xref: /linux/kernel/time/tick-broadcast.c (revision 04c71976500352d02f60616d2b960267d8c5fe24)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29 
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33 
34 #ifdef CONFIG_TICK_ONESHOT
35 static void tick_broadcast_clear_oneshot(int cpu);
36 #else
37 static inline void tick_broadcast_clear_oneshot(int cpu) { }
38 #endif
39 
40 /*
41  * Debugging: see timer_list.c
42  */
43 struct tick_device *tick_get_broadcast_device(void)
44 {
45 	return &tick_broadcast_device;
46 }
47 
48 cpumask_t *tick_get_broadcast_mask(void)
49 {
50 	return &tick_broadcast_mask;
51 }
52 
53 /*
54  * Start the device in periodic mode
55  */
56 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
57 {
58 	if (bc)
59 		tick_setup_periodic(bc, 1);
60 }
61 
62 /*
63  * Check, if the device can be utilized as broadcast device:
64  */
65 int tick_check_broadcast_device(struct clock_event_device *dev)
66 {
67 	if ((tick_broadcast_device.evtdev &&
68 	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
69 	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
70 		return 0;
71 
72 	clockevents_exchange_device(NULL, dev);
73 	tick_broadcast_device.evtdev = dev;
74 	if (!cpus_empty(tick_broadcast_mask))
75 		tick_broadcast_start_periodic(dev);
76 	return 1;
77 }
78 
79 /*
80  * Check, if the device is the broadcast device
81  */
82 int tick_is_broadcast_device(struct clock_event_device *dev)
83 {
84 	return (dev && tick_broadcast_device.evtdev == dev);
85 }
86 
87 /*
88  * Check, if the device is disfunctional and a place holder, which
89  * needs to be handled by the broadcast device.
90  */
91 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
92 {
93 	unsigned long flags;
94 	int ret = 0;
95 
96 	spin_lock_irqsave(&tick_broadcast_lock, flags);
97 
98 	/*
99 	 * Devices might be registered with both periodic and oneshot
100 	 * mode disabled. This signals, that the device needs to be
101 	 * operated from the broadcast device and is a placeholder for
102 	 * the cpu local device.
103 	 */
104 	if (!tick_device_is_functional(dev)) {
105 		dev->event_handler = tick_handle_periodic;
106 		cpu_set(cpu, tick_broadcast_mask);
107 		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
108 		ret = 1;
109 	} else {
110 		/*
111 		 * When the new device is not affected by the stop
112 		 * feature and the cpu is marked in the broadcast mask
113 		 * then clear the broadcast bit.
114 		 */
115 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
116 			int cpu = smp_processor_id();
117 
118 			cpu_clear(cpu, tick_broadcast_mask);
119 			tick_broadcast_clear_oneshot(cpu);
120 		}
121 	}
122 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
123 	return ret;
124 }
125 
126 /*
127  * Broadcast the event to the cpus, which are set in the mask
128  */
129 int tick_do_broadcast(cpumask_t mask)
130 {
131 	int ret = 0, cpu = smp_processor_id();
132 	struct tick_device *td;
133 
134 	/*
135 	 * Check, if the current cpu is in the mask
136 	 */
137 	if (cpu_isset(cpu, mask)) {
138 		cpu_clear(cpu, mask);
139 		td = &per_cpu(tick_cpu_device, cpu);
140 		td->evtdev->event_handler(td->evtdev);
141 		ret = 1;
142 	}
143 
144 	if (!cpus_empty(mask)) {
145 		/*
146 		 * It might be necessary to actually check whether the devices
147 		 * have different broadcast functions. For now, just use the
148 		 * one of the first device. This works as long as we have this
