xref: /linux/kernel/time/tick-broadcast.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30 
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37 
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45 
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51 	return &tick_broadcast_device;
52 }
53 
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56 	return tick_broadcast_mask;
57 }
58 
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64 	if (bc)
65 		tick_setup_periodic(bc, 1);
66 }
67 
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72 					struct clock_event_device *newdev)
73 {
74 	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75 	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76 	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77 		return false;
78 
79 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80 	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81 		return false;
82 
83 	return !curdev || newdev->rating > curdev->rating;
84 }
85 
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91 	struct clock_event_device *cur = tick_broadcast_device.evtdev;
92 
93 	if (!tick_check_broadcast_device(cur, dev))
94 		return;
95 
96 	if (!try_module_get(dev->owner))
97 		return;
98 
99 	clockevents_exchange_device(cur, dev);
100 	if (cur)
101 		cur->event_handler = clockevents_handle_noop;
102 	tick_broadcast_device.evtdev = dev;
103 	if (!cpumask_empty(tick_broadcast_mask))
104 		tick_broadcast_start_periodic(dev);
105 	/*
106 	 * Inform all cpus about this. We might be in a situation
107 	 * where we did not switch to oneshot mode because the per cpu
108 	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109 	 * of a oneshot capable broadcast device. Without that
110 	 * notification the systems stays stuck in periodic mode
111 	 * forever.
112 	 */
113 	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114 		tick_clock_notify();
115 }
116 
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122 	return (dev && tick_broadcast_device.evtdev == dev);
123 }
124 
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127 	int ret = -ENODEV;
128 
129 	if (tick_is_broadcast_device(dev)) {
130 		raw_spin_lock(&tick_broadcast_lock);
131 		ret = __clockevents_update_freq(dev, freq);
132 		raw_spin_unlock(&tick_broadcast_lock);
133 	}
134 	return ret;
135 }
136 
137 
138 static void err_broadcast(const struct cpumask *mask)
139 {
140 	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142 
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145 	if (!dev->broadcast)
146 		dev->broadcast = tick_broadcast;
147 	if (!dev->broadcast) {
148 		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149 			     dev->name);
150 		dev->broadcast = err_broadcast;
151 	}
152 }
153 
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
161 	unsigned long flags;
162 	int ret;
163 
164 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165 
166 	/*
167 	 * Devices might be registered with both periodic and oneshot
168 	 * mode disabled. This signals, that the device needs to be
169 	 * operated from the broadcast device and is a placeholder for
170 	 * the cpu local device.
171 	 */
172 	if (!tick_device_is_functional(dev)) {
173 		dev->event_handler = tick_handle_periodic;
174 		tick_device_setup_broadcast_func(dev);
175 		cpumask_set_cpu(cpu, tick_broadcast_mask);
176 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177 			tick_broadcast_start_periodic(bc);
178 		else
179 			tick_broadcast_setup_oneshot(bc);
180 		ret = 1;
181 	} else {
182 		/*
183 		 * Clear the broadcast bit for this cpu if the
184 		 * device is not power state affected.
185 		 */
186 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
188 		else
189 			tick_device_setup_broadcast_func(dev);
190 
191 		/*
192 		 * Clear the broadcast bit if the CPU is not in
193 		 * periodic broadcast on state.
194 		 */
195 		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
197 
198 		switch (tick_broadcast_device.mode) {
199 		case TICKDEV_MODE_ONESHOT:
200 			/*
201 			 * If the system is in oneshot mode we can
202 			 * unconditionally clear the oneshot mask bit,
203 			 * because the CPU is running and therefore
204 			 * not in an idle state which causes the power
205 			 * state affected device to stop. Let the
206 			 * caller initialize the device.
207 			 */
208 			tick_broadcast_clear_oneshot(cpu);
209 			ret = 0;
210 			break;
211 
212 		case TICKDEV_MODE_PERIODIC:
213 			/*
214 			 * If the system is in periodic mode, check
215 			 * whether the broadcast device can be
216 			 * switched off now.
217 			 */
218 			if (cpumask_empty(tick_broadcast_mask) && bc)
219 				clockevents_shutdown(bc);
220 			/*
221 			 * If we kept the cpu in the broadcast mask,
222 			 * tell the caller to leave the per cpu device
223 			 * in shutdown state. The periodic interrupt
224 			 * is delivered by the broadcast device.
