xref: /linux/kernel/time/posix-timers.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53 #include <linux/nospec.h>
54 
55 #include "timekeeping.h"
56 #include "posix-timers.h"
57 
58 /*
59  * Management arrays for POSIX timers. Timers are now kept in static hash table
60  * with 512 entries.
61  * Timer ids are allocated by local routine, which selects proper hash head by
62  * key, constructed from current->signal address and per signal struct counter.
63  * This keeps timer ids unique per process, but now they can intersect between
64  * processes.
65  */
66 
67 /*
68  * Lets keep our timers in a slab cache :-)
69  */
70 static struct kmem_cache *posix_timers_cache;
71 
72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73 static DEFINE_SPINLOCK(hash_lock);
74 
75 static const struct k_clock * const posix_clocks[];
76 static const struct k_clock *clockid_to_kclock(const clockid_t id);
77 static const struct k_clock clock_realtime, clock_monotonic;
78 
79 /*
80  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81  * SIGEV values.  Here we put out an error if this assumption fails.
82  */
83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86 #endif
87 
88 /*
89  * The timer ID is turned into a timer address by idr_find().
90  * Verifying a valid ID consists of:
91  *
92  * a) checking that idr_find() returns other than -1.
93  * b) checking that the timer id matches the one in the timer itself.
94  * c) that the timer owner is in the callers thread group.
95  */
96 
97 /*
98  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
99  *	    to implement others.  This structure defines the various
100  *	    clocks.
101  *
102  * RESOLUTION: Clock resolution is used to round up timer and interval
103  *	    times, NOT to report clock times, which are reported with as
104  *	    much resolution as the system can muster.  In some cases this
105  *	    resolution may depend on the underlying clock hardware and
106  *	    may not be quantifiable until run time, and only then is the
107  *	    necessary code is written.	The standard says we should say
108  *	    something about this issue in the documentation...
109  *
110  * FUNCTIONS: The CLOCKs structure defines possible functions to
111  *	    handle various clock functions.
112  *
113  *	    The standard POSIX timer management code assumes the
114  *	    following: 1.) The k_itimer struct (sched.h) is used for
115  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
116  *	    it_pid fields are not modified by timer code.
117  *
118  * Permissions: It is assumed that the clock_settime() function defined
119  *	    for each clock will take care of permission checks.	 Some
120  *	    clocks may be set able by any user (i.e. local process
121  *	    clocks) others not.	 Currently the only set able clock we
122  *	    have is CLOCK_REALTIME and its high res counter part, both of
123  *	    which we beg off on and pass to do_sys_settimeofday().
124  */
125 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
126 
127 #define lock_timer(tid, flags)						   \
128 ({	struct k_itimer *__timr;					   \
129 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
130 	__timr;								   \
131 })
132 
133 static int hash(struct signal_struct *sig, unsigned int nr)
134 {
135 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
136 }
137 
138 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
139 					    struct signal_struct *sig,
140 					    timer_t id)
141 {
142 	struct k_itimer *timer;
143 
144 	hlist_for_each_entry_rcu(timer, head, t_hash) {
145 		if ((timer->it_signal == sig) && (timer->it_id == id))
146 			return timer;
147 	}
148 	return NULL;
149 }
150 
151 static struct k_itimer *posix_timer_by_id(timer_t id)
152 {
153 	struct signal_struct *sig = current->signal;
154 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
155 
156 	return __posix_timers_find(head, sig, id);
157 }
158 
159 static int posix_timer_add(struct k_itimer *timer)
160 {
161 	struct signal_struct *sig = current->signal;
162 	int first_free_id = sig->posix_timer_id;
163 	struct hlist_head *head;
164 	int ret = -ENOENT;
165 
166 	do {
167 		spin_lock(&hash_lock);
168 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
169 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
170 			hlist_add_head_rcu(&timer->t_hash, head);
171 			ret = sig->posix_timer_id;
172 		}