149 		 * misfeature only on x86 (lapic)
150 		 */
151 		cpu = first_cpu(mask);
152 		td = &per_cpu(tick_cpu_device, cpu);
153 		td->evtdev->broadcast(mask);
154 		ret = 1;
155 	}
156 	return ret;
157 }
158 
159 /*
160  * Periodic broadcast:
161  * - invoke the broadcast handlers
162  */
163 static void tick_do_periodic_broadcast(void)
164 {
165 	cpumask_t mask;
166 
167 	spin_lock(&tick_broadcast_lock);
168 
169 	cpus_and(mask, cpu_online_map, tick_broadcast_mask);
170 	tick_do_broadcast(mask);
171 
172 	spin_unlock(&tick_broadcast_lock);
173 }
174 
175 /*
176  * Event handler for periodic broadcast ticks
177  */
178 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
179 {
180 	tick_do_periodic_broadcast();
181 
182 	/*
183 	 * The device is in periodic mode. No reprogramming necessary:
184 	 */
185 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 		return;
187 
188 	/*
189 	 * Setup the next period for devices, which do not have
190 	 * periodic mode:
191 	 */
192 	for (;;) {
193 		ktime_t next = ktime_add(dev->next_event, tick_period);
194 
195 		if (!clockevents_program_event(dev, next, ktime_get()))
196 			return;
197 		tick_do_periodic_broadcast();
198 	}
199 }
200 
201 /*
202  * Powerstate information: The system enters/leaves a state, where
203  * affected devices might stop
204  */
205 static void tick_do_broadcast_on_off(void *why)
206 {
207 	struct clock_event_device *bc, *dev;
208 	struct tick_device *td;
209 	unsigned long flags, *reason = why;
210 	int cpu;
211 
212 	spin_lock_irqsave(&tick_broadcast_lock, flags);
213 
214 	cpu = smp_processor_id();
215 	td = &per_cpu(tick_cpu_device, cpu);
216 	dev = td->evtdev;
217 	bc = tick_broadcast_device.evtdev;
218 
219 	/*
220 	 * Is the device not affected by the powerstate ?
221 	 */
222 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
223 		goto out;
224 
225 	/*
226 	 * Defect device ?
227 	 */
228 	if (!tick_device_is_functional(dev)) {
229 		/*
230 		 * AMD C1E wreckage fixup:
231 		 *
232 		 * Device was registered functional in the first
233 		 * place. Now the secondary CPU detected the C1E
234 		 * misfeature and notifies us to fix it up
235 		 */
236 		if (*reason != CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
237 			goto out;
238 	}
239 
240 	switch (*reason) {
241 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
242 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
243 		if (!cpu_isset(cpu, tick_broadcast_mask)) {
244 			cpu_set(cpu, tick_broadcast_mask);
245 			if (td->mode == TICKDEV_MODE_PERIODIC)
246 				clockevents_set_mode(dev,
247 						     CLOCK_EVT_MODE_SHUTDOWN);
248 		}
249 		break;
250 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
251 		if (cpu_isset(cpu, tick_broadcast_mask)) {
252 			cpu_clear(cpu, tick_broadcast_mask);
253 			if (td->mode == TICKDEV_MODE_PERIODIC)
254 				tick_setup_periodic(dev, 0);
255 		}
256 		break;
257 	}
258 
259 	if (cpus_empty(tick_broadcast_mask))
260 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
261 	else {
262 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
263 			tick_broadcast_start_periodic(bc);
264 		else
265 			tick_broadcast_setup_oneshot(bc);
266 	}
267 out:
268 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
269 }
270 
271 /*
272  * Powerstate information: The system enters/leaves a state, where
273  * affected devices might stop.