225 			 */
226 			ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
227 			break;
228 		default:
229 			/* Nothing to do */
230 			ret = 0;
231 			break;
232 		}
233 	}
234 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235 	return ret;
236 }
237 
238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239 int tick_receive_broadcast(void)
240 {
241 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
242 	struct clock_event_device *evt = td->evtdev;
243 
244 	if (!evt)
245 		return -ENODEV;
246 
247 	if (!evt->event_handler)
248 		return -EINVAL;
249 
250 	evt->event_handler(evt);
251 	return 0;
252 }
253 #endif
254 
255 /*
256  * Broadcast the event to the cpus, which are set in the mask (mangled).
257  */
258 static bool tick_do_broadcast(struct cpumask *mask)
259 {
260 	int cpu = smp_processor_id();
261 	struct tick_device *td;
262 	bool local = false;
263 
264 	/*
265 	 * Check, if the current cpu is in the mask
266 	 */
267 	if (cpumask_test_cpu(cpu, mask)) {
268 		cpumask_clear_cpu(cpu, mask);
269 		local = true;
270 	}
271 
272 	if (!cpumask_empty(mask)) {
273 		/*
274 		 * It might be necessary to actually check whether the devices
275 		 * have different broadcast functions. For now, just use the
276 		 * one of the first device. This works as long as we have this
277 		 * misfeature only on x86 (lapic)
278 		 */
279 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
280 		td->evtdev->broadcast(mask);
281 	}
282 	return local;
283 }
284 
285 /*
286  * Periodic broadcast:
287  * - invoke the broadcast handlers
288  */
289 static bool tick_do_periodic_broadcast(void)
290 {
291 	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
292 	return tick_do_broadcast(tmpmask);
293 }
294 
295 /*
296  * Event handler for periodic broadcast ticks
297  */
298 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
299 {
300 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
301 	bool bc_local;
302 
303 	raw_spin_lock(&tick_broadcast_lock);
304 	bc_local = tick_do_periodic_broadcast();
305 
306 	if (clockevent_state_oneshot(dev)) {
307 		ktime_t next = ktime_add(dev->next_event, tick_period);
308 
309 		clockevents_program_event(dev, next, true);
310 	}
311 	raw_spin_unlock(&tick_broadcast_lock);
312 
313 	/*
314 	 * We run the handler of the local cpu after dropping
315 	 * tick_broadcast_lock because the handler might deadlock when
316 	 * trying to switch to oneshot mode.
317 	 */
318 	if (bc_local)
319 		td->evtdev->event_handler(td->evtdev);
320 }
321 
322 /**
323  * tick_broadcast_control - Enable/disable or force broadcast mode
324  * @mode:	The selected broadcast mode
325  *
326  * Called when the system enters a state where affected tick devices
327  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
328  *
329  * Called with interrupts disabled, so clockevents_lock is not
330  * required here because the local clock event device cannot go away
331  * under us.
332  */
333 void tick_broadcast_control(enum tick_broadcast_mode mode)
334 {
335 	struct clock_event_device *bc, *dev;
336 	struct tick_device *td;
337 	int cpu, bc_stopped;
338 
339 	td = this_cpu_ptr(&tick_cpu_device);
340 	dev = td->evtdev;
341 
342 	/*
343 	 * Is the device not affected by the powerstate ?