173 		if (++sig->posix_timer_id < 0)
174 			sig->posix_timer_id = 0;
175 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
176 			/* Loop over all possible ids completed */
177 			ret = -EAGAIN;
178 		spin_unlock(&hash_lock);
179 	} while (ret == -ENOENT);
180 	return ret;
181 }
182 
183 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
184 {
185 	spin_unlock_irqrestore(&timr->it_lock, flags);
186 }
187 
188 /* Get clock_realtime */
189 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
190 {
191 	ktime_get_real_ts64(tp);
192 	return 0;
193 }
194 
195 /* Set clock_realtime */
196 static int posix_clock_realtime_set(const clockid_t which_clock,
197 				    const struct timespec64 *tp)
198 {
199 	return do_sys_settimeofday64(tp, NULL);
200 }
201 
202 static int posix_clock_realtime_adj(const clockid_t which_clock,
203 				    struct timex *t)
204 {
205 	return do_adjtimex(t);
206 }
207 
208 /*
209  * Get monotonic time for posix timers
210  */
211 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
212 {
213 	ktime_get_ts64(tp);
214 	return 0;
215 }
216 
217 /*
218  * Get monotonic-raw time for posix timers
219  */
220 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
221 {
222 	ktime_get_raw_ts64(tp);
223 	return 0;
224 }
225 
226 
227 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
228 {
229 	ktime_get_coarse_real_ts64(tp);
230 	return 0;
231 }
232 
233 static int posix_get_monotonic_coarse(clockid_t which_clock,
234 						struct timespec64 *tp)
235 {
236 	ktime_get_coarse_ts64(tp);
237 	return 0;
238 }
239 
240 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
241 {
242 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
243 	return 0;
244 }
245 
246 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
247 {
248 	ktime_get_boottime_ts64(tp);
249 	return 0;
250 }
251 
252 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
253 {
254 	ktime_get_clocktai_ts64(tp);
255 	return 0;
256 }
257 
258 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
259 {
260 	tp->tv_sec = 0;
261 	tp->tv_nsec = hrtimer_resolution;
262 	return 0;
263 }
264 
265 /*
266  * Initialize everything, well, just everything in Posix clocks/timers ;)
267  */
268 static __init int init_posix_timers(void)
269 {
270 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
271 					sizeof (struct k_itimer), 0, SLAB_PANIC,
272 					NULL);
273 	return 0;
274 }
275 __initcall(init_posix_timers);
276 
277 /*
278  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
279  * are of type int. Clamp the overrun value to INT_MAX
280  */
281 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
282 {
283 	s64 sum = timr->it_overrun_last + (s64)baseval;
284 
285 	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
286 }
287 
288 static void common_hrtimer_rearm(struct k_itimer *timr)
289 {
290 	struct hrtimer *timer = &timr->it.real.timer;
291 
292 	if (!timr->it_interval)
293 		return;
294 
295 	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
296 					    timr->it_interval);
297 	hrtimer_restart(timer);
298 }
299 
300 /*
301  * This function is exported for use by the signal deliver code.  It is
302  * called just prior to the info block being released and passes that
303  * block to us.  It's function is to update the overrun entry AND to
304  * restart the timer.  It should only be called if the timer is to be
305  * restarted (i.e. we have flagged this in the sys_private entry of the
306  * info block).
307  *
308  * To protect against the timer going away while the interrupt is queued,
309  * we require that the it_requeue_pending flag be set.
310  */
311 void posixtimer_rearm(struct siginfo *info)
312 {
313 	struct k_itimer *timr;
314 	unsigned long flags;
315 
316 	timr = lock_timer(info->si_tid, &flags);
317 	if (!timr)
318 		return;
319 
320 	if (timr->it_requeue_pending == info->si_sys_private) {
321 		timr->kclock->timer_rearm(timr);
322 
323 		timr->it_active = 1;
324 		timr->it_overrun_last = timr->it_overrun;
325 		timr->it_overrun = -1LL;
326 		++timr->it_requeue_pending;
327 
328 		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
329 	}
330 
331 	unlock_timer(timr, flags);
332 }
333 
334 int posix_timer_event(struct k_itimer *timr, int si_private)
335 {
336 	struct task_struct *task;
337 	int shared, ret = -1;
338 	/*
339 	 * FIXME: if ->sigq is queued we can race with
340 	 * dequeue_signal()->posixtimer_rearm().
