1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/smp.h> 22 #include <linux/module.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Broadcast support for broken x86 hardware, where the local apic 28 * timer stops in C3 state. 29 */ 30 31 static struct tick_device tick_broadcast_device; 32 static cpumask_var_t tick_broadcast_mask; 33 static cpumask_var_t tick_broadcast_on; 34 static cpumask_var_t tmpmask; 35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 36 static int tick_broadcast_forced; 37 38 #ifdef CONFIG_TICK_ONESHOT 39 static void tick_broadcast_clear_oneshot(int cpu); 40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); 41 #else 42 static inline void tick_broadcast_clear_oneshot(int cpu) { } 43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } 44 #endif 45 46 /* 47 * Debugging: see timer_list.c 48 */ 49 struct tick_device *tick_get_broadcast_device(void) 50 { 51 return &tick_broadcast_device; 52 } 53 54 struct cpumask *tick_get_broadcast_mask(void) 55 { 56 return tick_broadcast_mask; 57 } 58 59 /* 60 * Start the device in periodic mode 61 */ 62 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 63 { 64 if (bc) 65 tick_setup_periodic(bc, 1); 66 } 67 68 /* 69 * Check, if the device can be utilized as broadcast device: 70 */ 71 static bool tick_check_broadcast_device(struct clock_event_device *curdev, 72 struct clock_event_device *newdev) 73 { 74 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || 75 (newdev->features & CLOCK_EVT_FEAT_PERCPU) || 76 (newdev->features & CLOCK_EVT_FEAT_C3STOP)) 77 return false; 78 79 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && 80 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 81 return false; 82 83 return !curdev || newdev->rating > curdev->rating; 84 } 85 86 /* 87 * Conditionally install/replace broadcast device 88 */ 89 void tick_install_broadcast_device(struct clock_event_device *dev) 90 { 91 struct clock_event_device *cur = tick_broadcast_device.evtdev; 92 93 if (!tick_check_broadcast_device(cur, dev)) 94 return; 95 96 if (!try_module_get(dev->owner)) 97 return; 98 99 clockevents_exchange_device(cur, dev); 100 if (cur) 101 cur->event_handler = clockevents_handle_noop; 102 tick_broadcast_device.evtdev = dev; 103 if (!cpumask_empty(tick_broadcast_mask)) 104 tick_broadcast_start_periodic(dev); 105 /* 106 * Inform all cpus about this. We might be in a situation 107 * where we did not switch to oneshot mode because the per cpu 108 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack 109 * of a oneshot capable broadcast device. Without that 110 * notification the systems stays stuck in periodic mode 111 * forever. 112 */ 113 if (dev->features & CLOCK_EVT_FEAT_ONESHOT) 114 tick_clock_notify(); 115 } 116 117 /* 118 * Check, if the device is the broadcast device 119 */ 120 int tick_is_broadcast_device(struct clock_event_device *dev) 121 { 122 return (dev && tick_broadcast_device.evtdev == dev); 123 } 124 125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) 126 { 127 int ret = -ENODEV; 128 129 if (tick_is_broadcast_device(dev)) { 130 raw_spin_lock(&tick_broadcast_lock); 131 ret = __clockevents_update_freq(dev, freq); 132 raw_spin_unlock(&tick_broadcast_lock); 133 } 134 return ret; 135 } 136 137 138 static void err_broadcast(const struct cpumask *mask) 139 { 140 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); 141 } 142 143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev) 144 { 145 if (!dev->broadcast) 146 dev->broadcast = tick_broadcast; 147 if (!dev->broadcast) { 148 pr_warn_once("%s depends on broadcast, but no broadcast function available\n", 149 dev->name); 150 dev->broadcast = err_broadcast; 151 } 152 } 153 154 /* 155 * Check, if the device is disfunctional and a place holder, which 156 * needs to be handled by the broadcast device. 