1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/irq.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/tick.h> 22 23 #include "tick-internal.h" 24 25 /* 26 * Broadcast support for broken x86 hardware, where the local apic 27 * timer stops in C3 state. 28 */ 29 30 struct tick_device tick_broadcast_device; 31 static cpumask_t tick_broadcast_mask; 32 static DEFINE_SPINLOCK(tick_broadcast_lock); 33 34 #ifdef CONFIG_TICK_ONESHOT 35 static void tick_broadcast_clear_oneshot(int cpu); 36 #else 37 static inline void tick_broadcast_clear_oneshot(int cpu) { } 38 #endif 39 40 /* 41 * Debugging: see timer_list.c 42 */ 43 struct tick_device *tick_get_broadcast_device(void) 44 { 45 return &tick_broadcast_device; 46 } 47 48 cpumask_t *tick_get_broadcast_mask(void) 49 { 50 return &tick_broadcast_mask; 51 } 52 53 /* 54 * Start the device in periodic mode 55 */ 56 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 57 { 58 if (bc) 59 tick_setup_periodic(bc, 1); 60 } 61 62 /* 63 * Check, if the device can be utilized as broadcast device: 64 */ 65 int tick_check_broadcast_device(struct clock_event_device *dev) 66 { 67 if ((tick_broadcast_device.evtdev && 68 tick_broadcast_device.evtdev->rating >= dev->rating) || 69 (dev->features & CLOCK_EVT_FEAT_C3STOP)) 70 return 0; 71 72 clockevents_exchange_device(NULL, dev); 73 tick_broadcast_device.evtdev = dev; 74 if (!cpus_empty(tick_broadcast_mask)) 75 tick_broadcast_start_periodic(dev); 76 return 1; 77 } 78 79 /* 80 * Check, if the device is the broadcast device 81 */ 82 int tick_is_broadcast_device(struct clock_event_device *dev) 83 { 84 return (dev && tick_broadcast_device.evtdev == dev); 85 } 86 87 /* 88 * Check, if the device is disfunctional and a place holder, which 89 * needs to be handled by the broadcast device. 90 */ 91 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 92 { 93 unsigned long flags; 94 int ret = 0; 95 96 spin_lock_irqsave(&tick_broadcast_lock, flags); 97 98 /* 99 * Devices might be registered with both periodic and oneshot 100 * mode disabled. This signals, that the device needs to be 101 * operated from the broadcast device and is a placeholder for 102 * the cpu local device. 103 */ 104 if (!tick_device_is_functional(dev)) { 105 dev->event_handler = tick_handle_periodic; 106 cpu_set(cpu, tick_broadcast_mask); 107 tick_broadcast_start_periodic(tick_broadcast_device.evtdev); 108 ret = 1; 109 } else { 110 /* 111 * When the new device is not affected by the stop 112 * feature and the cpu is marked in the broadcast mask 113 * then clear the broadcast bit. 114 */ 115 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) { 116 int cpu = smp_processor_id(); 117 118 cpu_clear(cpu, tick_broadcast_mask); 119 tick_broadcast_clear_oneshot(cpu); 120 } 121 } 122 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 123 return ret; 124 } 125 126 /* 127 * Broadcast the event to the cpus, which are set in the mask 128 */ 129 int tick_do_broadcast(cpumask_t mask) 130 { 131 int ret = 0, cpu = smp_processor_id(); 132 struct tick_device *td; 133 134 /* 135 * Check, if the current cpu is in the mask 136 */ 137 if (cpu_isset(cpu, mask)) { 138 cpu_clear(cpu, mask); 139 td = &per_cpu(tick_cpu_device, cpu); 140 td->evtdev->event_handler(td->evtdev); 141 ret = 1; 142 } 143 144 if (!cpus_empty(mask)) { 145 /* 146 * It might be necessary to actually check whether the devices 147 * have different broadcast functions. For now, just use the 148 * one of the first device. This works as long as we have this 149 * misfeature only on x86 (lapic) 150 */ 151 cpu = first_cpu(mask); 152 td = &per_cpu(tick_cpu_device, cpu); 