 
40 /*
41  * Debugging: see timer_list.c
42  */
43 struct tick_device *tick_get_broadcast_device(void)
44 {
45 	return &tick_broadcast_device;
46 }
47 
48 cpumask_t *tick_get_broadcast_mask(void)
49 {
50 	return &tick_broadcast_mask;
51 }
52 
53 /*
54  * Start the device in periodic mode
55  */
56 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
57 {
58 	if (bc)
59 		tick_setup_periodic(bc, 1);
60 }
61 
62 /*
63  * Check, if the device can be utilized as broadcast device:
64  */
65 int tick_check_broadcast_device(struct clock_event_device *dev)
66 {
67 	if ((tick_broadcast_device.evtdev &&
68 	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
69 	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
70 		return 0;
71 
72 	clockevents_exchange_device(NULL, dev);
73 	tick_broadcast_device.evtdev = dev;
74 	if (!cpus_empty(tick_broadcast_mask))
75 		tick_broadcast_start_periodic(dev);
76 	return 1;
77 }
78 
79 /*
80  * Check, if the device is the broadcast device
81  */
82 int tick_is_broadcast_device(struct clock_event_device *dev)
83 {
84 	return (dev && tick_broadcast_device.evtdev == dev);
85 }
86 
87 /*
88  * Check, if the device is disfunctional and a place holder, which
89  * needs to be handled by the broadcast device.
90  */
91 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
92 {
93 	unsigned long flags;
94 	int ret = 0;
95 
96 	spin_lock_irqsave(&tick_broadcast_lock, flags);
97 
98 	/*
99 	 * Devices might be registered with both periodic and oneshot
100 	 * mode disabled. This signals, that the device needs to be
101 	 * operated from the broadcast device and is a placeholder for
102 	 * the cpu local device.
103 	 */
104 	if (!tick_device_is_functional(dev)) {
105 		dev->event_handler = tick_handle_periodic;
106 		cpu_set(cpu, tick_broadcast_mask);
107 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
108 		ret = 1;
109 	} else {
110 		/*
111 		 * When the new device is not affected by the stop
112 		 * feature and the cpu is marked in the broadcast mask
113 		 * then clear the broadcast bit.
114 		 */
115 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
116 			int cpu = smp_processor_id();
117 
118 			cpu_clear(cpu, tick_broadcast_mask);
119 			tick_broadcast_clear_oneshot(cpu);
120 		}
121 	}
122 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
123 	return ret;
124 }
125 
126 /*
127  * Broadcast the event to the cpus, which are set in the mask
128  */
129 int tick_do_broadcast(cpumask_t mask)
130 {
131 	int ret = 0, cpu = smp_processor_id();
132 	struct tick_device *td;
133 
134 	/*
135 	 * Check, if the current cpu is in the mask
136 	 */
137 	if (cpu_isset(cpu, mask)) {
138 		cpu_clear(cpu, mask);
139 		td = &per_cpu(tick_cpu_device, cpu);
140 		td->evtdev->event_handler(td->evtdev);
141 		ret = 1;
142 	}
143 
144 	if (!cpus_empty(mask)) {
145 		/*
146 		 * It might be necessary to actually check whether the devices
147 		 * have different broadcast functions. For now, just use the
148 		 * one of the first device. This works as long as we have this
149 		 * misfeature only on x86 (lapic)
150 		 */
151 		cpu = first_cpu(mask);
152 		td = &per_cpu(tick_cpu_device, cpu);
153 		td->evtdev->broadcast(mask);
154 		ret = 1;
155 	}
156 	return ret;
157 }
158 
159 /*
160  * Periodic broadcast:
161  * - invoke the broadcast handlers
162  */
163 static void tick_do_periodic_broadcast(void)
164 {
165 	cpumask_t mask;
166 
167 	spin_lock(&tick_broadcast_lock);
168 
169 	cpus_and(mask, cpu_online_map, tick_broadcast_mask);
170 	tick_do_broadcast(mask);
171 
172 	spin_unlock(&tick_broadcast_lock);
173 }
174 
175 /*
176  * Event handler for periodic broadcast ticks
177  */
178 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
179 {
180 	tick_do_periodic_broadcast();
181 
182 	/*
183 	 * The device is in periodic mode. No reprogramming necessary:
184 	 */
185 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 		return;
187 
188 	/*
189 	 * Setup the next period for devices, which do not have
190 	 * periodic mode:
191 	 */
192 	for (;;) {
193 		ktime_t next = ktime_add(dev->next_event, tick_period);
194 
195 		if (!clockevents_program_event(dev, next, ktime_get()))
196 			return;
197 		tick_do_periodic_broadcast();
198 	}
199 }
200 
201 /*
202  * Powerstate information: The system enters/leaves a state, where
203  * affected devices might stop
204  */
205 static void tick_do_broadcast_on_off(void *why)
206 {
207 	struct clock_event_device *bc, *dev;
208 	struct tick_device *td;
209 	unsigned long flags, *reason = why;
210 	int cpu;
211 
212 	spin_lock_irqsave(&tick_broadcast_lock, flags);
213 
214 	cpu = smp_processor_id();
215 	td = &per_cpu(tick_cpu_device, cpu);
216 	dev = td->evtdev;
217 	bc = tick_broadcast_device.evtdev;
218 
219 	/*
220 	 * Is the device in broadcast mode forever or is it not
221 	 * affected by the powerstate ?
