xref: /linux/kernel/time/sched_clock.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic sched_clock() support, to extend low level hardware time
4  * counters to full 64-bit ns values.
5  */
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/math.h>
12 #include <linux/moduleparam.h>
13 #include <linux/sched.h>
14 #include <linux/sched/clock.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/hrtimer.h>
17 #include <linux/sched_clock.h>
18 #include <linux/seqlock.h>
19 #include <linux/bitops.h>
20 
21 #include "timekeeping.h"
22 
23 /**
24  * struct clock_data - all data needed for sched_clock() (including
25  *                     registration of a new clock source)
26  *
27  * @seq:		Sequence counter for protecting updates. The lowest
28  *			bit is the index for @read_data.
29  * @read_data:		Data required to read from sched_clock.
30  * @wrap_kt:		Duration for which clock can run before wrapping.
31  * @rate:		Tick rate of the registered clock.
32  * @actual_read_sched_clock: Registered hardware level clock read function.
33  *
34  * The ordering of this structure has been chosen to optimize cache
35  * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
36  * into a single 64-byte cache line.
37  */
38 struct clock_data {
39 	seqcount_latch_t	seq;
40 	struct clock_read_data	read_data[2];
41 	ktime_t			wrap_kt;
42 	unsigned long		rate;
43 
44 	u64 (*actual_read_sched_clock)(void);
45 };
46 
47 static struct hrtimer sched_clock_timer;
48 static int irqtime = -1;
49 
50 core_param(irqtime, irqtime, int, 0400);
51 
52 static u64 notrace jiffy_sched_clock_read(void)
53 {
54 	/*
55 	 * We don't need to use get_jiffies_64 on 32-bit arches here
56 	 * because we register with BITS_PER_LONG
57 	 */
58 	return (u64)(jiffies - INITIAL_JIFFIES);
59 }
60 
61 static struct clock_data cd ____cacheline_aligned = {
62 	.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
63 			  .read_sched_clock = jiffy_sched_clock_read, },
64 	.actual_read_sched_clock = jiffy_sched_clock_read,
65 };
66 
67 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
68 {
69 	return (cyc * mult) >> shift;
70 }
71 
72 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
73 {
74 	*seq = raw_read_seqcount_latch(&cd.seq);
75 	return cd.read_data + (*seq & 1);
76 }
77 
78 notrace int sched_clock_read_retry(unsigned int seq)
79 {
80 	return read_seqcount_latch_retry(&cd.seq, seq);
81 }
82 
83 unsigned long long notrace sched_clock(void)
84 {
85 	u64 cyc, res;
86 	unsigned int seq;
87 	struct clock_read_data *rd;
88 
89 	do {
90 		rd = sched_clock_read_begin(&seq);
91 
92 		cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
93 		      rd->sched_clock_mask;
94 		res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
95 	} while (sched_clock_read_retry(seq));
96 
97 	return res;
98 }
99 
100 /*
101  * Updating the data required to read the clock.
102  *
103  * sched_clock() will never observe mis-matched data even if called from
104  * an NMI. We do this by maintaining an odd/even copy of the data and
105  * steering sched_clock() to one or the other using a sequence counter.
106  * In order to preserve the data cache profile of sched_clock() as much
107  * as possible the system reverts back to the even copy when the update
108  * completes; the odd copy is used *only* during an update.
109  */
110 static void update_clock_read_data(struct clock_read_data *rd)
111 {
112 	/* update the backup (odd) copy with the new data */
113 	cd.read_data[1] = *rd;
114 
115 	/* steer readers towards the odd copy */
116 	raw_write_seqcount_latch(&cd.seq);
117 
118 	/* now its safe for us to update the normal (even) copy */
119 	cd.read_data[0] = *rd;
120 
121 	/* switch readers back to the even copy */
122 	raw_write_seqcount_latch(&cd.seq);
123 }
124 
125 /*
126  * Atomically update the sched_clock() epoch.