344 	 */
345 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
346 		return;
347 
348 	if (!tick_device_is_functional(dev))
349 		return;
350 
351 	raw_spin_lock(&tick_broadcast_lock);
352 	cpu = smp_processor_id();
353 	bc = tick_broadcast_device.evtdev;
354 	bc_stopped = cpumask_empty(tick_broadcast_mask);
355 
356 	switch (mode) {
357 	case TICK_BROADCAST_FORCE:
358 		tick_broadcast_forced = 1;
359 	case TICK_BROADCAST_ON:
360 		cpumask_set_cpu(cpu, tick_broadcast_on);
361 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
362 			if (tick_broadcast_device.mode ==
363 			    TICKDEV_MODE_PERIODIC)
364 				clockevents_shutdown(dev);
365 		}
366 		break;
367 
368 	case TICK_BROADCAST_OFF:
369 		if (tick_broadcast_forced)
370 			break;
371 		cpumask_clear_cpu(cpu, tick_broadcast_on);
372 		if (!tick_device_is_functional(dev))
373 			break;
374 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
375 			if (tick_broadcast_device.mode ==
376 			    TICKDEV_MODE_PERIODIC)
377 				tick_setup_periodic(dev, 0);
378 		}
379 		break;
380 	}
381 
382 	if (cpumask_empty(tick_broadcast_mask)) {
383 		if (!bc_stopped)
384 			clockevents_shutdown(bc);
385 	} else if (bc_stopped) {
386 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
387 			tick_broadcast_start_periodic(bc);
388 		else
389 			tick_broadcast_setup_oneshot(bc);
390 	}
391 	raw_spin_unlock(&tick_broadcast_lock);
392 }
393 EXPORT_SYMBOL_GPL(tick_broadcast_control);
394 
395 /*
396  * Set the periodic handler depending on broadcast on/off
397  */
398 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
399 {
400 	if (!broadcast)
401 		dev->event_handler = tick_handle_periodic;
402 	else
403 		dev->event_handler = tick_handle_periodic_broadcast;
404 }
405 
406 #ifdef CONFIG_HOTPLUG_CPU
407 /*
408  * Remove a CPU from broadcasting
409  */
410 void tick_shutdown_broadcast(unsigned int cpu)
411 {
412 	struct clock_event_device *bc;
413 	unsigned long flags;
414 
415 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
416 
417 	bc = tick_broadcast_device.evtdev;
418 	cpumask_clear_cpu(cpu, tick_broadcast_mask);
419 	cpumask_clear_cpu(cpu, tick_broadcast_on);
420 
421 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
422 		if (bc && cpumask_empty(tick_broadcast_mask))
423 			clockevents_shutdown(bc);
424 	}
425 
426 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
427 }
428 #endif
429 
430 void tick_suspend_broadcast(void)
431 {
432 	struct clock_event_device *bc;
433 	unsigned long flags;
434 
435 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
436 
437 	bc = tick_broadcast_device.evtdev;
438 	if (bc)
439 		clockevents_shutdown(bc);
440 
441 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
442 }
443 
444 /*
445  * This is called from tick_resume_local() on a resuming CPU. That's
446  * called from the core resume function, tick_unfreeze() and the magic XEN
447  * resume hackery.
448  *
449  * In none of these cases the broadcast device mode can change and the
450  * bit of the resuming CPU in the broadcast mask is safe as well.
451  */
452 bool tick_resume_check_broadcast(void)
453 {
454 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
455 		return false;
456 	else
457 		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
458 }
459 
460 void tick_resume_broadcast(void)
461 {
462 	struct clock_event_device *bc;
463 	unsigned long flags;
464 
465 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
466 
467 	bc = tick_broadcast_device.evtdev;
468 
469 	if (bc) {
470 		clockevents_tick_resume(bc);
471 
472 		switch (tick_broadcast_device.mode) {
473 		case TICKDEV_MODE_PERIODIC:
474 			if (!cpumask_empty(tick_broadcast_mask))
475 				tick_broadcast_start_periodic(bc);
476 			break;
477 		case TICKDEV_MODE_ONESHOT:
478 			if (!cpumask_empty(tick_broadcast_mask))
479 				tick_resume_broadcast_oneshot(bc);
480 			break;
481 		}
482 	}
483 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
484 }
485 
486 #ifdef CONFIG_TICK_ONESHOT
487 
488 static cpumask_var_t tick_broadcast_oneshot_mask;
489 static cpumask_var_t tick_broadcast_pending_mask;
490 static cpumask_var_t tick_broadcast_force_mask;
491 
492 /*
493  * Exposed for debugging: see timer_list.c
494  */
495 struct cpumask *tick_get_broadcast_oneshot_mask(void)
496 {
497 	return tick_broadcast_oneshot_mask;
498 }
499 
500 /*
501  * Called before going idle with interrupts disabled. Checks whether a
502  * broadcast event from the other core is about to happen. We detected
503  * that in tick_broadcast_oneshot_control(). The callsite can use this
504  * to avoid a deep idle transition as we are about to get the
505  * broadcast IPI right away.
