1 /* 2 * sched_clock.c: support for extending counters to full 64-bit ns counter 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 #include <linux/clocksource.h> 9 #include <linux/init.h> 10 #include <linux/jiffies.h> 11 #include <linux/ktime.h> 12 #include <linux/kernel.h> 13 #include <linux/moduleparam.h> 14 #include <linux/sched.h> 15 #include <linux/syscore_ops.h> 16 #include <linux/hrtimer.h> 17 #include <linux/sched_clock.h> 18 #include <linux/seqlock.h> 19 #include <linux/bitops.h> 20 21 struct clock_data { 22 ktime_t wrap_kt; 23 u64 epoch_ns; 24 u64 epoch_cyc; 25 seqcount_t seq; 26 unsigned long rate; 27 u32 mult; 28 u32 shift; 29 bool suspended; 30 }; 31 32 static struct hrtimer sched_clock_timer; 33 static int irqtime = -1; 34 35 core_param(irqtime, irqtime, int, 0400); 36 37 static struct clock_data cd = { 38 .mult = NSEC_PER_SEC / HZ, 39 }; 40 41 static u64 __read_mostly sched_clock_mask; 42 43 static u64 notrace jiffy_sched_clock_read(void) 44 { 45 /* 46 * We don't need to use get_jiffies_64 on 32-bit arches here 47 * because we register with BITS_PER_LONG 48 */ 49 return (u64)(jiffies - INITIAL_JIFFIES); 50 } 51 52 static u32 __read_mostly (*read_sched_clock_32)(void); 53 54 static u64 notrace read_sched_clock_32_wrapper(void) 55 { 56 return read_sched_clock_32(); 57 } 58 59 static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read; 60 61 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) 62 { 63 return (cyc * mult) >> shift; 64 } 65 66 unsigned long long notrace sched_clock(void) 67 { 68 u64 epoch_ns; 69 u64 epoch_cyc; 70 u64 cyc; 71 unsigned long seq; 72 73 if (cd.suspended) 74 return cd.epoch_ns; 75 76 do { 77 seq = raw_read_seqcount_begin(&cd.seq); 78 epoch_cyc = cd.epoch_cyc; 79 epoch_ns = cd.epoch_ns; 80 } while (read_seqcount_retry(&cd.seq, seq)); 81 82 cyc = read_sched_clock(); 83 cyc = (cyc - epoch_cyc) & sched_clock_mask; 84 return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift); 85 } 86 87 /* 88 * Atomically update the sched_clock epoch. 89 */ 90 static void notrace update_sched_clock(void) 91 { 92 unsigned long flags; 93 u64 cyc; 94 u64 ns; 95 96 cyc = read_sched_clock(); 97 ns = cd.epoch_ns + 98 cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask, 99 cd.mult, cd.shift); 100 101 raw_local_irq_save(flags); 102 raw_write_seqcount_begin(&cd.seq); 103 cd.epoch_ns = ns; 104 cd.epoch_cyc = cyc; 105 raw_write_seqcount_end(&cd.seq); 106 raw_local_irq_restore(flags); 107 } 108 109 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) 110 { 111 update_sched_clock(); 112 hrtimer_forward_now(hrt, cd.wrap_kt); 113 return HRTIMER_RESTART; 114 } 115 116 void __init sched_clock_register(u64 (*read)(void), int bits, 117 unsigned long rate) 118 { 119 unsigned long r; 120 u64 res, wrap; 121 char r_unit; 122 123 if (cd.rate > rate) 124 return; 125 126 WARN_ON(!irqs_disabled()); 127 read_sched_clock = read; 128 sched_clock_mask = CLOCKSOURCE_MASK(bits); 129 cd.rate = rate; 130 131 /* calculate the mult/shift to convert counter ticks to ns. */ 132 clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 3600); 133 134 r = rate; 135 if (r >= 4000000) { 136 r /= 1000000; 137 r_unit = 'M'; 138 } else if (r >= 1000) { 139 r /= 1000; 140 r_unit = 'k'; 141 } else 142 r_unit = ' '; 143 144 /* calculate how many ns until we wrap */ 145 wrap = clocks_calc_max_nsecs(cd.mult, cd.shift, 0, sched_clock_mask); 146 cd.wrap_kt = ns_to_ktime(wrap - (wrap >> 3)); 147 148 /* calculate the ns resolution of this counter */ 149 res = cyc_to_ns(1ULL, cd.mult, cd.shift); 150 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", 151 bits, r, r_unit, res, wrap); 152 153 update_sched_clock(); 154 155 /* 156 * Ensure that sched_clock() starts off at 0ns 157 */ 158 cd.epoch_ns = 0; 159 160 /* Enable IRQ time accounting if we have a fast enough sched_clock */ 161 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) 162 enable_sched_clock_irqtime(); 163 164 pr_debug("Registered %pF as sched_clock source\n", read); 165 } 166 167 void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate) 168 { 169 read_sched_clock_32 = read; 170 sched_clock_register(read_sched_clock_32_wrapper, bits, rate); 171 } 172 173 void __init sched_clock_postinit(void) 174 { 175 /* 176 * If no sched_clock function has been provided at that point, 177 * make it the final one one. 178 */ 179 if (read_sched_clock == jiffy_sched_clock_read) 180 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ); 181 182 update_sched_clock(); 183 184 /* 185 * Start the timer to keep sched_clock() properly updated and 186 * sets the initial epoch. 187 */ 188 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 189 sched_clock_timer.function = sched_clock_poll; 190 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); 191 } 192 193 static int sched_clock_suspend(void) 194 { 195 sched_clock_poll(&sched_clock_timer); 196 cd.suspended = true; 197 return 0; 198 } 199 200 static void sched_clock_resume(void) 201 { 202 cd.epoch_cyc = read_sched_clock(); 203 cd.suspended = false; 204 } 205 206 static struct syscore_ops sched_clock_ops = { 207 .suspend = sched_clock_suspend, 208 .resume = sched_clock_resume, 209 }; 210 211 static int __init sched_clock_syscore_init(void) 212 { 213 register_syscore_ops(&sched_clock_ops); 214 return 0; 215 } 216 device_initcall(sched_clock_syscore_init); 217