341 	 *
342 	 * If dequeue_signal() sees the "right" value of
343 	 * si_sys_private it calls posixtimer_rearm().
344 	 * We re-queue ->sigq and drop ->it_lock().
345 	 * posixtimer_rearm() locks the timer
346 	 * and re-schedules it while ->sigq is pending.
347 	 * Not really bad, but not that we want.
348 	 */
349 	timr->sigq->info.si_sys_private = si_private;
350 
351 	rcu_read_lock();
352 	task = pid_task(timr->it_pid, PIDTYPE_PID);
353 	if (task) {
354 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
355 		ret = send_sigqueue(timr->sigq, task, shared);
356 	}
357 	rcu_read_unlock();
358 	/* If we failed to send the signal the timer stops. */
359 	return ret > 0;
360 }
361 
362 /*
363  * This function gets called when a POSIX.1b interval timer expires.  It
364  * is used as a callback from the kernel internal timer.  The
365  * run_timer_list code ALWAYS calls with interrupts on.
366 
367  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
368  */
369 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
370 {
371 	struct k_itimer *timr;
372 	unsigned long flags;
373 	int si_private = 0;
374 	enum hrtimer_restart ret = HRTIMER_NORESTART;
375 
376 	timr = container_of(timer, struct k_itimer, it.real.timer);
377 	spin_lock_irqsave(&timr->it_lock, flags);
378 
379 	timr->it_active = 0;
380 	if (timr->it_interval != 0)
381 		si_private = ++timr->it_requeue_pending;
382 
383 	if (posix_timer_event(timr, si_private)) {
384 		/*
385 		 * signal was not sent because of sig_ignor
386 		 * we will not get a call back to restart it AND
387 		 * it should be restarted.
388 		 */
389 		if (timr->it_interval != 0) {
390 			ktime_t now = hrtimer_cb_get_time(timer);
391 
392 			/*
393 			 * FIXME: What we really want, is to stop this
394 			 * timer completely and restart it in case the
395 			 * SIG_IGN is removed. This is a non trivial
396 			 * change which involves sighand locking
397 			 * (sigh !), which we don't want to do late in
398 			 * the release cycle.
399 			 *
400 			 * For now we just let timers with an interval
401 			 * less than a jiffie expire every jiffie to
402 			 * avoid softirq starvation in case of SIG_IGN
403 			 * and a very small interval, which would put
404 			 * the timer right back on the softirq pending
405 			 * list. By moving now ahead of time we trick
406 			 * hrtimer_forward() to expire the timer
407 			 * later, while we still maintain the overrun
408 			 * accuracy, but have some inconsistency in
409 			 * the timer_gettime() case. This is at least
410 			 * better than a starved softirq. A more
411 			 * complex fix which solves also another related
412 			 * inconsistency is already in the pipeline.