506  */
507 int tick_check_broadcast_expired(void)
508 {
509 	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
510 }
511 
512 /*
513  * Set broadcast interrupt affinity
514  */
515 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
516 					const struct cpumask *cpumask)
517 {
518 	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
519 		return;
520 
521 	if (cpumask_equal(bc->cpumask, cpumask))
522 		return;
523 
524 	bc->cpumask = cpumask;
525 	irq_set_affinity(bc->irq, bc->cpumask);
526 }
527 
528 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
529 				     ktime_t expires)
530 {
531 	if (!clockevent_state_oneshot(bc))
532 		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
533 
534 	clockevents_program_event(bc, expires, 1);
535 	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
536 }
537 
538 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
539 {
540 	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
541 }
542 
543 /*
544  * Called from irq_enter() when idle was interrupted to reenable the
545  * per cpu device.
546  */
547 void tick_check_oneshot_broadcast_this_cpu(void)
548 {
549 	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
550 		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
551 
552 		/*
553 		 * We might be in the middle of switching over from
554 		 * periodic to oneshot. If the CPU has not yet
555 		 * switched over, leave the device alone.
556 		 */
557 		if (td->mode == TICKDEV_MODE_ONESHOT) {
558 			clockevents_switch_state(td->evtdev,
559 					      CLOCK_EVT_STATE_ONESHOT);
560 		}
561 	}
562 }
563 
564 /*
565  * Handle oneshot mode broadcasting
566  */
567 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
568 {
569 	struct tick_device *td;
570 	ktime_t now, next_event;
571 	int cpu, next_cpu = 0;
572 	bool bc_local;
573 
574 	raw_spin_lock(&tick_broadcast_lock);
575 	dev->next_event.tv64 = KTIME_MAX;
576 	next_event.tv64 = KTIME_MAX;
577 	cpumask_clear(tmpmask);
578 	now = ktime_get();
579 	/* Find all expired events */
580 	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
581 		td = &per_cpu(tick_cpu_device, cpu);
582 		if (td->evtdev->next_event.tv64 <= now.tv64) {
583 			cpumask_set_cpu(cpu, tmpmask);
584 			/*
585 			 * Mark the remote cpu in the pending mask, so
586 			 * it can avoid reprogramming the cpu local
587 			 * timer in tick_broadcast_oneshot_control().
588 			 */
589 			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
590 		} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
591 			next_event.tv64 = td->evtdev->next_event.tv64;
592 			next_cpu = cpu;
593 		}
594 	}
595 
596 	/*
597 	 * Remove the current cpu from the pending mask. The event is
598 	 * delivered immediately in tick_do_broadcast() !
599 	 */
600 	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
601 
602 	/* Take care of enforced broadcast requests */
603 	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
604 	cpumask_clear(tick_broadcast_force_mask);
605 
606 	/*
607 	 * Sanity check. Catch the case where we try to broadcast to
608 	 * offline cpus.
609 	 */
610 	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
611 		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
612 
613 	/*
614 	 * Wakeup the cpus which have an expired event.
615 	 */
616 	bc_local = tick_do_broadcast(tmpmask);
617 
618 	/*
619 	 * Two reasons for reprogram:
620 	 *
621 	 * - The global event did not expire any CPU local
622 	 * events. This happens in dyntick mode, as the maximum PIT
623 	 * delta is quite small.
624 	 *
625 	 * - There are pending events on sleeping CPUs which were not
626 	 * in the event mask
627 	 */
628 	if (next_event.tv64 != KTIME_MAX)
629 		tick_broadcast_set_event(dev, next_cpu, next_event);
630 
631 	raw_spin_unlock(&tick_broadcast_lock);
632 
633 	if (bc_local) {
634 		td = this_cpu_ptr(&tick_cpu_device);
635 		td->evtdev->event_handler(td->evtdev);
636 	}
637 }
638 
639 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
640 {
641 	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
642 		return 0;
643 	if (bc->next_event.tv64 == KTIME_MAX)
644 		return 0;
645 	return bc->bound_on == cpu ? -EBUSY : 0;
646 }
647 
648 static void broadcast_shutdown_local(struct clock_event_device *bc,
649 				     struct clock_event_device *dev)
650 {
651 	/*
652 	 * For hrtimer based broadcasting we cannot shutdown the cpu
653 	 * local device if our own event is the first one to expire or
654 	 * if we own the broadcast timer.
