1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic sched_clock() support, to extend low level hardware time 4 * counters to full 64-bit ns values. 5 */ 6 #include <linux/clocksource.h> 7 #include <linux/init.h> 8 #include <linux/jiffies.h> 9 #include <linux/ktime.h> 10 #include <linux/kernel.h> 11 #include <linux/math.h> 12 #include <linux/moduleparam.h> 13 #include <linux/sched.h> 14 #include <linux/sched/clock.h> 15 #include <linux/syscore_ops.h> 16 #include <linux/hrtimer.h> 17 #include <linux/sched_clock.h> 18 #include <linux/seqlock.h> 19 #include <linux/bitops.h> 20 21 #include "timekeeping.h" 22 23 /** 24 * struct clock_data - all data needed for sched_clock() (including 25 * registration of a new clock source) 26 * 27 * @seq: Sequence counter for protecting updates. The lowest 28 * bit is the index for @read_data. 29 * @read_data: Data required to read from sched_clock. 30 * @wrap_kt: Duration for which clock can run before wrapping. 31 * @rate: Tick rate of the registered clock. 32 * @actual_read_sched_clock: Registered hardware level clock read function. 33 * 34 * The ordering of this structure has been chosen to optimize cache 35 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit 36 * into a single 64-byte cache line. 37 */ 38 struct clock_data { 39 seqcount_latch_t seq; 40 struct clock_read_data read_data[2]; 41 ktime_t wrap_kt; 42 unsigned long rate; 43 44 u64 (*actual_read_sched_clock)(void); 45 }; 46 47 static struct hrtimer sched_clock_timer; 48 static int irqtime = -1; 49 50 core_param(irqtime, irqtime, int, 0400); 51 52 static u64 notrace jiffy_sched_clock_read(void) 53 { 54 /* 55 * We don't need to use get_jiffies_64 on 32-bit arches here 56 * because we register with BITS_PER_LONG 57 */ 58 return (u64)(jiffies - INITIAL_JIFFIES); 59 } 60 61 static struct clock_data cd ____cacheline_aligned = { 62 .read_data[0] = { .mult = NSEC_PER_SEC / HZ, 63 .read_sched_clock = jiffy_sched_clock_read, }, 64 .actual_read_sched_clock = jiffy_sched_clock_read, 65 }; 66 67 static __always_inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift) 68 { 69 return (cyc * mult) >> shift; 70 } 71 72 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq) 73 { 74 *seq = read_seqcount_latch(&cd.seq); 75 return cd.read_data + (*seq & 1); 76 } 77 78 notrace int sched_clock_read_retry(unsigned int seq) 79 { 80 return read_seqcount_latch_retry(&cd.seq, seq); 81 } 82 83 static __always_inline unsigned long long __sched_clock(void) 84 { 85 struct clock_read_data *rd; 86 unsigned int seq; 87 u64 cyc, res; 88 89 do { 90 seq = raw_read_seqcount_latch(&cd.seq); 91 rd = cd.read_data + (seq & 1); 92 93 cyc = (rd->read_sched_clock() - rd->epoch_cyc) & 94 rd->sched_clock_mask; 95 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift); 96 } while (raw_read_seqcount_latch_retry(&cd.seq, seq)); 97 98 return res; 99 } 100 101 unsigned long long noinstr sched_clock_noinstr(void) 102 { 103 return __sched_clock(); 104 } 105 106 unsigned long long notrace sched_clock(void) 107 { 108 unsigned long long ns; 109 preempt_disable_notrace(); 110 /* 111 * All of __sched_clock() is a seqcount_latch reader critical section, 112 * but relies on the raw helpers which are uninstrumented. For KCSAN, 113 * mark all accesses in __sched_clock() as atomic. 114 */ 115 kcsan_nestable_atomic_begin(); 116 ns = __sched_clock(); 117 kcsan_nestable_atomic_end(); 118 preempt_enable_notrace(); 119 return ns; 120 } 121 122 /* 123 * Updating the data required to read the clock. 124 * 125 * sched_clock() will never observe mis-matched data even if called from 126 * an NMI. We do this by maintaining an odd/even copy of the data and 127 * steering sched_clock() to one or the other using a sequence counter. 128 * In order to preserve the data cache profile of sched_clock() as much 129 * as possible the system reverts back to the even copy when the update 130 * completes; the odd copy is used *only* during an update. 131 */ 132 static void update_clock_read_data(struct clock_read_data *rd) 133 { 134 /* steer readers towards the odd copy */ 135 write_seqcount_latch_begin(&cd.seq); 136 137 /* now its safe for us to update the normal (even) copy */ 138 cd.read_data[0] = *rd; 139 140 /* switch readers back to the even copy */ 141 write_seqcount_latch(&cd.seq); 142 143 /* update the backup (odd) copy with the new data */ 144 cd.read_data[1] = *rd; 145 146 write_seqcount_latch_end(&cd.seq); 147 } 148 149 /* 150 * Atomically update the sched_clock() epoch. 