153 td->evtdev->broadcast(mask); 154 ret = 1; 155 } 156 return ret; 157 } 158 159 /* 160 * Periodic broadcast: 161 * - invoke the broadcast handlers 162 */ 163 static void tick_do_periodic_broadcast(void) 164 { 165 cpumask_t mask; 166 167 spin_lock(&tick_broadcast_lock); 168 169 cpus_and(mask, cpu_online_map, tick_broadcast_mask); 170 tick_do_broadcast(mask); 171 172 spin_unlock(&tick_broadcast_lock); 173 } 174 175 /* 176 * Event handler for periodic broadcast ticks 177 */ 178 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 179 { 180 tick_do_periodic_broadcast(); 181 182 /* 183 * The device is in periodic mode. No reprogramming necessary: 184 */ 185 if (dev->mode == CLOCK_EVT_MODE_PERIODIC) 186 return; 187 188 /* 189 * Setup the next period for devices, which do not have 190 * periodic mode: 191 */ 192 for (;;) { 193 ktime_t next = ktime_add(dev->next_event, tick_period); 194 195 if (!clockevents_program_event(dev, next, ktime_get())) 196 return; 197 tick_do_periodic_broadcast(); 198 } 199 } 200 201 /* 202 * Powerstate information: The system enters/leaves a state, where 203 * affected devices might stop 204 */ 205 static void tick_do_broadcast_on_off(void *why) 206 { 207 struct clock_event_device *bc, *dev; 208 struct tick_device *td; 209 unsigned long flags, *reason = why; 210 int cpu; 211 212 spin_lock_irqsave(&tick_broadcast_lock, flags); 213 214 cpu = smp_processor_id(); 215 td = &per_cpu(tick_cpu_device, cpu); 216 dev = td->evtdev; 217 bc = tick_broadcast_device.evtdev; 218 219 /* 220 * Is the device not affected by the powerstate ? 221 */ 222 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 223 goto out; 224 225 /* 226 * Defect device ? 227 */ 228 if (!tick_device_is_functional(dev)) { 229 /* 230 * AMD C1E wreckage fixup: 231 * 232 * Device was registered functional in the first 233 * place. Now the secondary CPU detected the C1E 234 * misfeature and notifies us to fix it up 235 */ 236 if (*reason != CLOCK_EVT_NOTIFY_BROADCAST_FORCE) 237 goto out; 238 } 239 240 switch (*reason) { 241 case CLOCK_EVT_NOTIFY_BROADCAST_ON: 242 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 243 if (!cpu_isset(cpu, tick_broadcast_mask)) { 244 cpu_set(cpu, tick_broadcast_mask); 245 if (td->mode == TICKDEV_MODE_PERIODIC) 246 clockevents_set_mode(dev, 247 CLOCK_EVT_MODE_SHUTDOWN); 248 } 249 break; 250 case CLOCK_EVT_NOTIFY_BROADCAST_OFF: 251 if (cpu_isset(cpu, tick_broadcast_mask)) { 252 cpu_clear(cpu, tick_broadcast_mask); 253 if (td->mode == TICKDEV_MODE_PERIODIC) 254 tick_setup_periodic(dev, 0); 255 } 256 break; 257 } 258 259 if (cpus_empty(tick_broadcast_mask)) 260 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 261 else { 262 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 263 tick_broadcast_start_periodic(bc); 264 else 265 tick_broadcast_setup_oneshot(bc); 266 } 267 out: 268 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 269 } 270 271 /* 272 * Powerstate information: The system enters/leaves a state, where 273 * affected devices might stop. 274 */ 275 void tick_broadcast_on_off(unsigned long reason, int *oncpu) 276 { 277 if (!cpu_isset(*oncpu, cpu_online_map)) 278 printk(KERN_ERR "tick-braodcast: ignoring broadcast for " 279 "offline CPU #%d\n", *oncpu); 280 else 281 smp_call_function_single(*oncpu, tick_do_broadcast_on_off, 282 &reason, 1, 1); 283 } 284 285 /* 286 * Set the periodic handler depending on broadcast on/off 287 */ 288 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 289 { 290 if (!broadcast) 291 dev->event_handler = tick_handle_periodic; 292 else 293 dev->event_handler = tick_handle_periodic_broadcast; 294 } 295 296 /* 297 * Remove a CPU from broadcasting 298 */ 299 void tick_shutdown_broadcast(unsigned int *cpup) 300 { 301 struct clock_event_device *bc; 302 unsigned long flags; 303 unsigned int cpu = *cpup; 304 305 spin_lock_irqsave(&tick_broadcast_lock, flags); 306 307 bc = tick_broadcast_device.evtdev; 308 cpu_clear(cpu, tick_broadcast_mask); 309 310 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 311 if (bc && cpus_empty(tick_broadcast_mask)) 312 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 313 } 314 315 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 316 } 317 318 void tick_suspend_broadcast(void) 319 { 320 struct clock_event_device *bc; 321 unsigned long flags; 322 323 spin_lock_irqsave(&tick_broadcast_lock, flags); 324 325 bc = tick_broadcast_device.evtdev; 326 if (bc) 327 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); 328 329 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 330 } 331 332 int tick_resume_broadcast(void) 333 { 334 struct clock_event_device *bc; 335 unsigned long flags; 336 int broadcast = 0; 337 338 spin_lock_irqsave(&tick_broadcast_lock, flags); 339 340 bc = tick_broadcast_device.evtdev; 341 342 if (bc) { 343 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); 344 345 switch (tick_broadcast_device.mode) { 346 case TICKDEV_MODE_PERIODIC: 347 if(!cpus_empty(tick_broadcast_mask)) 348 tick_broadcast_start_periodic(bc); 349 broadcast = cpu_isset(smp_processor_id(), 350 tick_broadcast_mask); 351 break; 352 case TICKDEV_MODE_ONESHOT: 353 broadcast = tick_resume_broadcast_oneshot(bc); 354 break; 355 } 356 } 357 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 358 359 return broadcast; 360 } 361 362 363 #ifdef CONFIG_TICK_ONESHOT 364 365 static cpumask_t tick_broadcast_oneshot_mask; 366 367 /* 368 * Debugging: see timer_list.c 369 */ 370 cpumask_t *tick_get_broadcast_oneshot_mask(void) 371 { 372 return &tick_broadcast_oneshot_mask; 373 } 374 375 static int tick_broadcast_set_event(ktime_t expires, int force) 376 { 377 struct clock_event_device *bc = tick_broadcast_device.evtdev; 378 ktime_t now = ktime_get(); 379 int res; 380 381 for(;;) { 382 res = clockevents_program_event(bc, expires, now); 383 if (!res || !force) 384 return res; 385 now = ktime_get(); 386 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns)); 387 } 388 } 389 390 int tick_resume_broadcast_oneshot(struct clock_event_device *bc) 391 { 392 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 393 return 0; 394 } 395 396 /* 397 * Reprogram the broadcast device: 398 * 399 * Called with tick_broadcast_lock held and interrupts disabled. 400 */ 401 static int tick_broadcast_reprogram(void) 402 { 403 ktime_t expires = { .tv64 = KTIME_MAX }; 404 struct tick_device *td; 405 int cpu; 406 407 /* 408 * Find the event which expires next: 409 */ 410 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS; 411 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) { 412 td = &per_cpu(tick_cpu_device, cpu); 413 if (td->evtdev->next_event.tv64 < expires.tv64) 414 expires = td->evtdev->next_event; 415 } 416 417 if (expires.tv64 == KTIME_MAX) 418 return 0; 419 420 return tick_broadcast_set_event(expires, 0); 421 } 422 423 /* 424 * Handle oneshot mode broadcasting 425 */ 426 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 427 { 428 struct tick_device *td; 429 cpumask_t mask; 430 ktime_t now; 431 int cpu; 432 433 spin_lock(&tick_broadcast_lock); 434 again: 435 dev->next_event.tv64 = KTIME_MAX; 436 mask = CPU_MASK_NONE; 437 now = ktime_get(); 438 /* Find all expired events */ 439 