xref: /linux/kernel/time/sched_clock.c (revision d00c2359fc1852258d8ce218cf2f509086da720c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic sched_clock() support, to extend low level hardware time
4  * counters to full 64-bit ns values.
5  */
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/math.h>
12 #include <linux/moduleparam.h>
13 #include <linux/sched.h>
14 #include <linux/sched/clock.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/hrtimer.h>
17 #include <linux/sched_clock.h>
18 #include <linux/seqlock.h>
19 #include <linux/bitops.h>
20 
21 #include "timekeeping.h"
22 
23 /**
24  * struct clock_data - all data needed for sched_clock() (including
25  *                     registration of a new clock source)
26  *
27  * @seq:		Sequence counter for protecting updates. The lowest
28  *			bit is the index for @read_data.
29  * @read_data:		Data required to read from sched_clock.
30  * @wrap_kt:		Duration for which clock can run before wrapping.
31  * @rate:		Tick rate of the registered clock.
32  * @actual_read_sched_clock: Registered hardware level clock read function.
33  *
34  * The ordering of this structure has been chosen to optimize cache
35  * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
36  * into a single 64-byte cache line.
37  */
38 struct clock_data {
39 	seqcount_latch_t	seq;
40 	struct clock_read_data	read_data[2];
41 	ktime_t			wrap_kt;
42 	unsigned long		rate;
43 
44 	u64 (*actual_read_sched_clock)(void);
45 };
46 
47 static struct hrtimer sched_clock_timer;
48 static int irqtime = -1;
49 
50 core_param(irqtime, irqtime, int, 0400);
51 
52 static u64 notrace jiffy_sched_clock_read(void)
53 {
54 	/*
55 	 * We don't need to use get_jiffies_64 on 32-bit arches here
56 	 * because we register with BITS_PER_LONG
57 	 */
58 	return (u64)(jiffies - INITIAL_JIFFIES);
59 }
60 
61 static struct clock_data cd ____cacheline_aligned = {
62 	.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
63 			  .read_sched_clock = jiffy_sched_clock_read, },
64 	.actual_read_sched_clock = jiffy_sched_clock_read,
65 };
66 
67 static __always_inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
68 {
69 	return (cyc * mult) >> shift;
70 }
71 
72 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
73 {
74 	*seq = read_seqcount_latch(&cd.seq);
75 	return cd.read_data + (*seq & 1);
76 }
77 
78 notrace int sched_clock_read_retry(unsigned int seq)
79 {
80 	return read_seqcount_latch_retry(&cd.seq, seq);
81 }
82 
83 static __always_inline unsigned long long __sched_clock(void)
84 {
85 	struct clock_read_data *rd;
86 	unsigned int seq;
87 	u64 cyc, res;
88 
89 	do {
90 		seq = raw_read_seqcount_latch(&cd.seq);
91 		rd = cd.read_data + (seq & 1);
92 
93 		cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
94 		      rd->sched_clock_mask;
95 		res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
96 	} while (raw_read_seqcount_latch_retry(&cd.seq, seq));
97 
98 	return res;
99 }
100 
101 unsigned long long noinstr sched_clock_noinstr(void)
102 {
103 	return __sched_clock();
104 }
105 
106 unsigned long long notrace sched_clock(void)
107 {
108 	unsigned long long ns;
109 	preempt_disable_notrace();
110 	/*
111 	 * All of __sched_clock() is a seqcount_latch reader critical section,
112 	 * but relies on the raw helpers which are uninstrumented. For KCSAN,
113 	 * mark all accesses in __sched_clock() as atomic.
114 	 */
115 	kcsan_nestable_atomic_begin();
116 	ns = __sched_clock();
117 	kcsan_nestable_atomic_end();
118 	preempt_enable_notrace();
119 	return ns;
120 }
121 
122 /*
123  * Updating the data required to read the clock.
124  *
125  * sched_clock() will never observe mis-matched data even if called from
126  * an NMI. We do this by maintaining an odd/even copy of the data and
127  * steering sched_clock() to one or the other using a sequence counter.
128  * In order to preserve the data cache profile of sched_clock() as much
129  * as possible the system reverts back to the even copy when the update
130  * completes; the odd copy is used *only* during an update.
131  */
132 static void update_clock_read_data(struct clock_read_data *rd)
133 {
134 	/* steer readers towards the odd copy */
135 	write_seqcount_latch_begin(&cd.seq);
136 
137 	/* now its safe for us to update the normal (even) copy */
138 	cd.read_data[0] = *rd;
139 
140 	/* switch readers back to the even copy */
141 	write_seqcount_latch(&cd.seq);
142 
143 	/* update the backup (odd) copy with the new data */
144 	cd.read_data[1] = *rd;
145 
146 	write_seqcount_latch_end(&cd.seq);
147 }
148 
149 /*
150  * Atomically update the sched_clock() epoch.