127  */
128 static void update_sched_clock(void)
129 {
130 	u64 cyc;
131 	u64 ns;
132 	struct clock_read_data rd;
133 
134 	rd = cd.read_data[0];
135 
136 	cyc = cd.actual_read_sched_clock();
137 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
138 
139 	rd.epoch_ns = ns;
140 	rd.epoch_cyc = cyc;
141 
142 	update_clock_read_data(&rd);
143 }
144 
145 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
146 {
147 	update_sched_clock();
148 	hrtimer_forward_now(hrt, cd.wrap_kt);
149 
150 	return HRTIMER_RESTART;
151 }
152 
153 void __init
154 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
155 {
156 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
157 	u32 new_mult, new_shift;
158 	unsigned long r, flags;
159 	char r_unit;
160 	struct clock_read_data rd;
161 
162 	if (cd.rate > rate)
163 		return;
164 
165 	/* Cannot register a sched_clock with interrupts on */
166 	local_irq_save(flags);
167 
168 	/* Calculate the mult/shift to convert counter ticks to ns. */
169 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
170 
171 	new_mask = CLOCKSOURCE_MASK(bits);
172 	cd.rate = rate;
173 
174 	/* Calculate how many nanosecs until we risk wrapping */
175 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
176 	cd.wrap_kt = ns_to_ktime(wrap);
177 
178 	rd = cd.read_data[0];
179 
180 	/* Update epoch for new counter and update 'epoch_ns' from old counter*/
181 	new_epoch = read();
182 	cyc = cd.actual_read_sched_clock();
183 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
184 	cd.actual_read_sched_clock = read;
185 
186 	rd.read_sched_clock	= read;
187 	rd.sched_clock_mask	= new_mask;
188 	rd.mult			= new_mult;
189 	rd.shift		= new_shift;
190 	rd.epoch_cyc		= new_epoch;
191 	rd.epoch_ns		= ns;
192 
193 	update_clock_read_data(&rd);
194 
195 	if (sched_clock_timer.function != NULL) {
196 		/* update timeout for clock wrap */
197 		hrtimer_start(&sched_clock_timer, cd.wrap_kt,
198 			      HRTIMER_MODE_REL_HARD);
199 	}
200 
201 	r = rate;
202 	if (r >= 4000000) {
203 		r = DIV_ROUND_CLOSEST(r, 1000000);
204 		r_unit = 'M';
205 	} else if (r >= 4000) {
206 		r = DIV_ROUND_CLOSEST(r, 1000);
207 		r_unit = 'k';
208 	} else {
209 		r_unit = ' ';
210 	}
211 
212 	/* Calculate the ns resolution of this counter */
213 	res = cyc_to_ns(1ULL, new_mult, new_shift);
214 
215 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
216 		bits, r, r_unit, res, wrap);
217 
218 	/* Enable IRQ time accounting if we have a fast enough sched_clock() */
219 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
220 		enable_sched_clock_irqtime();
221 
222 	local_irq_restore(flags);
223 
224 	pr_debug("Registered %pS as sched_clock source\n", read);
225 }
226 
227 void __init generic_sched_clock_init(void)
228 {
229 	/*
230 	 * If no sched_clock() function has been provided at that point,
231 	 * make it the final one.
232 	 */
233 	if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
234 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
235 
236 	update_sched_clock();
237 
238 	/*
239 	 * Start the timer to keep sched_clock() properly updated and
240 	 * sets the initial epoch.
241 	 */
242 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
243 	sched_clock_timer.function = sched_clock_poll;
244 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
245 }
246 
247 /*
248  * Clock read function for use when the clock is suspended.
249  *
250  * This function makes it appear to sched_clock() as if the clock
251  * stopped counting at its last update.
252  *
253  * This function must only be called from the critical
254  * section in sched_clock(). It relies on the read_seqcount_retry()
255  * at the end of the critical section to be sure we observe the
256  * correct copy of 'epoch_cyc'.
257  */
258 static u64 notrace suspended_sched_clock_read(void)
259 {
260 	unsigned int seq = raw_read_seqcount_latch(&cd.seq);
261 
262 	return cd.read_data[seq & 1].epoch_cyc;
263 }
264 
265 int sched_clock_suspend(void)
266 {
267 	struct clock_read_data *rd = &cd.read_data[0];
268 
269 	update_sched_clock();
270 	hrtimer_cancel(&sched_clock_timer);
271 	rd->read_sched_clock = suspended_sched_clock_read;
272 
273 	return 0;
274 }
275 
276 void sched_clock_resume(void)
277 {
278 	struct clock_read_data *rd = &cd.read_data[0];
279 
280 	rd->epoch_cyc = cd.actual_read_sched_clock();
281 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
282 	rd->read_sched_clock = cd.actual_read_sched_clock;
283 }
284 
285 static struct syscore_ops sched_clock_ops = {
286 	.suspend	= sched_clock_suspend,
287 	.resume		= sched_clock_resume,
288 };
289 
290 static int __init sched_clock_syscore_init(void)
291 {
292 	register_syscore_ops(&sched_clock_ops);
293 
294 	return 0;
295 }
296 device_initcall(sched_clock_syscore_init);
297