157 */ 158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 159 { 160 struct clock_event_device *bc = tick_broadcast_device.evtdev; 161 unsigned long flags; 162 int ret; 163 164 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 165 166 /* 167 * Devices might be registered with both periodic and oneshot 168 * mode disabled. This signals, that the device needs to be 169 * operated from the broadcast device and is a placeholder for 170 * the cpu local device. 171 */ 172 if (!tick_device_is_functional(dev)) { 173 dev->event_handler = tick_handle_periodic; 174 tick_device_setup_broadcast_func(dev); 175 cpumask_set_cpu(cpu, tick_broadcast_mask); 176 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 177 tick_broadcast_start_periodic(bc); 178 else 179 tick_broadcast_setup_oneshot(bc); 180 ret = 1; 181 } else { 182 /* 183 * Clear the broadcast bit for this cpu if the 184 * device is not power state affected. 185 */ 186 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 187 cpumask_clear_cpu(cpu, tick_broadcast_mask); 188 else 189 tick_device_setup_broadcast_func(dev); 190 191 /* 192 * Clear the broadcast bit if the CPU is not in 193 * periodic broadcast on state. 194 */ 195 if (!cpumask_test_cpu(cpu, tick_broadcast_on)) 196 cpumask_clear_cpu(cpu, tick_broadcast_mask); 197 198 switch (tick_broadcast_device.mode) { 199 case TICKDEV_MODE_ONESHOT: 200 /* 201 * If the system is in oneshot mode we can 202 * unconditionally clear the oneshot mask bit, 203 * because the CPU is running and therefore 204 * not in an idle state which causes the power 205 * state affected device to stop. Let the 206 * caller initialize the device. 207 */ 208 tick_broadcast_clear_oneshot(cpu); 209 ret = 0; 210 break; 211 212 case TICKDEV_MODE_PERIODIC: 213 /* 214 * If the system is in periodic mode, check 215 * whether the broadcast device can be 216 * switched off now. 217 */ 218 if (cpumask_empty(tick_broadcast_mask) && bc) 219 clockevents_shutdown(bc); 220 /* 221 * If we kept the cpu in the broadcast mask, 222 * tell the caller to leave the per cpu device 223 * in shutdown state. The periodic interrupt 224 * is delivered by the broadcast device. 225 */ 226 ret = cpumask_test_cpu(cpu, tick_broadcast_mask); 227 break; 228 default: 229 /* Nothing to do */ 230 ret = 0; 231 break; 232 } 233 } 234 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 235 return ret; 236 } 237 238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 239 int tick_receive_broadcast(void) 240 { 241 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 242 struct clock_event_device *evt = td->evtdev; 243 244 if (!evt) 245 return -ENODEV; 246 247 if (!evt->event_handler) 248 return -EINVAL; 249 250 evt->event_handler(evt); 251 return 0; 252 } 253 #endif 254 255 /* 256 * Broadcast the event to the cpus, which are set in the mask (mangled). 257 */ 258 static bool tick_do_broadcast(struct cpumask *mask) 259 { 260 int cpu = smp_processor_id(); 261 struct tick_device *td; 262 bool local = false; 263 264 /* 265 * Check, if the current cpu is in the mask 266 */ 267 if (cpumask_test_cpu(cpu, mask)) { 268 cpumask_clear_cpu(cpu, mask); 269 local = true; 270 } 271 272 if (!cpumask_empty(mask)) { 273 /* 274 * It might be necessary to actually check whether the devices 275 * have different broadcast functions. For now, just use the 276 * one of the first device. This works as long as we have this 277 * misfeature only on x86 (lapic) 278 */ 279 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 280 td->evtdev->broadcast(mask); 281 } 282 return local; 283 } 284 285 /* 286 * Periodic broadcast: 287 * - invoke the broadcast handlers 288 */ 289 static bool tick_do_periodic_broadcast(void) 290 { 291 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); 292 return tick_do_broadcast(tmpmask); 293 } 294 295 /* 296 * Event handler for periodic broadcast ticks 297 */ 298 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 