413 			 */
414 #ifdef CONFIG_HIGH_RES_TIMERS
415 			{
416 				ktime_t kj = NSEC_PER_SEC / HZ;
417 
418 				if (timr->it_interval < kj)
419 					now = ktime_add(now, kj);
420 			}
421 #endif
422 			timr->it_overrun += hrtimer_forward(timer, now,
423 							    timr->it_interval);
424 			ret = HRTIMER_RESTART;
425 			++timr->it_requeue_pending;
426 			timr->it_active = 1;
427 		}
428 	}
429 
430 	unlock_timer(timr, flags);
431 	return ret;
432 }
433 
434 static struct pid *good_sigevent(sigevent_t * event)
435 {
436 	struct task_struct *rtn = current->group_leader;
437 
438 	switch (event->sigev_notify) {
439 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
440 		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
441 		if (!rtn || !same_thread_group(rtn, current))
442 			return NULL;
443 		/* FALLTHRU */
444 	case SIGEV_SIGNAL:
445 	case SIGEV_THREAD:
446 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
447 			return NULL;
448 		/* FALLTHRU */
449 	case SIGEV_NONE:
450 		return task_pid(rtn);
451 	default:
452 		return NULL;
453 	}
454 }
455 
456 static struct k_itimer * alloc_posix_timer(void)
457 {
458 	struct k_itimer *tmr;
459 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
460 	if (!tmr)
461 		return tmr;
462 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
463 		kmem_cache_free(posix_timers_cache, tmr);
464 		return NULL;
465 	}
466 	clear_siginfo(&tmr->sigq->info);
467 	return tmr;
468 }
469 
470 static void k_itimer_rcu_free(struct rcu_head *head)
471 {
472 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
473 
474 	kmem_cache_free(posix_timers_cache, tmr);
475 }
476 
477 #define IT_ID_SET	1
478 #define IT_ID_NOT_SET	0
479 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
480 {
481 	if (it_id_set) {
482 		unsigned long flags;
483 		spin_lock_irqsave(&hash_lock, flags);
484 		hlist_del_rcu(&tmr->t_hash);
485 		spin_unlock_irqrestore(&hash_lock, flags);
486 	}
487 	put_pid(tmr->it_pid);
488 	sigqueue_free(tmr->sigq);
489 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
490 }
491 
492 static int common_timer_create(struct k_itimer *new_timer)
493 {
494 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
495 	return 0;
496 }
497 
498 /* Create a POSIX.1b interval timer. */
499 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
500 			   timer_t __user *created_timer_id)
501 {
502 	const struct k_clock *kc = clockid_to_kclock(which_clock);
503 	struct k_itimer *new_timer;
504 	int error, new_timer_id;
505 	int it_id_set = IT_ID_NOT_SET;
506 
507 	if (!kc)
508 		return -EINVAL;
509 	if (!kc->timer_create)
510 		return -EOPNOTSUPP;
511 
512 	new_timer = alloc_posix_timer();
513 	if (unlikely(!new_timer))
514 		return -EAGAIN;
515 
516 	spin_lock_init(&new_timer->it_lock);
517 	new_timer_id = posix_timer_add(new_timer);
518 	if (new_timer_id < 0) {
519 		error = new_timer_id;
520 		goto out;
521 	}
522 
523 	it_id_set = IT_ID_SET;
524 	new_timer->it_id = (timer_t) new_timer_id;
525 	new_timer->it_clock = which_clock;
526 	new_timer->kclock = kc;
527 	new_timer->it_overrun = -1LL;
528 
529 	if (event) {
530 		rcu_read_lock();
531 		new_timer->it_pid = get_pid(good_sigevent(event));
532 		rcu_read_unlock();
533 		if (!new_timer->it_pid) {
534 			error = -EINVAL;
535 			goto out;
536 		}
537 		new_timer->it_sigev_notify     = event->sigev_notify;
538 		new_timer->sigq->info.si_signo = event->sigev_signo;
539 		new_timer->sigq->info.si_value = event->sigev_value;
540 	} else {
541 		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
542 		new_timer->sigq->info.si_signo = SIGALRM;
543 		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
544 		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
545 		new_timer->it_pid = get_pid(task_tgid(current));
546 	}
547 
548 	new_timer->sigq->info.si_tid   = new_timer->it_id;
549 	new_timer->sigq->info.si_code  = SI_TIMER;
550 
551 	if (copy_to_user(created_timer_id,
552 			 &new_timer_id, sizeof (new_timer_id))) {
553 		error = -EFAULT;
554 		goto out;
555 	}
556 
557 	error = kc->timer_create(new_timer);
558 	if (error)
559 		goto out;
560 
561 	spin_lock_irq(&current->sighand->siglock);
562 	new_timer->it_signal = current->signal;
563 	list_add(&new_timer->list, &current->signal->posix_timers);
564 	spin_unlock_irq(&current->sighand->siglock);
565 
566 	return 0;
567 	/*
568 	 * In the case of the timer belonging to another task, after
569 	 * the task is unlocked, the timer is owned by the other task
570 	 * and may cease to exist at any time.  Don't use or modify
571 	 * new_timer after the unlock call.