222 	 */
223 	if (!dev || !tick_device_is_functional(dev) ||
224 	    !(dev->features & CLOCK_EVT_FEAT_C3STOP))
225 		goto out;
226 
227 	if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_ON) {
228 		if (!cpu_isset(cpu, tick_broadcast_mask)) {
229 			cpu_set(cpu, tick_broadcast_mask);
230 			if (td->mode == TICKDEV_MODE_PERIODIC)
231 				clockevents_set_mode(dev,
232 						     CLOCK_EVT_MODE_SHUTDOWN);
233 		}
234 	} else {
235 		if (cpu_isset(cpu, tick_broadcast_mask)) {
236 			cpu_clear(cpu, tick_broadcast_mask);
237 			if (td->mode == TICKDEV_MODE_PERIODIC)
238 				tick_setup_periodic(dev, 0);
239 		}
240 	}
241 
242 	if (cpus_empty(tick_broadcast_mask))
243 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
244 	else {
245 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
246 			tick_broadcast_start_periodic(bc);
247 		else
248 			tick_broadcast_setup_oneshot(bc);
249 	}
250 out:
251 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
252 }
253 
254 /*
255  * Powerstate information: The system enters/leaves a state, where
256  * affected devices might stop.
257  */
258 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
259 {
260 	int cpu = get_cpu();
261 
262 	if (!cpu_isset(*oncpu, cpu_online_map)) {
263 		printk(KERN_ERR "tick-braodcast: ignoring broadcast for "
264 		       "offline CPU #%d\n", *oncpu);
265 	} else {
266 
267 		if (cpu == *oncpu)
268 			tick_do_broadcast_on_off(&reason);
269 		else
270 			smp_call_function_single(*oncpu,
271 						 tick_do_broadcast_on_off,
272 						 &reason, 1, 1);
273 	}
274 	put_cpu();
275 }
276 
277 /*
278  * Set the periodic handler depending on broadcast on/off
279  */
280 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
281 {
282 	if (!broadcast)
283 		dev->event_handler = tick_handle_periodic;
284 	else
285 		dev->event_handler = tick_handle_periodic_broadcast;
286 }
287 
288 /*
289  * Remove a CPU from broadcasting
290  */
291 void tick_shutdown_broadcast(unsigned int *cpup)
292 {
293 	struct clock_event_device *bc;
294 	unsigned long flags;
295 	unsigned int cpu = *cpup;
296 
297 	spin_lock_irqsave(&tick_broadcast_lock, flags);
298 
299 	bc = tick_broadcast_device.evtdev;
300 	cpu_clear(cpu, tick_broadcast_mask);
301 
302 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
303 		if (bc && cpus_empty(tick_broadcast_mask))
304 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
305 	}
306 
307 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
308 }
309 
310 void tick_suspend_broadcast(void)
311 {
312 	struct clock_event_device *bc;
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&tick_broadcast_lock, flags);
316 
317 	bc = tick_broadcast_device.evtdev;
318 	if (bc)
319 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
320 
321 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
322 }
323 
324 int tick_resume_broadcast(void)
325 {
326 	struct clock_event_device *bc;
327 	unsigned long flags;
328 	int broadcast = 0;
329 
330 	spin_lock_irqsave(&tick_broadcast_lock, flags);
331 
332 	bc = tick_broadcast_device.evtdev;
333 
334 	if (bc) {
335 		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
336 
337 		switch (tick_broadcast_device.mode) {
338 		case TICKDEV_MODE_PERIODIC:
339 			if(!cpus_empty(tick_broadcast_mask))
340 				tick_broadcast_start_periodic(bc);
341 			broadcast = cpu_isset(smp_processor_id(),
342 					      tick_broadcast_mask);
343 			break;
344 		case TICKDEV_MODE_ONESHOT:
345 			broadcast = tick_resume_broadcast_oneshot(bc);
346 			break;
347 		}
348 	}
349 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
350 
351 	return broadcast;
352 }
353 
354 
355 #ifdef CONFIG_TICK_ONESHOT
356 
357 static cpumask_t tick_broadcast_oneshot_mask;
358 
359 /*
360  * Debugging: see timer_list.c
361  */
362 cpumask_t *tick_get_broadcast_oneshot_mask(void)
363 {
364 	return &tick_broadcast_oneshot_mask;
365 }
366 
367 static int tick_broadcast_set_event(ktime_t expires, int force)
368 {
369 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
370 	ktime_t now = ktime_get();
371 	int res;
372 
373 	for(;;) {
374 		res = clockevents_program_event(bc, expires, now);
375 		if (!res || !force)
376 			return res;
377 		now = ktime_get();
378 		expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
379 	}
380 }
381 
382 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
383 {
384 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
385 	return 0;
386 }
387 
388 /*
389  * Reprogram the broadcast device:
390  *
391  * Called with tick_broadcast_lock held and interrupts disabled.
