1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic sched_clock() support, to extend low level hardware time 4 * counters to full 64-bit ns values. 5 */ 6 #include <linux/clocksource.h> 7 #include <linux/init.h> 8 #include <linux/jiffies.h> 9 #include <linux/ktime.h> 10 #include <linux/kernel.h> 11 #include <linux/moduleparam.h> 12 #include <linux/sched.h> 13 #include <linux/sched/clock.h> 14 #include <linux/syscore_ops.h> 15 #include <linux/hrtimer.h> 16 #include <linux/sched_clock.h> 17 #include <linux/seqlock.h> 18 #include <linux/bitops.h> 19 20 #include "timekeeping.h" 21 22 /** 23 * struct clock_data - all data needed for sched_clock() (including 24 * registration of a new clock source) 25 * 26 * @seq: Sequence counter for protecting updates. The lowest 27 * bit is the index for @read_data. 28 * @read_data: Data required to read from sched_clock. 29 * @wrap_kt: Duration for which clock can run before wrapping. 30 * @rate: Tick rate of the registered clock. 31 * @actual_read_sched_clock: Registered hardware level clock read function. 32 * 33 * The ordering of this structure has been chosen to optimize cache 34 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit 35 * into a single 64-byte cache line. 36 */ 37 struct clock_data { 38 seqcount_latch_t seq; 39 struct clock_read_data read_data[2]; 40 ktime_t wrap_kt; 41 unsigned long rate; 42 43 u64 (*actual_read_sched_clock)(void); 44 }; 45 46 static struct hrtimer sched_clock_timer; 47 static int irqtime = -1; 48 49 core_param(irqtime, irqtime, int, 0400); 50 51 static u64 notrace jiffy_sched_clock_read(void) 52 { 53 /* 54 * We don't need to use get_jiffies_64 on 32-bit arches here 55 * because we register with BITS_PER_LONG 56 */ 57 return (u64)(jiffies - INITIAL_JIFFIES); 58 } 59 60 static struct clock_data cd ____cacheline_aligned = { 61 .read_data[0] = { .mult = NSEC_PER_SEC / HZ, 62 .read_sched_clock = jiffy_sched_clock_read, }, 63 .actual_read_sched_clock = jiffy_sched_clock_read, 64 }; 65 66 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) 67 { 68 return (cyc * mult) >> shift; 69 } 70 71 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq) 72 { 73 *seq = raw_read_seqcount_latch(&cd.seq); 74 return cd.read_data + (*seq & 1); 75 } 76 77 notrace int sched_clock_read_retry(unsigned int seq) 78 { 79 return read_seqcount_latch_retry(&cd.seq, seq); 80 } 81 82 unsigned long long notrace sched_clock(void) 83 { 84 u64 cyc, res; 85 unsigned int seq; 86 struct clock_read_data *rd; 87 88 do { 89 rd = sched_clock_read_begin(&seq); 90 91 cyc = (rd->read_sched_clock() - rd->epoch_cyc) & 92 rd->sched_clock_mask; 93 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift); 94 } while (sched_clock_read_retry(seq)); 95 96 return res; 97 } 98 99 /* 100 * Updating the data required to read the clock. 101 * 102 * sched_clock() will never observe mis-matched data even if called from 103 * an NMI. We do this by maintaining an odd/even copy of the data and 104 * steering sched_clock() to one or the other using a sequence counter. 105 * In order to preserve the data cache profile of sched_clock() as much 106 * as possible the system reverts back to the even copy when the update 107 * completes; the odd copy is used *only* during an update. 108 */ 109 static void update_clock_read_data(struct clock_read_data *rd) 110 { 111 /* update the backup (odd) copy with the new data */ 112 cd.read_data[1] = *rd; 113 114 /* steer readers towards the odd copy */ 115 raw_write_seqcount_latch(&cd.seq); 116 117 /* now its safe for us to update the normal (even) copy */ 118 cd.read_data[0] = *rd; 119 120 /* switch readers back to the even copy */ 121 raw_write_seqcount_latch(&cd.seq); 122 } 123 124 /* 125 * Atomically update the sched_clock() epoch. 