151 */ 152 static void update_sched_clock(void) 153 { 154 u64 cyc; 155 u64 ns; 156 struct clock_read_data rd; 157 158 rd = cd.read_data[0]; 159 160 cyc = cd.actual_read_sched_clock(); 161 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 162 163 rd.epoch_ns = ns; 164 rd.epoch_cyc = cyc; 165 166 update_clock_read_data(&rd); 167 } 168 169 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) 170 { 171 update_sched_clock(); 172 hrtimer_forward_now(hrt, cd.wrap_kt); 173 174 return HRTIMER_RESTART; 175 } 176 177 void __init 178 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate) 179 { 180 u64 res, wrap, new_mask, new_epoch, cyc, ns; 181 u32 new_mult, new_shift; 182 unsigned long r, flags; 183 char r_unit; 184 struct clock_read_data rd; 185 186 if (cd.rate > rate) 187 return; 188 189 /* Cannot register a sched_clock with interrupts on */ 190 local_irq_save(flags); 191 192 /* Calculate the mult/shift to convert counter ticks to ns. */ 193 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600); 194 195 new_mask = CLOCKSOURCE_MASK(bits); 196 cd.rate = rate; 197 198 /* Calculate how many nanosecs until we risk wrapping */ 199 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); 200 cd.wrap_kt = ns_to_ktime(wrap); 201 202 rd = cd.read_data[0]; 203 204 /* Update epoch for new counter and update 'epoch_ns' from old counter*/ 205 new_epoch = read(); 206 cyc = cd.actual_read_sched_clock(); 207 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 208 cd.actual_read_sched_clock = read; 209 210 rd.read_sched_clock = read; 211 rd.sched_clock_mask = new_mask; 212 rd.mult = new_mult; 213 rd.shift = new_shift; 214 rd.epoch_cyc = new_epoch; 215 rd.epoch_ns = ns; 216 217 update_clock_read_data(&rd); 218 219 if (sched_clock_timer.function != NULL) { 220 /* update timeout for clock wrap */ 221 hrtimer_start(&sched_clock_timer, cd.wrap_kt, 222 HRTIMER_MODE_REL_HARD); 223 } 224 225 r = rate; 226 if (r >= 4000000) { 227 r = DIV_ROUND_CLOSEST(r, 1000000); 228 r_unit = 'M'; 229 } else if (r >= 4000) { 230 r = DIV_ROUND_CLOSEST(r, 1000); 231 r_unit = 'k'; 232 } else { 233 r_unit = ' '; 234 } 235 236 /* Calculate the ns resolution of this counter */ 237 res = cyc_to_ns(1ULL, new_mult, new_shift); 238 239 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", 240 bits, r, r_unit, res, wrap); 241 242 /* Enable IRQ time accounting if we have a fast enough sched_clock() */ 243 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) 244 enable_sched_clock_irqtime(); 245 246 local_irq_restore(flags); 247 248 pr_debug("Registered %pS as sched_clock source\n", read); 249 } 250 251 void __init generic_sched_clock_init(void) 252 { 253 /* 254 * If no sched_clock() function has been provided at that point, 255 * make it the final one. 256 */ 257 if (cd.actual_read_sched_clock == jiffy_sched_clock_read) 258 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ); 259 260 update_sched_clock(); 261 262 /* 263 * Start the timer to keep sched_clock() properly updated and 264 * sets the initial epoch. 265 */ 266 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 267 sched_clock_timer.function = sched_clock_poll; 268 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD); 269 } 270 271 /* 272 * Clock read function for use when the clock is suspended. 273 * 274 * This function makes it appear to sched_clock() as if the clock 275 * stopped counting at its last update. 276 * 277 * This function must only be called from the critical 278 * section in sched_clock(). It relies on the read_seqcount_retry() 279 * at the end of the critical section to be sure we observe the 280 * correct copy of 'epoch_cyc'. 281 */ 282 static u64 notrace suspended_sched_clock_read(void) 283 { 284 unsigned int seq = read_seqcount_latch(&cd.seq); 285 286 return cd.read_data[seq & 1].epoch_cyc; 287 } 288 289 int sched_clock_suspend(void) 290 { 291 struct clock_read_data *rd = &cd.read_data[0]; 292 293 update_sched_clock(); 294 hrtimer_cancel(&sched_clock_timer); 295 rd->read_sched_clock = suspended_sched_clock_read; 296 297 return 0; 298 } 299 300 void sched_clock_resume(void) 301 { 302 struct clock_read_data *rd = &cd.read_data[0]; 303 304 rd->epoch_cyc = cd.actual_read_sched_clock(); 305 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD); 306 rd->read_sched_clock = cd.actual_read_sched_clock; 307 } 308 309 static struct syscore_ops sched_clock_ops = { 310 .suspend = sched_clock_suspend, 311 .resume = sched_clock_resume, 312 }; 313 314 static int __init sched_clock_syscore_init(void) 315 { 316 register_syscore_ops(&sched_clock_ops); 317 318 return 0; 319 } 320 device_initcall(sched_clock_syscore_init); 321