655 	 */
656 	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
657 		if (broadcast_needs_cpu(bc, smp_processor_id()))
658 			return;
659 		if (dev->next_event.tv64 < bc->next_event.tv64)
660 			return;
661 	}
662 	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
663 }
664 
665 /**
666  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
667  * @state:	The target state (enter/exit)
668  *
669  * The system enters/leaves a state, where affected devices might stop
670  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
671  *
672  * Called with interrupts disabled, so clockevents_lock is not
673  * required here because the local clock event device cannot go away
674  * under us.
675  */
676 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
677 {
678 	struct clock_event_device *bc, *dev;
679 	struct tick_device *td;
680 	int cpu, ret = 0;
681 	ktime_t now;
682 
683 	/*
684 	 * Periodic mode does not care about the enter/exit of power
685 	 * states
686 	 */
687 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
688 		return 0;
689 
690 	/*
691 	 * We are called with preemtion disabled from the depth of the
692 	 * idle code, so we can't be moved away.
693 	 */
694 	td = this_cpu_ptr(&tick_cpu_device);
695 	dev = td->evtdev;
696 
697 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
698 		return 0;
699 
700 	raw_spin_lock(&tick_broadcast_lock);
701 	bc = tick_broadcast_device.evtdev;
702 	cpu = smp_processor_id();
703 
704 	if (state == TICK_BROADCAST_ENTER) {
705 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
706 			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
707 			broadcast_shutdown_local(bc, dev);
708 			/*
709 			 * We only reprogram the broadcast timer if we
710 			 * did not mark ourself in the force mask and
711 			 * if the cpu local event is earlier than the
712 			 * broadcast event. If the current CPU is in
713 			 * the force mask, then we are going to be
714 			 * woken by the IPI right away.
715 			 */
716 			if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
717 			    dev->next_event.tv64 < bc->next_event.tv64)
718 				tick_broadcast_set_event(bc, cpu, dev->next_event);
719 		}
720 		/*
721 		 * If the current CPU owns the hrtimer broadcast
722 		 * mechanism, it cannot go deep idle and we remove the
723 		 * CPU from the broadcast mask. We don't have to go
724 		 * through the EXIT path as the local timer is not
725 		 * shutdown.
726 		 */
727 		ret = broadcast_needs_cpu(bc, cpu);
728 		if (ret)
729 			cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
730 	} else {
731 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
732 			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
733 			/*
734 			 * The cpu which was handling the broadcast
735 			 * timer marked this cpu in the broadcast
736 			 * pending mask and fired the broadcast
737 			 * IPI. So we are going to handle the expired
738 			 * event anyway via the broadcast IPI
739 			 * handler. No need to reprogram the timer
740 			 * with an already expired event.
741 			 */
742 			if (cpumask_test_and_clear_cpu(cpu,
743 				       tick_broadcast_pending_mask))
744 				goto out;
745 
746 			/*
747 			 * Bail out if there is no next event.
748 			 */
749 			if (dev->next_event.tv64 == KTIME_MAX)
750 				goto out;
751 			/*
752 			 * If the pending bit is not set, then we are
753 			 * either the CPU handling the broadcast
754 			 * interrupt or we got woken by something else.
755 			 *
756 			 * We are not longer in the broadcast mask, so
757 			 * if the cpu local expiry time is already
758 			 * reached, we would reprogram the cpu local
759 			 * timer with an already expired event.
760 			 *
761 			 * This can lead to a ping-pong when we return
762 			 * to idle and therefor rearm the broadcast
763 			 * timer before the cpu local timer was able
764 			 * to fire. This happens because the forced
765 			 * reprogramming makes sure that the event
766 			 * will happen in the future and depending on
767 			 * the min_delta setting this might be far
768 			 * enough out that the ping-pong starts.
769 			 *
770 			 * If the cpu local next_event has expired
771 			 * then we know that the broadcast timer
772 			 * next_event has expired as well and
773 			 * broadcast is about to be handled. So we
774 			 * avoid reprogramming and enforce that the
775 			 * broadcast handler, which did not run yet,
776 			 * will invoke the cpu local handler.
777 			 *
778 			 * We cannot call the handler directly from
779 			 * here, because we might be in a NOHZ phase
780 			 * and we did not go through the irq_enter()
781 			 * nohz fixups.
782 			 */
783 			now = ktime_get();
784 			if (dev->next_event.tv64 <= now.tv64) {
785 				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
786 				goto out;
787 			}
788 			/*
789 			 * We got woken by something else. Reprogram
790 			 * the cpu local timer device.