572 	 */
573 out:
574 	release_posix_timer(new_timer, it_id_set);
575 	return error;
576 }
577 
578 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
579 		struct sigevent __user *, timer_event_spec,
580 		timer_t __user *, created_timer_id)
581 {
582 	if (timer_event_spec) {
583 		sigevent_t event;
584 
585 		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
586 			return -EFAULT;
587 		return do_timer_create(which_clock, &event, created_timer_id);
588 	}
589 	return do_timer_create(which_clock, NULL, created_timer_id);
590 }
591 
592 #ifdef CONFIG_COMPAT
593 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
594 		       struct compat_sigevent __user *, timer_event_spec,
595 		       timer_t __user *, created_timer_id)
596 {
597 	if (timer_event_spec) {
598 		sigevent_t event;
599 
600 		if (get_compat_sigevent(&event, timer_event_spec))
601 			return -EFAULT;
602 		return do_timer_create(which_clock, &event, created_timer_id);
603 	}
604 	return do_timer_create(which_clock, NULL, created_timer_id);
605 }
606 #endif
607 
608 /*
609  * Locking issues: We need to protect the result of the id look up until
610  * we get the timer locked down so it is not deleted under us.  The
611  * removal is done under the idr spinlock so we use that here to bridge
612  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
613  * be release with out holding the timer lock.
614  */
615 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
616 {
617 	struct k_itimer *timr;
618 
619 	/*
620 	 * timer_t could be any type >= int and we want to make sure any
621 	 * @timer_id outside positive int range fails lookup.
622 	 */
623 	if ((unsigned long long)timer_id > INT_MAX)
624 		return NULL;
625 
626 	rcu_read_lock();
627 	timr = posix_timer_by_id(timer_id);
628 	if (timr) {
629 		spin_lock_irqsave(&timr->it_lock, *flags);
630 		if (timr->it_signal == current->signal) {
631 			rcu_read_unlock();
632 			return timr;
633 		}
634 		spin_unlock_irqrestore(&timr->it_lock, *flags);
635 	}
636 	rcu_read_unlock();
637 
638 	return NULL;
639 }
640 
641 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
642 {
643 	struct hrtimer *timer = &timr->it.real.timer;
644 
645 	return __hrtimer_expires_remaining_adjusted(timer, now);
646 }
647 
648 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
649 {
650 	struct hrtimer *timer = &timr->it.real.timer;
651 
652 	return hrtimer_forward(timer, now, timr->it_interval);
653 }
654 
655 /*
656  * Get the time remaining on a POSIX.1b interval timer.  This function
657  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
658  * mess with irq.
659  *
660  * We have a couple of messes to clean up here.  First there is the case
661  * of a timer that has a requeue pending.  These timers should appear to
662  * be in the timer list with an expiry as if we were to requeue them
663  * now.
664  *
665  * The second issue is the SIGEV_NONE timer which may be active but is
666  * not really ever put in the timer list (to save system resources).
667  * This timer may be expired, and if so, we will do it here.  Otherwise
668  * it is the same as a requeue pending timer WRT to what we should
669  * report.
670  */
671 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
672 {
673 	const struct k_clock *kc = timr->kclock;
674 	ktime_t now, remaining, iv;
675 	struct timespec64 ts64;
676 	bool sig_none;
677 
678 	sig_none = timr->it_sigev_notify == SIGEV_NONE;
679 	iv = timr->it_interval;
680 
681 	/* interval timer ? */
682 	if (iv) {
683 		cur_setting->it_interval = ktime_to_timespec64(iv);
684 	} else if (!timr->it_active) {
685 		/*
686 		 * SIGEV_NONE oneshot timers are never queued. Check them
687 		 * below.