274  */
275 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
276 {
277 	if (!cpu_isset(*oncpu, cpu_online_map))
278 		printk(KERN_ERR "tick-braodcast: ignoring broadcast for "
279 		       "offline CPU #%d\n", *oncpu);
280 	else
281 		smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
282 					 &reason, 1, 1);
283 }
284 
285 /*
286  * Set the periodic handler depending on broadcast on/off
287  */
288 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
289 {
290 	if (!broadcast)
291 		dev->event_handler = tick_handle_periodic;
292 	else
293 		dev->event_handler = tick_handle_periodic_broadcast;
294 }
295 
296 /*
297  * Remove a CPU from broadcasting
298  */
299 void tick_shutdown_broadcast(unsigned int *cpup)
300 {
301 	struct clock_event_device *bc;
302 	unsigned long flags;
303 	unsigned int cpu = *cpup;
304 
305 	spin_lock_irqsave(&tick_broadcast_lock, flags);
306 
307 	bc = tick_broadcast_device.evtdev;
308 	cpu_clear(cpu, tick_broadcast_mask);
309 
310 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
311 		if (bc && cpus_empty(tick_broadcast_mask))
312 			clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
313 	}
314 
315 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
316 }
317 
318 void tick_suspend_broadcast(void)
319 {
320 	struct clock_event_device *bc;
321 	unsigned long flags;
322 
323 	spin_lock_irqsave(&tick_broadcast_lock, flags);
324 
325 	bc = tick_broadcast_device.evtdev;
326 	if (bc)
327 		clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
328 
329 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
330 }
331 
332 int tick_resume_broadcast(void)
333 {
334 	struct clock_event_device *bc;
335 	unsigned long flags;
336 	int broadcast = 0;
337 
338 	spin_lock_irqsave(&tick_broadcast_lock, flags);
339 
340 	bc = tick_broadcast_device.evtdev;
341 
342 	if (bc) {
343 		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
344 
345 		switch (tick_broadcast_device.mode) {
346 		case TICKDEV_MODE_PERIODIC:
347 			if(!cpus_empty(tick_broadcast_mask))
348 				tick_broadcast_start_periodic(bc);
349 			broadcast = cpu_isset(smp_processor_id(),
350 					      tick_broadcast_mask);
351 			break;
352 		case TICKDEV_MODE_ONESHOT:
353 			broadcast = tick_resume_broadcast_oneshot(bc);
354 			break;
355 		}
356 	}
357 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
358 
359 	return broadcast;
360 }
361 
362 
363 #ifdef CONFIG_TICK_ONESHOT
364 
365 static cpumask_t tick_broadcast_oneshot_mask;
366 
367 /*
368  * Debugging: see timer_list.c
369  */
370 cpumask_t *tick_get_broadcast_oneshot_mask(void)
371 {
372 	return &tick_broadcast_oneshot_mask;
373 }
374 
375 static int tick_broadcast_set_event(ktime_t expires, int force)
376 {
377 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
378 	ktime_t now = ktime_get();
379 	int res;
380 
381 	for(;;) {
382 		res = clockevents_program_event(bc, expires, now);
383 		if (!res || !force)
384 			return res;
385 		now = ktime_get();
386 		expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
387 	}
388 }
389 
390 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
391 {
392 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
393 	return 0;
394 }
395 
396 /*
397  * Reprogram the broadcast device:
398  *
399  * Called with tick_broadcast_lock held and interrupts disabled.
400  */
401 static int tick_broadcast_reprogram(void)
402 {
403 	ktime_t expires = { .tv64 = KTIME_MAX };
404 	struct tick_device *td;
405 	int cpu;
406 
407 	/*
408 	 * Find the event which expires next:
409 	 */
410 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
411 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
412 		td = &per_cpu(tick_cpu_device, cpu);
413 		if (td->evtdev->next_event.tv64 < expires.tv64)
414 			expires = td->evtdev->next_event;
415 	}
416 
417 	if (expires.tv64 == KTIME_MAX)
418 		return 0;
419 
420 	return tick_broadcast_set_event(expires, 0);
421 }
422 
423 /*
424  * Handle oneshot mode broadcasting
425  */
426 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
427 {
428 	struct tick_device *td;
429 	cpumask_t mask;
430 	ktime_t now;
431 	int cpu;
432 
433 	spin_lock(&tick_broadcast_lock);
434 again:
435 	dev->next_event.tv64 = KTIME_MAX;
436 	mask = CPU_MASK_NONE;
437 	now = ktime_get();
438 	/* Find all expired events */
439 	for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
440 	     cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
441 		td = &per_cpu(tick_cpu_device, cpu);
442 		if (td->evtdev->next_event.tv64 <= now.tv64)
443 			cpu_set(cpu, mask);
444 	}
445 
446 	/*
447 	 * Wakeup the cpus which have an expired event. The broadcast
448 	 * device is reprogrammed in the return from idle code.