151  */
152 static void update_sched_clock(void)
153 {
154 	u64 cyc;
155 	u64 ns;
156 	struct clock_read_data rd;
157 
158 	rd = cd.read_data[0];
159 
160 	cyc = cd.actual_read_sched_clock();
161 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
162 
163 	rd.epoch_ns = ns;
164 	rd.epoch_cyc = cyc;
165 
166 	update_clock_read_data(&rd);
167 }
168 
169 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
170 {
171 	update_sched_clock();
172 	hrtimer_forward_now(hrt, cd.wrap_kt);
173 
174 	return HRTIMER_RESTART;
175 }
176 
177 void __init
178 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
179 {
180 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
181 	u32 new_mult, new_shift;
182 	unsigned long r, flags;
183 	char r_unit;
184 	struct clock_read_data rd;
185 
186 	if (cd.rate > rate)
187 		return;
188 
189 	/* Cannot register a sched_clock with interrupts on */
190 	local_irq_save(flags);
191 
192 	/* Calculate the mult/shift to convert counter ticks to ns. */
193 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
194 
195 	new_mask = CLOCKSOURCE_MASK(bits);
196 	cd.rate = rate;
197 
198 	/* Calculate how many nanosecs until we risk wrapping */
199 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
200 	cd.wrap_kt = ns_to_ktime(wrap);
201 
202 	rd = cd.read_data[0];
203 
204 	/* Update epoch for new counter and update 'epoch_ns' from old counter*/
205 	new_epoch = read();
206 	cyc = cd.actual_read_sched_clock();
207 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
208 	cd.actual_read_sched_clock = read;
209 
210 	rd.read_sched_clock	= read;
211 	rd.sched_clock_mask	= new_mask;
212 	rd.mult			= new_mult;
213 	rd.shift		= new_shift;
214 	rd.epoch_cyc		= new_epoch;
215 	rd.epoch_ns		= ns;
216 
217 	update_clock_read_data(&rd);
218 
219 	if (sched_clock_timer.function != NULL) {
220 		/* update timeout for clock wrap */
221 		hrtimer_start(&sched_clock_timer, cd.wrap_kt,
222 			      HRTIMER_MODE_REL_HARD);
223 	}
224 
225 	r = rate;
226 	if (r >= 4000000) {
227 		r = DIV_ROUND_CLOSEST(r, 1000000);
228 		r_unit = 'M';
229 	} else if (r >= 4000) {
230 		r = DIV_ROUND_CLOSEST(r, 1000);
231 		r_unit = 'k';
232 	} else {
233 		r_unit = ' ';
234 	}
235 
236 	/* Calculate the ns resolution of this counter */
237 	res = cyc_to_ns(1ULL, new_mult, new_shift);
238 
239 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
240 		bits, r, r_unit, res, wrap);
241 
242 	/* Enable IRQ time accounting if we have a fast enough sched_clock() */
243 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
244 		enable_sched_clock_irqtime();
245 
246 	local_irq_restore(flags);
247 
248 	pr_debug("Registered %pS as sched_clock source\n", read);
249 }
250 
251 void __init generic_sched_clock_init(void)
252 {
253 	/*
254 	 * If no sched_clock() function has been provided at that point,
255 	 * make it the final one.
256 	 */
257 	if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
258 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
259 
260 	update_sched_clock();
261 
262 	/*
263 	 * Start the timer to keep sched_clock() properly updated and
264 	 * sets the initial epoch.
265 	 */
266 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
267 	sched_clock_timer.function = sched_clock_poll;
268 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
269 }
270 
271 /*
272  * Clock read function for use when the clock is suspended.
273  *
274  * This function makes it appear to sched_clock() as if the clock
275  * stopped counting at its last update.
276  *
277  * This function must only be called from the critical
278  * section in sched_clock(). It relies on the read_seqcount_retry()
279  * at the end of the critical section to be sure we observe the
280  * correct copy of 'epoch_cyc'.
281  */
282 static u64 notrace suspended_sched_clock_read(void)
283 {
284 	unsigned int seq = read_seqcount_latch(&cd.seq);
285 
286 	return cd.read_data[seq & 1].epoch_cyc;
287 }
288 
289 int sched_clock_suspend(void)
290 {
291 	struct clock_read_data *rd = &cd.read_data[0];
292 
293 	update_sched_clock();
294 	hrtimer_cancel(&sched_clock_timer);
295 	rd->read_sched_clock = suspended_sched_clock_read;
296 
297 	return 0;
298 }
299 
300 void sched_clock_resume(void)
301 {
302 	struct clock_read_data *rd = &cd.read_data[0];
303 
304 	rd->epoch_cyc = cd.actual_read_sched_clock();
305 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
306 	rd->read_sched_clock = cd.actual_read_sched_clock;
307 }
308 
309 static struct syscore_ops sched_clock_ops = {
310 	.suspend	= sched_clock_suspend,
311 	.resume		= sched_clock_resume,
312 };
313 
314 static int __init sched_clock_syscore_init(void)
315 {
316 	register_syscore_ops(&sched_clock_ops);
317 
318 	return 0;
319 }
320 device_initcall(sched_clock_syscore_init);
321