299 { 300 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 301 bool bc_local; 302 303 raw_spin_lock(&tick_broadcast_lock); 304 bc_local = tick_do_periodic_broadcast(); 305 306 if (clockevent_state_oneshot(dev)) { 307 ktime_t next = ktime_add(dev->next_event, tick_period); 308 309 clockevents_program_event(dev, next, true); 310 } 311 raw_spin_unlock(&tick_broadcast_lock); 312 313 /* 314 * We run the handler of the local cpu after dropping 315 * tick_broadcast_lock because the handler might deadlock when 316 * trying to switch to oneshot mode. 317 */ 318 if (bc_local) 319 td->evtdev->event_handler(td->evtdev); 320 } 321 322 /** 323 * tick_broadcast_control - Enable/disable or force broadcast mode 324 * @mode: The selected broadcast mode 325 * 326 * Called when the system enters a state where affected tick devices 327 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. 328 * 329 * Called with interrupts disabled, so clockevents_lock is not 330 * required here because the local clock event device cannot go away 331 * under us. 332 */ 333 void tick_broadcast_control(enum tick_broadcast_mode mode) 334 { 335 struct clock_event_device *bc, *dev; 336 struct tick_device *td; 337 int cpu, bc_stopped; 338 339 td = this_cpu_ptr(&tick_cpu_device); 340 dev = td->evtdev; 341 342 /* 343 * Is the device not affected by the powerstate ? 344 */ 345 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 346 return; 347 348 if (!tick_device_is_functional(dev)) 349 return; 350 351 raw_spin_lock(&tick_broadcast_lock); 352 cpu = smp_processor_id(); 353 bc = tick_broadcast_device.evtdev; 354 bc_stopped = cpumask_empty(tick_broadcast_mask); 355 356 switch (mode) { 357 case TICK_BROADCAST_FORCE: 358 tick_broadcast_forced = 1; 359 case TICK_BROADCAST_ON: 360 cpumask_set_cpu(cpu, tick_broadcast_on); 361 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { 362 if (tick_broadcast_device.mode == 363 TICKDEV_MODE_PERIODIC) 364 clockevents_shutdown(dev); 365 } 366 break; 367 368 case TICK_BROADCAST_OFF: 369 if (tick_broadcast_forced) 370 break; 371 cpumask_clear_cpu(cpu, tick_broadcast_on); 372 if (!tick_device_is_functional(dev)) 373 break; 374 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { 375 if (tick_broadcast_device.mode == 376 TICKDEV_MODE_PERIODIC) 377 tick_setup_periodic(dev, 0); 378 } 379 break; 380 } 381 382 if (cpumask_empty(tick_broadcast_mask)) { 383 if (!bc_stopped) 384 clockevents_shutdown(bc); 385 } else if (bc_stopped) { 386 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 387 tick_broadcast_start_periodic(bc); 388 else 389 tick_broadcast_setup_oneshot(bc); 390 } 391 raw_spin_unlock(&tick_broadcast_lock); 392 } 393 EXPORT_SYMBOL_GPL(tick_broadcast_control); 394 395 /* 396 * Set the periodic handler depending on broadcast on/off 397 */ 398 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 399 { 400 if (!broadcast) 401 dev->event_handler = tick_handle_periodic; 402 else 403 dev->event_handler = tick_handle_periodic_broadcast; 404 } 405 406 #ifdef CONFIG_HOTPLUG_CPU 407 /* 408 * Remove a CPU from broadcasting 409 */ 410 void tick_shutdown_broadcast(unsigned int cpu) 411 { 412 struct clock_event_device *bc; 413 unsigned long flags; 414 415 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 416 417 bc = tick_broadcast_device.evtdev; 418 cpumask_clear_cpu(cpu, tick_broadcast_mask); 419 cpumask_clear_cpu(cpu, tick_broadcast_on); 420 421 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 422 if (bc && cpumask_empty(tick_broadcast_mask)) 423 clockevents_shutdown(bc); 424 } 425 426 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 427 } 428 #endif 429 430 void tick_suspend_broadcast(void) 431 { 432 struct clock_event_device *bc; 433 unsigned long flags; 434 435 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 436 437 bc = tick_broadcast_device.evtdev; 438 if (bc) 439 clockevents_shutdown(bc); 440 441 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 442 } 443 444 /* 445 * This is called from tick_resume_local() on a resuming CPU. That's 446 * called from the core resume function, tick_unfreeze() and the magic XEN 447 * resume hackery. 