126 */ 127 static void update_sched_clock(void) 128 { 129 u64 cyc; 130 u64 ns; 131 struct clock_read_data rd; 132 133 rd = cd.read_data[0]; 134 135 cyc = cd.actual_read_sched_clock(); 136 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 137 138 rd.epoch_ns = ns; 139 rd.epoch_cyc = cyc; 140 141 update_clock_read_data(&rd); 142 } 143 144 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) 145 { 146 update_sched_clock(); 147 hrtimer_forward_now(hrt, cd.wrap_kt); 148 149 return HRTIMER_RESTART; 150 } 151 152 void __init 153 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate) 154 { 155 u64 res, wrap, new_mask, new_epoch, cyc, ns; 156 u32 new_mult, new_shift; 157 unsigned long r, flags; 158 char r_unit; 159 struct clock_read_data rd; 160 161 if (cd.rate > rate) 162 return; 163 164 /* Cannot register a sched_clock with interrupts on */ 165 local_irq_save(flags); 166 167 /* Calculate the mult/shift to convert counter ticks to ns. */ 168 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600); 169 170 new_mask = CLOCKSOURCE_MASK(bits); 171 cd.rate = rate; 172 173 /* Calculate how many nanosecs until we risk wrapping */ 174 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); 175 cd.wrap_kt = ns_to_ktime(wrap); 176 177 rd = cd.read_data[0]; 178 179 /* Update epoch for new counter and update 'epoch_ns' from old counter*/ 180 new_epoch = read(); 181 cyc = cd.actual_read_sched_clock(); 182 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 183 cd.actual_read_sched_clock = read; 184 185 rd.read_sched_clock = read; 186 rd.sched_clock_mask = new_mask; 187 rd.mult = new_mult; 188 rd.shift = new_shift; 189 rd.epoch_cyc = new_epoch; 190 rd.epoch_ns = ns; 191 192 update_clock_read_data(&rd); 193 194 if (sched_clock_timer.function != NULL) { 195 /* update timeout for clock wrap */ 196 hrtimer_start(&sched_clock_timer, cd.wrap_kt, 197 HRTIMER_MODE_REL_HARD); 198 } 199 200 r = rate; 201 if (r >= 4000000) { 202 r /= 1000000; 203 r_unit = 'M'; 204 } else { 205 if (r >= 1000) { 206 r /= 1000; 207 r_unit = 'k'; 208 } else { 209 r_unit = ' '; 210 } 211 } 212 213 /* Calculate the ns resolution of this counter */ 214 res = cyc_to_ns(1ULL, new_mult, new_shift); 215 216 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", 217 bits, r, r_unit, res, wrap); 218 219 /* Enable IRQ time accounting if we have a fast enough sched_clock() */ 220 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) 221 enable_sched_clock_irqtime(); 222 223 local_irq_restore(flags); 224 225 pr_debug("Registered %pS as sched_clock source\n", read); 226 } 227 228 void __init generic_sched_clock_init(void) 229 { 230 /* 231 * If no sched_clock() function has been provided at that point, 232 * make it the final one. 233 */ 234 if (cd.actual_read_sched_clock == jiffy_sched_clock_read) 235 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ); 236 237 update_sched_clock(); 238 239 /* 240 * Start the timer to keep sched_clock() properly updated and 241 * sets the initial epoch. 242 */ 243 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 244 sched_clock_timer.function = sched_clock_poll; 245 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD); 246 } 247 248 /* 249 * Clock read function for use when the clock is suspended. 250 * 251 * This function makes it appear to sched_clock() as if the clock 252 * stopped counting at its last update. 253 * 254 * This function must only be called from the critical 255 * section in sched_clock(). It relies on the read_seqcount_retry() 256 * at the end of the critical section to be sure we observe the 257 * correct copy of 'epoch_cyc'. 258 */ 259 static u64 notrace suspended_sched_clock_read(void) 260 { 261 unsigned int seq = raw_read_seqcount_latch(&cd.seq); 262 263 return cd.read_data[seq & 1].epoch_cyc; 264 } 265 266 int sched_clock_suspend(void) 267 { 268 struct clock_read_data *rd = &cd.read_data[0]; 269 270 update_sched_clock(); 271 hrtimer_cancel(&sched_clock_timer); 272 rd->read_sched_clock = suspended_sched_clock_read; 273 274 return 0; 275 } 276 277 void sched_clock_resume(void) 278 { 279 struct clock_read_data *rd = &cd.read_data[0]; 280 281 rd->epoch_cyc = cd.actual_read_sched_clock(); 282 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD); 283 rd->read_sched_clock = cd.actual_read_sched_clock; 284 } 285 286 static struct syscore_ops sched_clock_ops = { 287 .suspend = sched_clock_suspend, 288 .resume = sched_clock_resume, 289 }; 290 291 static int __init sched_clock_syscore_init(void) 292 { 293 register_syscore_ops(&sched_clock_ops); 294 295 return 0; 296 } 297 device_initcall(sched_clock_syscore_init); 298