xref: /linux/kernel/time/sched_clock.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * sched_clock.c: support for extending counters to full 64-bit ns counter
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/clocksource.h>
9 #include <linux/init.h>
10 #include <linux/jiffies.h>
11 #include <linux/ktime.h>
12 #include <linux/kernel.h>
13 #include <linux/moduleparam.h>
14 #include <linux/sched.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/hrtimer.h>
17 #include <linux/sched_clock.h>
18 #include <linux/seqlock.h>
19 #include <linux/bitops.h>
20 
21 struct clock_data {
22 	ktime_t wrap_kt;
23 	u64 epoch_ns;
24 	u64 epoch_cyc;
25 	seqcount_t seq;
26 	unsigned long rate;
27 	u32 mult;
28 	u32 shift;
29 	bool suspended;
30 };
31 
32 static struct hrtimer sched_clock_timer;
33 static int irqtime = -1;
34 
35 core_param(irqtime, irqtime, int, 0400);
36 
37 static struct clock_data cd = {
38 	.mult	= NSEC_PER_SEC / HZ,
39 };
40 
41 static u64 __read_mostly sched_clock_mask;
42 
43 static u64 notrace jiffy_sched_clock_read(void)
44 {
45 	/*
46 	 * We don't need to use get_jiffies_64 on 32-bit arches here
47 	 * because we register with BITS_PER_LONG
48 	 */
49 	return (u64)(jiffies - INITIAL_JIFFIES);
50 }
51 
52 static u32 __read_mostly (*read_sched_clock_32)(void);
53 
54 static u64 notrace read_sched_clock_32_wrapper(void)
55 {
56 	return read_sched_clock_32();
57 }
58 
59 static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
60 
61 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
62 {
63 	return (cyc * mult) >> shift;
64 }
65 
66 unsigned long long notrace sched_clock(void)
67 {
68 	u64 epoch_ns;
69 	u64 epoch_cyc;
70 	u64 cyc;
71 	unsigned long seq;
72 
73 	if (cd.suspended)
74 		return cd.epoch_ns;
75 
76 	do {
77 		seq = read_seqcount_begin(&cd.seq);
78 		epoch_cyc = cd.epoch_cyc;
79 		epoch_ns = cd.epoch_ns;
80 	} while (read_seqcount_retry(&cd.seq, seq));
81 
82 	cyc = read_sched_clock();
83 	cyc = (cyc - epoch_cyc) & sched_clock_mask;
84 	return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
85 }
86 
87 /*
88  * Atomically update the sched_clock epoch.
89  */
90 static void notrace update_sched_clock(void)
91 {
92 	unsigned long flags;
93 	u64 cyc;
94 	u64 ns;
95 
96 	cyc = read_sched_clock();
97 	ns = cd.epoch_ns +
98 		cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
99 			  cd.mult, cd.shift);
100 
101 	raw_local_irq_save(flags);
102 	write_seqcount_begin(&cd.seq);
103 	cd.epoch_ns = ns;
104 	cd.epoch_cyc = cyc;
105 	write_seqcount_end(&cd.seq);
106 	raw_local_irq_restore(flags);
107 }
108 
109 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
110 {
111 	update_sched_clock();
112 	hrtimer_forward_now(hrt, cd.wrap_kt);
113 	return HRTIMER_RESTART;
114 }
115 
116 void __init sched_clock_register(u64 (*read)(void), int bits,
117 				 unsigned long rate)
118 {
119 	unsigned long r;
120 	u64 res, wrap;
121 	char r_unit;
122 
123 	if (cd.rate > rate)
124 		return;
125 
126 	WARN_ON(!irqs_disabled());
127 	read_sched_clock = read;
128 	sched_clock_mask = CLOCKSOURCE_MASK(bits);
129 	cd.rate = rate;
130 
131 	/* calculate the mult/shift to convert counter ticks to ns. */
132 	clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 3600);
133 
134 	r = rate;
135 	if (r >= 4000000) {
136 		r /= 1000000;
137 		r_unit = 'M';
138 	} else if (r >= 1000) {
139 		r /= 1000;
140 		r_unit = 'k';
141 	} else
142 		r_unit = ' ';
143 
144 	/* calculate how many ns until we wrap */
145 	wrap = clocks_calc_max_nsecs(cd.mult, cd.shift, 0, sched_clock_mask);
146 	cd.wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
147 
148 	/* calculate the ns resolution of this counter */
149 	res = cyc_to_ns(1ULL, cd.mult, cd.shift);
150 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
151 		bits, r, r_unit, res, wrap);
152 
153 	update_sched_clock();
154 
155 	/*
156 	 * Ensure that sched_clock() starts off at 0ns
157 	 */
158 	cd.epoch_ns = 0;
159 
160 	/* Enable IRQ time accounting if we have a fast enough sched_clock */
161 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
162 		enable_sched_clock_irqtime();
163 
164 	pr_debug("Registered %pF as sched_clock source\n", read);
165 }
166 
167 void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
168 {
169 	read_sched_clock_32 = read;
170 	sched_clock_register(read_sched_clock_32_wrapper, bits, rate);
171 }
172 
173 void __init sched_clock_postinit(void)
174 {
175 	/*
176 	 * If no sched_clock function has been provided at that point,
177 	 * make it the final one one.
178 	 */
179 	if (read_sched_clock == jiffy_sched_clock_read)
180 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
181 
182 	update_sched_clock();
183 
184 	/*
185 	 * Start the timer to keep sched_clock() properly updated and
186 	 * sets the initial epoch.
187 	 */
188 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 	sched_clock_timer.function = sched_clock_poll;
190 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
191 }
192 
193 static int sched_clock_suspend(void)
194 {
195 	sched_clock_poll(&sched_clock_timer);
196 	cd.suspended = true;
197 	return 0;
198 }
199 
200 static void sched_clock_resume(void)
201 {
202 	cd.epoch_cyc = read_sched_clock();
203 	cd.suspended = false;
204 }
205 
206 static struct syscore_ops sched_clock_ops = {
207 	.suspend = sched_clock_suspend,
208 	.resume = sched_clock_resume,
209 };
210 
211 static int __init sched_clock_syscore_init(void)
212 {
213 	register_syscore_ops(&sched_clock_ops);
214 	return 0;
215 }
216 device_initcall(sched_clock_syscore_init);
217