xref: /linux/kernel/time/sched_clock.c (revision 1448f8acf4cc61197a228bdb7126e7eeb92760fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic sched_clock() support, to extend low level hardware time
4  * counters to full 64-bit ns values.
5  */
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/moduleparam.h>
12 #include <linux/sched.h>
13 #include <linux/sched/clock.h>
14 #include <linux/syscore_ops.h>
15 #include <linux/hrtimer.h>
16 #include <linux/sched_clock.h>
17 #include <linux/seqlock.h>
18 #include <linux/bitops.h>
19 
20 #include "timekeeping.h"
21 
22 /**
23  * struct clock_data - all data needed for sched_clock() (including
24  *                     registration of a new clock source)
25  *
26  * @seq:		Sequence counter for protecting updates. The lowest
27  *			bit is the index for @read_data.
28  * @read_data:		Data required to read from sched_clock.
29  * @wrap_kt:		Duration for which clock can run before wrapping.
30  * @rate:		Tick rate of the registered clock.
31  * @actual_read_sched_clock: Registered hardware level clock read function.
32  *
33  * The ordering of this structure has been chosen to optimize cache
34  * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
35  * into a single 64-byte cache line.
36  */
37 struct clock_data {
38 	seqcount_latch_t	seq;
39 	struct clock_read_data	read_data[2];
40 	ktime_t			wrap_kt;
41 	unsigned long		rate;
42 
43 	u64 (*actual_read_sched_clock)(void);
44 };
45 
46 static struct hrtimer sched_clock_timer;
47 static int irqtime = -1;
48 
49 core_param(irqtime, irqtime, int, 0400);
50 
51 static u64 notrace jiffy_sched_clock_read(void)
52 {
53 	/*
54 	 * We don't need to use get_jiffies_64 on 32-bit arches here
55 	 * because we register with BITS_PER_LONG
56 	 */
57 	return (u64)(jiffies - INITIAL_JIFFIES);
58 }
59 
60 static struct clock_data cd ____cacheline_aligned = {
61 	.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
62 			  .read_sched_clock = jiffy_sched_clock_read, },
63 	.actual_read_sched_clock = jiffy_sched_clock_read,
64 };
65 
66 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
67 {
68 	return (cyc * mult) >> shift;
69 }
70 
71 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
72 {
73 	*seq = raw_read_seqcount_latch(&cd.seq);
74 	return cd.read_data + (*seq & 1);
75 }
76 
77 notrace int sched_clock_read_retry(unsigned int seq)
78 {
79 	return read_seqcount_latch_retry(&cd.seq, seq);
80 }
81 
82 unsigned long long notrace sched_clock(void)
83 {
84 	u64 cyc, res;
85 	unsigned int seq;
86 	struct clock_read_data *rd;
87 
88 	do {
89 		rd = sched_clock_read_begin(&seq);
90 
91 		cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
92 		      rd->sched_clock_mask;
93 		res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
94 	} while (sched_clock_read_retry(seq));
95 
96 	return res;
97 }
98 
99 /*
100  * Updating the data required to read the clock.
101  *
102  * sched_clock() will never observe mis-matched data even if called from
103  * an NMI. We do this by maintaining an odd/even copy of the data and
104  * steering sched_clock() to one or the other using a sequence counter.
105  * In order to preserve the data cache profile of sched_clock() as much
106  * as possible the system reverts back to the even copy when the update
107  * completes; the odd copy is used *only* during an update.
108  */
109 static void update_clock_read_data(struct clock_read_data *rd)
110 {
111 	/* update the backup (odd) copy with the new data */
112 	cd.read_data[1] = *rd;
113 
114 	/* steer readers towards the odd copy */
115 	raw_write_seqcount_latch(&cd.seq);
116 
117 	/* now its safe for us to update the normal (even) copy */
118 	cd.read_data[0] = *rd;
119 
120 	/* switch readers back to the even copy */
121 	raw_write_seqcount_latch(&cd.seq);
122 }
123 
124 /*
125  * Atomically update the sched_clock() epoch.