448 * 449 * In none of these cases the broadcast device mode can change and the 450 * bit of the resuming CPU in the broadcast mask is safe as well. 451 */ 452 bool tick_resume_check_broadcast(void) 453 { 454 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) 455 return false; 456 else 457 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); 458 } 459 460 void tick_resume_broadcast(void) 461 { 462 struct clock_event_device *bc; 463 unsigned long flags; 464 465 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 466 467 bc = tick_broadcast_device.evtdev; 468 469 if (bc) { 470 clockevents_tick_resume(bc); 471 472 switch (tick_broadcast_device.mode) { 473 case TICKDEV_MODE_PERIODIC: 474 if (!cpumask_empty(tick_broadcast_mask)) 475 tick_broadcast_start_periodic(bc); 476 break; 477 case TICKDEV_MODE_ONESHOT: 478 if (!cpumask_empty(tick_broadcast_mask)) 479 tick_resume_broadcast_oneshot(bc); 480 break; 481 } 482 } 483 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 484 } 485 486 #ifdef CONFIG_TICK_ONESHOT 487 488 static cpumask_var_t tick_broadcast_oneshot_mask; 489 static cpumask_var_t tick_broadcast_pending_mask; 490 static cpumask_var_t tick_broadcast_force_mask; 491 492 /* 493 * Exposed for debugging: see timer_list.c 494 */ 495 struct cpumask *tick_get_broadcast_oneshot_mask(void) 496 { 497 return tick_broadcast_oneshot_mask; 498 } 499 500 /* 501 * Called before going idle with interrupts disabled. Checks whether a 502 * broadcast event from the other core is about to happen. We detected 503 * that in tick_broadcast_oneshot_control(). The callsite can use this 504 * to avoid a deep idle transition as we are about to get the 505 * broadcast IPI right away. 506 */ 507 int tick_check_broadcast_expired(void) 508 { 509 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); 510 } 511 512 /* 513 * Set broadcast interrupt affinity 514 */ 515 static void tick_broadcast_set_affinity(struct clock_event_device *bc, 516 const struct cpumask *cpumask) 517 { 518 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) 519 return; 520 521 if (cpumask_equal(bc->cpumask, cpumask)) 522 return; 523 524 bc->cpumask = cpumask; 525 irq_set_affinity(bc->irq, bc->cpumask); 526 } 527 528 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, 529 ktime_t expires) 530 { 531 if (!clockevent_state_oneshot(bc)) 532 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 533 534 clockevents_program_event(bc, expires, 1); 535 tick_broadcast_set_affinity(bc, cpumask_of(cpu)); 536 } 537 538 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) 539 { 540 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 541 } 542 543 /* 544 * Called from irq_enter() when idle was interrupted to reenable the 545 * per cpu device. 546 */ 547 void tick_check_oneshot_broadcast_this_cpu(void) 548 { 549 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { 550 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 551 552 /* 553 * We might be in the middle of switching over from 554 * periodic to oneshot. If the CPU has not yet 555 * switched over, leave the device alone. 556 */ 557 if (td->mode == TICKDEV_MODE_ONESHOT) { 558 clockevents_switch_state(td->evtdev, 559 CLOCK_EVT_STATE_ONESHOT); 560 } 561 } 562 } 563 564 /* 565 * Handle oneshot mode broadcasting 566 */ 567 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 568 { 569 struct tick_device *td; 570 ktime_t now, next_event; 571 int cpu, next_cpu = 0; 572 bool bc_local; 573 574 raw_spin_lock(&tick_broadcast_lock); 575 dev->next_event.tv64 = KTIME_MAX; 576 next_event.tv64 = KTIME_MAX; 577 cpumask_clear(tmpmask); 578 now = ktime_get(); 579 /* Find all expired events */ 580 for_each_cpu(cpu, tick_broadcast_oneshot_mask) { 581 td = &per_cpu(tick_cpu_device, cpu); 582 if (td->evtdev->next_event.tv64 <= now.tv64) { 583 cpumask_set_cpu(cpu, tmpmask); 584 /* 585 * Mark the remote cpu in the pending mask, so 586 * it can avoid reprogramming the cpu local 587 * timer in tick_broadcast_oneshot_control(). 