791 			 */
792 			tick_program_event(dev->next_event, 1);
793 		}
794 	}
795 out:
796 	raw_spin_unlock(&tick_broadcast_lock);
797 	return ret;
798 }
799 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
800 
801 /*
802  * Reset the one shot broadcast for a cpu
803  *
804  * Called with tick_broadcast_lock held
805  */
806 static void tick_broadcast_clear_oneshot(int cpu)
807 {
808 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
809 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
810 }
811 
812 static void tick_broadcast_init_next_event(struct cpumask *mask,
813 					   ktime_t expires)
814 {
815 	struct tick_device *td;
816 	int cpu;
817 
818 	for_each_cpu(cpu, mask) {
819 		td = &per_cpu(tick_cpu_device, cpu);
820 		if (td->evtdev)
821 			td->evtdev->next_event = expires;
822 	}
823 }
824 
825 /**
826  * tick_broadcast_setup_oneshot - setup the broadcast device
827  */
828 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
829 {
830 	int cpu = smp_processor_id();
831 
832 	/* Set it up only once ! */
833 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
834 		int was_periodic = clockevent_state_periodic(bc);
835 
836 		bc->event_handler = tick_handle_oneshot_broadcast;
837 
838 		/*
839 		 * We must be careful here. There might be other CPUs
840 		 * waiting for periodic broadcast. We need to set the
841 		 * oneshot_mask bits for those and program the
842 		 * broadcast device to fire.
843 		 */
844 		cpumask_copy(tmpmask, tick_broadcast_mask);
845 		cpumask_clear_cpu(cpu, tmpmask);
846 		cpumask_or(tick_broadcast_oneshot_mask,
847 			   tick_broadcast_oneshot_mask, tmpmask);
848 
849 		if (was_periodic && !cpumask_empty(tmpmask)) {
850 			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
851 			tick_broadcast_init_next_event(tmpmask,
852 						       tick_next_period);
853 			tick_broadcast_set_event(bc, cpu, tick_next_period);
854 		} else
855 			bc->next_event.tv64 = KTIME_MAX;
856 	} else {
857 		/*
858 		 * The first cpu which switches to oneshot mode sets
859 		 * the bit for all other cpus which are in the general
860 		 * (periodic) broadcast mask. So the bit is set and
861 		 * would prevent the first broadcast enter after this
862 		 * to program the bc device.
863 		 */
864 		tick_broadcast_clear_oneshot(cpu);
865 	}
866 }
867 
868 /*
869  * Select oneshot operating mode for the broadcast device
870  */
871 void tick_broadcast_switch_to_oneshot(void)
872 {
873 	struct clock_event_device *bc;
874 	unsigned long flags;
875 
876 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
877 
878 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
879 	bc = tick_broadcast_device.evtdev;
880 	if (bc)
881 		tick_broadcast_setup_oneshot(bc);
882 
883 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
884 }
885 
886 #ifdef CONFIG_HOTPLUG_CPU
887 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
888 {
889 	struct clock_event_device *bc;
890 	unsigned long flags;
891 
892 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
893 	bc = tick_broadcast_device.evtdev;
894 
895 	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
896 		/* This moves the broadcast assignment to this CPU: */
897 		clockevents_program_event(bc, bc->next_event, 1);
898 	}
899 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
900 }
901 
902 /*
903  * Remove a dead CPU from broadcasting
904  */
905 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
906 {
907 	unsigned long flags;
908 
909 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
910 
911 	/*
912 	 * Clear the broadcast masks for the dead cpu, but do not stop
913 	 * the broadcast device!
914 	 */
915 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
916 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
917 	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
918 
919 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
920 }
921 #endif
922 
923 /*
924  * Check, whether the broadcast device is in one shot mode
925  */
926 int tick_broadcast_oneshot_active(void)
927 {
928 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
929 }
930 
931 /*
932  * Check whether the broadcast device supports oneshot.
933  */
934 bool tick_broadcast_oneshot_available(void)
935 {
936 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
937 
938 	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
939 }
940 
941 #endif
942 
943 void __init tick_broadcast_init(void)
944 {
945 	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
946 	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
947 	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
948 #ifdef CONFIG_TICK_ONESHOT
949 	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
950 	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
951 	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
952 #endif
953 }
954