126  */
127 static void update_sched_clock(void)
128 {
129 	u64 cyc;
130 	u64 ns;
131 	struct clock_read_data rd;
132 
133 	rd = cd.read_data[0];
134 
135 	cyc = cd.actual_read_sched_clock();
136 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
137 
138 	rd.epoch_ns = ns;
139 	rd.epoch_cyc = cyc;
140 
141 	update_clock_read_data(&rd);
142 }
143 
144 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
145 {
146 	update_sched_clock();
147 	hrtimer_forward_now(hrt, cd.wrap_kt);
148 
149 	return HRTIMER_RESTART;
150 }
151 
152 void __init
153 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
154 {
155 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
156 	u32 new_mult, new_shift;
157 	unsigned long r, flags;
158 	char r_unit;
159 	struct clock_read_data rd;
160 
161 	if (cd.rate > rate)
162 		return;
163 
164 	/* Cannot register a sched_clock with interrupts on */
165 	local_irq_save(flags);
166 
167 	/* Calculate the mult/shift to convert counter ticks to ns. */
168 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
169 
170 	new_mask = CLOCKSOURCE_MASK(bits);
171 	cd.rate = rate;
172 
173 	/* Calculate how many nanosecs until we risk wrapping */
174 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
175 	cd.wrap_kt = ns_to_ktime(wrap);
176 
177 	rd = cd.read_data[0];
178 
179 	/* Update epoch for new counter and update 'epoch_ns' from old counter*/
180 	new_epoch = read();
181 	cyc = cd.actual_read_sched_clock();
182 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
183 	cd.actual_read_sched_clock = read;
184 
185 	rd.read_sched_clock	= read;
186 	rd.sched_clock_mask	= new_mask;
187 	rd.mult			= new_mult;
188 	rd.shift		= new_shift;
189 	rd.epoch_cyc		= new_epoch;
190 	rd.epoch_ns		= ns;
191 
192 	update_clock_read_data(&rd);
193 
194 	if (sched_clock_timer.function != NULL) {
195 		/* update timeout for clock wrap */
196 		hrtimer_start(&sched_clock_timer, cd.wrap_kt,
197 			      HRTIMER_MODE_REL_HARD);
198 	}
199 
200 	r = rate;
201 	if (r >= 4000000) {
202 		r /= 1000000;
203 		r_unit = 'M';
204 	} else {
205 		if (r >= 1000) {
206 			r /= 1000;
207 			r_unit = 'k';
208 		} else {
209 			r_unit = ' ';
210 		}
211 	}
212 
213 	/* Calculate the ns resolution of this counter */
214 	res = cyc_to_ns(1ULL, new_mult, new_shift);
215 
216 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
217 		bits, r, r_unit, res, wrap);
218 
219 	/* Enable IRQ time accounting if we have a fast enough sched_clock() */
220 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
221 		enable_sched_clock_irqtime();
222 
223 	local_irq_restore(flags);
224 
225 	pr_debug("Registered %pS as sched_clock source\n", read);
226 }
227 
228 void __init generic_sched_clock_init(void)
229 {
230 	/*
231 	 * If no sched_clock() function has been provided at that point,
232 	 * make it the final one.
233 	 */
234 	if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
235 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
236 
237 	update_sched_clock();
238 
239 	/*
240 	 * Start the timer to keep sched_clock() properly updated and
241 	 * sets the initial epoch.
242 	 */
243 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
244 	sched_clock_timer.function = sched_clock_poll;
245 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
246 }
247 
248 /*
249  * Clock read function for use when the clock is suspended.
250  *
251  * This function makes it appear to sched_clock() as if the clock
252  * stopped counting at its last update.
253  *
254  * This function must only be called from the critical
255  * section in sched_clock(). It relies on the read_seqcount_retry()
256  * at the end of the critical section to be sure we observe the
257  * correct copy of 'epoch_cyc'.
258  */
259 static u64 notrace suspended_sched_clock_read(void)
260 {
261 	unsigned int seq = raw_read_seqcount_latch(&cd.seq);
262 
263 	return cd.read_data[seq & 1].epoch_cyc;
264 }
265 
266 int sched_clock_suspend(void)
267 {
268 	struct clock_read_data *rd = &cd.read_data[0];
269 
270 	update_sched_clock();
271 	hrtimer_cancel(&sched_clock_timer);
272 	rd->read_sched_clock = suspended_sched_clock_read;
273 
274 	return 0;
275 }
276 
277 void sched_clock_resume(void)
278 {
279 	struct clock_read_data *rd = &cd.read_data[0];
280 
281 	rd->epoch_cyc = cd.actual_read_sched_clock();
282 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
283 	rd->read_sched_clock = cd.actual_read_sched_clock;
284 }
285 
286 static struct syscore_ops sched_clock_ops = {
287 	.suspend	= sched_clock_suspend,
288 	.resume		= sched_clock_resume,
289 };
290 
291 static int __init sched_clock_syscore_init(void)
292 {
293 	register_syscore_ops(&sched_clock_ops);
294 
295 	return 0;
296 }
297 device_initcall(sched_clock_syscore_init);
298