588 */ 589 cpumask_set_cpu(cpu, tick_broadcast_pending_mask); 590 } else if (td->evtdev->next_event.tv64 < next_event.tv64) { 591 next_event.tv64 = td->evtdev->next_event.tv64; 592 next_cpu = cpu; 593 } 594 } 595 596 /* 597 * Remove the current cpu from the pending mask. The event is 598 * delivered immediately in tick_do_broadcast() ! 599 */ 600 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); 601 602 /* Take care of enforced broadcast requests */ 603 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); 604 cpumask_clear(tick_broadcast_force_mask); 605 606 /* 607 * Sanity check. Catch the case where we try to broadcast to 608 * offline cpus. 609 */ 610 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) 611 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 612 613 /* 614 * Wakeup the cpus which have an expired event. 615 */ 616 bc_local = tick_do_broadcast(tmpmask); 617 618 /* 619 * Two reasons for reprogram: 620 * 621 * - The global event did not expire any CPU local 622 * events. This happens in dyntick mode, as the maximum PIT 623 * delta is quite small. 624 * 625 * - There are pending events on sleeping CPUs which were not 626 * in the event mask 627 */ 628 if (next_event.tv64 != KTIME_MAX) 629 tick_broadcast_set_event(dev, next_cpu, next_event); 630 631 raw_spin_unlock(&tick_broadcast_lock); 632 633 if (bc_local) { 634 td = this_cpu_ptr(&tick_cpu_device); 635 td->evtdev->event_handler(td->evtdev); 636 } 637 } 638 639 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) 640 { 641 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 642 return 0; 643 if (bc->next_event.tv64 == KTIME_MAX) 644 return 0; 645 return bc->bound_on == cpu ? -EBUSY : 0; 646 } 647 648 static void broadcast_shutdown_local(struct clock_event_device *bc, 649 struct clock_event_device *dev) 650 { 651 /* 652 * For hrtimer based broadcasting we cannot shutdown the cpu 653 * local device if our own event is the first one to expire or 654 * if we own the broadcast timer. 655 */ 656 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { 657 if (broadcast_needs_cpu(bc, smp_processor_id())) 658 return; 659 if (dev->next_event.tv64 < bc->next_event.tv64) 660 return; 661 } 662 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 663 } 664 665 /** 666 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 667 * @state: The target state (enter/exit) 668 * 669 * The system enters/leaves a state, where affected devices might stop 670 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 671 * 672 * Called with interrupts disabled, so clockevents_lock is not 673 * required here because the local clock event device cannot go away 674 * under us. 675 */ 676 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 677 { 678 struct clock_event_device *bc, *dev; 679 struct tick_device *td; 680 int cpu, ret = 0; 681 ktime_t now; 682 683 /* 684 * Periodic mode does not care about the enter/exit of power 685 * states 686 */ 687 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 688 return 0; 689 690 /* 691 * We are called with preemtion disabled from the depth of the 692 * idle code, so we can't be moved away. 693 */ 694 td = this_cpu_ptr(&tick_cpu_device); 695 dev = td->evtdev; 696 697 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 698 return 0; 699 700 raw_spin_lock(&tick_broadcast_lock); 701 bc = tick_broadcast_device.evtdev; 702 cpu = smp_processor_id(); 703 704 if (state == TICK_BROADCAST_ENTER) { 705 