449 	 */
450 	if (!tick_do_broadcast(mask)) {
451 		/*
452 		 * The global event did not expire any CPU local
453 		 * events. This happens in dyntick mode, as the
454 		 * maximum PIT delta is quite small.
455 		 */
456 		if (tick_broadcast_reprogram())
457 			goto again;
458 	}
459 	spin_unlock(&tick_broadcast_lock);
460 }
461 
462 /*
463  * Powerstate information: The system enters/leaves a state, where
464  * affected devices might stop
465  */
466 void tick_broadcast_oneshot_control(unsigned long reason)
467 {
468 	struct clock_event_device *bc, *dev;
469 	struct tick_device *td;
470 	unsigned long flags;
471 	int cpu;
472 
473 	spin_lock_irqsave(&tick_broadcast_lock, flags);
474 
475 	/*
476 	 * Periodic mode does not care about the enter/exit of power
477 	 * states
478 	 */
479 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
480 		goto out;
481 
482 	bc = tick_broadcast_device.evtdev;
483 	cpu = smp_processor_id();
484 	td = &per_cpu(tick_cpu_device, cpu);
485 	dev = td->evtdev;
486 
487 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
488 		goto out;
489 
490 	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
491 		if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
492 			cpu_set(cpu, tick_broadcast_oneshot_mask);
493 			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
494 			if (dev->next_event.tv64 < bc->next_event.tv64)
495 				tick_broadcast_set_event(dev->next_event, 1);
496 		}
497 	} else {
498 		if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
499 			cpu_clear(cpu, tick_broadcast_oneshot_mask);
500 			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
501 			if (dev->next_event.tv64 != KTIME_MAX)
502 				tick_program_event(dev->next_event, 1);
503 		}
504 	}
505 
506 out:
507 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
508 }
509 
510 /*
511  * Reset the one shot broadcast for a cpu
512  *
513  * Called with tick_broadcast_lock held
514  */
515 static void tick_broadcast_clear_oneshot(int cpu)
516 {
517 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
518 }
519 
520 /**
521  * tick_broadcast_setup_highres - setup the broadcast device for highres
522  */
523 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
524 {
525 	bc->event_handler = tick_handle_oneshot_broadcast;
526 	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
527 	bc->next_event.tv64 = KTIME_MAX;
528 }
529 
530 /*
531  * Select oneshot operating mode for the broadcast device
532  */
533 void tick_broadcast_switch_to_oneshot(void)
534 {
535 	struct clock_event_device *bc;
536 	unsigned long flags;
537 
538 	spin_lock_irqsave(&tick_broadcast_lock, flags);
539 
540 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
541 	bc = tick_broadcast_device.evtdev;
542 	if (bc)
543 		tick_broadcast_setup_oneshot(bc);
544 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
545 }
546 
547 
548 /*
549  * Remove a dead CPU from broadcasting
550  */
551 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
552 {
553 	unsigned long flags;
554 	unsigned int cpu = *cpup;
555 
556 	spin_lock_irqsave(&tick_broadcast_lock, flags);
557 
558 	/*
559 	 * Clear the broadcast mask flag for the dead cpu, but do not
560 	 * stop the broadcast device!
561 	 */
562 	cpu_clear(cpu, tick_broadcast_oneshot_mask);
563 
564 	spin_unlock_irqrestore(&tick_broadcast_lock, flags);
565 }
566 
567 #endif
568