392  */
393 static int tick_broadcast_reprogram(void)
394 {
395 	ktime_t expires = { .tv64 = KTIME_MAX };
396 	struct tick_device *td;
397 	int cpu;
398 
399 	/*
400 	 * Find the event which expires next:
401 	 */
402 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
403 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
404 		td = &per_cpu(tick_cpu_device, cpu);
405 		if (td->evtdev->next_event.tv64 < expires.tv64)
406 			expires = td->evtdev->next_event;
407 	}
408 
409 	if (expires.tv64 == KTIME_MAX)
410 		return 0;
411 
412 	return tick_broadcast_set_event(expires, 0);
413 }
414 
415 /*
416  * Handle oneshot mode broadcasting
417  */
418 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
419 {
420 	struct tick_device *td;
421 	cpumask_t mask;
422 	ktime_t now;
423 	int cpu;
424 
425 	spin_lock(&tick_broadcast_lock);
426 again:
427 	dev->next_event.tv64 = KTIME_MAX;
428 	mask = CPU_MASK_NONE;
429 	now = ktime_get();
430 	/* Find all expired events */
431 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
432 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
433 		td = &per_cpu(tick_cpu_device, cpu);
434 		if (td->evtdev->next_event.tv64 <= now.tv64)
435 			cpu_set(cpu, mask);
436 	}
437 
438 	/*
439 	 * Wakeup the cpus which have an expired event. The broadcast
440 	 * device is reprogrammed in the return from idle code.
441 	 */
442 	if (!tick_do_broadcast(mask)) {
443 		/*
444 		 * The global event did not expire any CPU local
445 		 * events. This happens in dyntick mode, as the
446 		 * maximum PIT delta is quite small.
447 		 */
448 		if (tick_broadcast_reprogram())
449 			goto again;
450 	}
451 	spin_unlock(&tick_broadcast_lock);
452 }
453 
454 /*
455  * Powerstate information: The system enters/leaves a state, where
456  * affected devices might stop
457  */
458 void tick_broadcast_oneshot_control(unsigned long reason)
459 {
460 	struct clock_event_device *bc, *dev;
461 	struct tick_device *td;
462 	unsigned long flags;
463 	int cpu;
464 
465 	spin_lock_irqsave(&tick_broadcast_lock, flags);
466 
467 	/*
468 	 * Periodic mode does not care about the enter/exit of power
469 	 * states
470 	 */
471 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
472 		goto out;
473 
474 	bc = tick_broadcast_device.evtdev;
475 	cpu = smp_processor_id();
476 	td = &per_cpu(tick_cpu_device, cpu);
477 	dev = td->evtdev;
478 
479 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
480 		goto out;
481 
482 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
483 		if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
484 			cpu_set(cpu, tick_broadcast_oneshot_mask);
485 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
486 			if (dev->next_event.tv64 < bc->next_event.tv64)
487 				tick_broadcast_set_event(dev->next_event, 1);
488 		}
489 	} else {
490 		if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
491 			cpu_clear(cpu, tick_broadcast_oneshot_mask);
492 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
493 			if (dev->next_event.tv64 != KTIME_MAX)
494 				tick_program_event(dev->next_event, 1);
495 		}
496 	}
497 
498 out:
499 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
500 }
501 
502 /*
503  * Reset the one shot broadcast for a cpu
504  *
505  * Called with tick_broadcast_lock held
506  */
507 static void tick_broadcast_clear_oneshot(int cpu)
508 {
509 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
510 }
511 
512 /**
513  * tick_broadcast_setup_highres - setup the broadcast device for highres
514  */
515 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
516 {
517 	bc->event_handler = tick_handle_oneshot_broadcast;
518 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
519 	bc->next_event.tv64 = KTIME_MAX;
520 }
521 
522 /*
523  * Select oneshot operating mode for the broadcast device
524  */
525 void tick_broadcast_switch_to_oneshot(void)
526 {
527 	struct clock_event_device *bc;
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&tick_broadcast_lock, flags);
531 
532 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
533 	bc = tick_broadcast_device.evtdev;
534 	if (bc)
535 		tick_broadcast_setup_oneshot(bc);
536 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
537 }
538 
539 
540 /*
541  * Remove a dead CPU from broadcasting
542  */
543 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
544 {
545 	unsigned long flags;
546 	unsigned int cpu = *cpup;
547 
548 	spin_lock_irqsave(&tick_broadcast_lock, flags);
549 
550 	/*
551 	 * Clear the broadcast mask flag for the dead cpu, but do not
552 	 * stop the broadcast device!
553 	 */
554 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
555 
556 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
557 }
558 
559 #endif
560