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS; 440 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) { 441 td = &per_cpu(tick_cpu_device, cpu); 442 if (td->evtdev->next_event.tv64 <= now.tv64) 443 cpu_set(cpu, mask); 444 } 445 446 /* 447 * Wakeup the cpus which have an expired event. The broadcast 448 * device is reprogrammed in the return from idle code. 449 */ 450 if (!tick_do_broadcast(mask)) { 451 /* 452 * The global event did not expire any CPU local 453 * events. This happens in dyntick mode, as the 454 * maximum PIT delta is quite small. 455 */ 456 if (tick_broadcast_reprogram()) 457 goto again; 458 } 459 spin_unlock(&tick_broadcast_lock); 460 } 461 462 /* 463 * Powerstate information: The system enters/leaves a state, where 464 * affected devices might stop 465 */ 466 void tick_broadcast_oneshot_control(unsigned long reason) 467 { 468 struct clock_event_device *bc, *dev; 469 struct tick_device *td; 470 unsigned long flags; 471 int cpu; 472 473 spin_lock_irqsave(&tick_broadcast_lock, flags); 474 475 /* 476 * Periodic mode does not care about the enter/exit of power 477 * states 478 */ 479 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 480 goto out; 481 482 bc = tick_broadcast_device.evtdev; 483 cpu = smp_processor_id(); 484 td = &per_cpu(tick_cpu_device, cpu); 485 dev = td->evtdev; 486 487 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 488 goto out; 489 490 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { 491 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) { 492 cpu_set(cpu, tick_broadcast_oneshot_mask); 493 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); 494 if (dev->next_event.tv64 < bc->next_event.tv64) 495 tick_broadcast_set_event(dev->next_event, 1); 496 } 497 } else { 498 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) { 499 cpu_clear(cpu, tick_broadcast_oneshot_mask); 500 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); 501 if (dev->next_event.tv64 != KTIME_MAX) 502 tick_program_event(dev->next_event, 1); 503 } 504 } 505 506 out: 507 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 508 } 509 510 /* 511 * Reset the one shot broadcast for a cpu 512 * 513 * Called with tick_broadcast_lock held 514 */ 515 static void tick_broadcast_clear_oneshot(int cpu) 516 { 517 cpu_clear(cpu, tick_broadcast_oneshot_mask); 518 } 519 520 /** 521 * tick_broadcast_setup_highres - setup the broadcast device for highres 522 */ 523 void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 524 { 525 bc->event_handler = tick_handle_oneshot_broadcast; 526 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); 527 bc->next_event.tv64 = KTIME_MAX; 528 } 529 530 /* 531 * Select oneshot operating mode for the broadcast device 532 */ 533 void tick_broadcast_switch_to_oneshot(void) 534 { 535 struct clock_event_device *bc; 536 unsigned long flags; 537 538 spin_lock_irqsave(&tick_broadcast_lock, flags); 539 540 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 541 bc = tick_broadcast_device.evtdev; 542 if (bc) 543 tick_broadcast_setup_oneshot(bc); 544 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 545 } 546 547 548 /* 549 * Remove a dead CPU from broadcasting 550 */ 551 void tick_shutdown_broadcast_oneshot(unsigned int *cpup) 552 { 553 unsigned long flags; 554 unsigned int cpu = *cpup; 555 556 spin_lock_irqsave(&tick_broadcast_lock, flags); 557 558 /* 559 * Clear the broadcast mask flag for the dead cpu, but do not 560 * stop the broadcast device! 561 */ 562 cpu_clear(cpu, tick_broadcast_oneshot_mask); 563 564 spin_unlock_irqrestore(&tick_broadcast_lock, flags); 565 } 566 567 #endif 568