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { 706 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); 707 broadcast_shutdown_local(bc, dev); 708 /* 709 * We only reprogram the broadcast timer if we 710 * did not mark ourself in the force mask and 711 * if the cpu local event is earlier than the 712 * broadcast event. If the current CPU is in 713 * the force mask, then we are going to be 714 * woken by the IPI right away. 715 */ 716 if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) && 717 dev->next_event.tv64 < bc->next_event.tv64) 718 tick_broadcast_set_event(bc, cpu, dev->next_event); 719 } 720 /* 721 * If the current CPU owns the hrtimer broadcast 722 * mechanism, it cannot go deep idle and we remove the 723 * CPU from the broadcast mask. We don't have to go 724 * through the EXIT path as the local timer is not 725 * shutdown. 726 */ 727 ret = broadcast_needs_cpu(bc, cpu); 728 if (ret) 729 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 730 } else { 731 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { 732 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 733 /* 734 * The cpu which was handling the broadcast 735 * timer marked this cpu in the broadcast 736 * pending mask and fired the broadcast 737 * IPI. So we are going to handle the expired 738 * event anyway via the broadcast IPI 739 * handler. No need to reprogram the timer 740 * with an already expired event. 741 */ 742 if (cpumask_test_and_clear_cpu(cpu, 743 tick_broadcast_pending_mask)) 744 goto out; 745 746 /* 747 * Bail out if there is no next event. 748 */ 749 if (dev->next_event.tv64 == KTIME_MAX) 750 goto out; 751 /* 752 * If the pending bit is not set, then we are 753 * either the CPU handling the broadcast 754 * interrupt or we got woken by something else. 755 * 756 * We are not longer in the broadcast mask, so 757 * if the cpu local expiry time is already 758 * reached, we would reprogram the cpu local 759 * timer with an already expired event. 760 * 761 * This can lead to a ping-pong when we return 762 * to idle and therefor rearm the broadcast 763 * timer before the cpu local timer was able 764 * to fire. This happens because the forced 765 * reprogramming makes sure that the event 766 * will happen in the future and depending on 767 * the min_delta setting this might be far 768 * enough out that the ping-pong starts. 769 * 770 * If the cpu local next_event has expired 771 * then we know that the broadcast timer 772 * next_event has expired as well and 773 * broadcast is about to be handled. So we 774 * avoid reprogramming and enforce that the 775 * broadcast handler, which did not run yet, 776 * will invoke the cpu local handler. 777 * 778 * We cannot call the handler directly from 779 * here, because we might be in a NOHZ phase 780 * and we did not go through the irq_enter() 781 * nohz fixups. 782 */ 783 now = ktime_get(); 784 if (dev->next_event.tv64 <= now.tv64) { 785 cpumask_set_cpu(cpu, tick_broadcast_force_mask); 786 goto out; 787 } 788 /* 789 * We got woken by something else. Reprogram 790 * the cpu local timer device. 791 */ 792 tick_program_event(dev->next_event, 1); 793 } 794 } 795 out: 796 raw_spin_unlock(&tick_broadcast_lock); 797 return ret; 798 } 799 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 800 801 /* 802 * Reset the one shot broadcast for a cpu 803 * 804 * Called with tick_broadcast_lock held 805 */ 806 static void tick_broadcast_clear_oneshot(int cpu) 807 { 808 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 809 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 810 } 811 812 static void tick_broadcast_init_next_event(struct cpumask *mask, 813 ktime_t expires) 814 { 815 struct tick_device *td; 816 int cpu; 817 818 for_each_cpu(cpu, mask) { 819 td = &per_cpu(tick_cpu_device, cpu); 820 if (td->evtdev) 821 td->evtdev->next_event = expires; 822 } 823 } 824 825 /** 826 * tick_broadcast_setup_oneshot - setup the broadcast device 827 */ 828 void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 829 { 830 int cpu = smp_processor_id(); 831 832 /* Set it up only once ! */ 833 if (bc->event_handler != tick_handle_oneshot_broadcast) { 834 int was_periodic = clockevent_state_periodic(bc); 835 836 bc->event_handler = tick_handle_oneshot_broadcast; 837 838 /* 839 * We must be careful here. There might be other CPUs 840 * waiting for periodic broadcast. We need to set the 841 * oneshot_mask bits for those and program the 842 * broadcast device to fire. 843 */ 844 cpumask_copy(tmpmask, tick_broadcast_mask); 845 cpumask_clear_cpu(cpu, tmpmask); 846 cpumask_or(tick_broadcast_oneshot_mask, 847 tick_broadcast_oneshot_mask, tmpmask); 848 849 if (was_periodic && !cpumask_empty(tmpmask)) { 850 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 851 tick_broadcast_init_next_event(tmpmask, 852 tick_next_period); 853 tick_broadcast_set_event(bc, cpu, tick_next_period); 854 } else 855 bc->next_event.tv64 = KTIME_MAX; 856 } else { 857 /* 858 * The first cpu which switches to oneshot mode sets 859 * the bit for all other cpus which are in the general 860 * (periodic) broadcast mask. So the bit is set and 861 * would prevent the first broadcast enter after this 862 * to program the bc device. 863 */ 864 tick_broadcast_clear_oneshot(cpu); 865 } 866 } 867 868 /* 869 * Select oneshot operating mode for the broadcast device 870 */ 871 void tick_broadcast_switch_to_oneshot(void) 872 { 873 struct clock_event_device *bc; 874 unsigned long flags; 875 876 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 877 878 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 879 bc = tick_broadcast_device.evtdev; 880 if (bc) 881 tick_broadcast_setup_oneshot(bc); 882 883 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 884 } 885 886 #ifdef CONFIG_HOTPLUG_CPU 887 void hotplug_cpu__broadcast_tick_pull(int deadcpu) 888 { 889 struct clock_event_device *bc; 890 unsigned long flags; 891 892 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 893 bc = tick_broadcast_device.evtdev; 894 895 if (bc && broadcast_needs_cpu(bc, deadcpu)) { 896 /* This moves the broadcast assignment to this CPU: */ 897 clockevents_program_event(bc, bc->next_event, 1); 898 } 899 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 900 } 901 902 /* 903 * Remove a dead CPU from broadcasting 904 */ 905 void tick_shutdown_broadcast_oneshot(unsigned int cpu) 906 { 907 unsigned long flags; 908 909 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 910 911 /* 912 * Clear the broadcast masks for the dead cpu, but do not stop 913 * the broadcast device! 914 */ 915 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 916 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 917 cpumask_clear_cpu(cpu, tick_broadcast_force_mask); 918 919 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 920 } 921 #endif 922 923 /* 924 * Check, whether the broadcast device is in one shot mode 925 */ 926 int tick_broadcast_oneshot_active(void) 927 { 928 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 929 } 930 931 /* 932 * Check whether the broadcast device supports oneshot. 933 */ 934 bool tick_broadcast_oneshot_available(void) 935 { 936 struct clock_event_device *bc = tick_broadcast_device.evtdev; 937 938 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 939 } 940 941 #endif 942 943 void __init tick_broadcast_init(void) 944 { 945 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); 946 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); 947 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); 948 #ifdef CONFIG_TICK_ONESHOT 949 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); 950 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); 951 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); 952 #endif 953 } 954