688 		 */
689 		if (!sig_none)
690 			return;
691 	}
692 
693 	/*
694 	 * The timespec64 based conversion is suboptimal, but it's not
695 	 * worth to implement yet another callback.
696 	 */
697 	kc->clock_get(timr->it_clock, &ts64);
698 	now = timespec64_to_ktime(ts64);
699 
700 	/*
701 	 * When a requeue is pending or this is a SIGEV_NONE timer move the
702 	 * expiry time forward by intervals, so expiry is > now.
703 	 */
704 	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
705 		timr->it_overrun += kc->timer_forward(timr, now);
706 
707 	remaining = kc->timer_remaining(timr, now);
708 	/* Return 0 only, when the timer is expired and not pending */
709 	if (remaining <= 0) {
710 		/*
711 		 * A single shot SIGEV_NONE timer must return 0, when
712 		 * it is expired !
713 		 */
714 		if (!sig_none)
715 			cur_setting->it_value.tv_nsec = 1;
716 	} else {
717 		cur_setting->it_value = ktime_to_timespec64(remaining);
718 	}
719 }
720 
721 /* Get the time remaining on a POSIX.1b interval timer. */
722 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
723 {
724 	struct k_itimer *timr;
725 	const struct k_clock *kc;
726 	unsigned long flags;
727 	int ret = 0;
728 
729 	timr = lock_timer(timer_id, &flags);
730 	if (!timr)
731 		return -EINVAL;
732 
733 	memset(setting, 0, sizeof(*setting));
734 	kc = timr->kclock;
735 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
736 		ret = -EINVAL;
737 	else
738 		kc->timer_get(timr, setting);
739 
740 	unlock_timer(timr, flags);
741 	return ret;
742 }
743 
744 /* Get the time remaining on a POSIX.1b interval timer. */
745 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
746 		struct __kernel_itimerspec __user *, setting)
747 {
748 	struct itimerspec64 cur_setting;
749 
750 	int ret = do_timer_gettime(timer_id, &cur_setting);
751 	if (!ret) {
752 		if (put_itimerspec64(&cur_setting, setting))
753 			ret = -EFAULT;
754 	}
755 	return ret;
756 }
757 
758 #ifdef CONFIG_COMPAT_32BIT_TIME
759 
760 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
761 		       struct compat_itimerspec __user *, setting)
762 {
763 	struct itimerspec64 cur_setting;
764 
765 	int ret = do_timer_gettime(timer_id, &cur_setting);
766 	if (!ret) {
767 		if (put_compat_itimerspec64(&cur_setting, setting))
768 			ret = -EFAULT;
769 	}
770 	return ret;
771 }
772 
773 #endif
774 
775 /*
776  * Get the number of overruns of a POSIX.1b interval timer.  This is to
777  * be the overrun of the timer last delivered.  At the same time we are
778  * accumulating overruns on the next timer.  The overrun is frozen when
779  * the signal is delivered, either at the notify time (if the info block
780  * is not queued) or at the actual delivery time (as we are informed by
781  * the call back to posixtimer_rearm().  So all we need to do is
782  * to pick up the frozen overrun.
783  */
784 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
785 {
786 	struct k_itimer *timr;
787 	int overrun;
788 	unsigned long flags;
789 
790 	timr = lock_timer(timer_id, &flags);
791 	if (!timr)
792 		return -EINVAL;
793 
794 	overrun = timer_overrun_to_int(timr, 0);
795 	unlock_timer(timr, flags);
796 
797 	return overrun;
798 }
799 
800 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
801 			       bool absolute, bool sigev_none)
802 {
803 	struct hrtimer *timer = &timr->it.real.timer;
804 	enum hrtimer_mode mode;
805 
806 	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
807 	/*
808 	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
809 	 * clock modifications, so they become CLOCK_MONOTONIC based under the
810 	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
811 	 * functions which use timr->kclock->clock_get() work.
812 	 *
813 	 * Note: it_clock stays unmodified, because the next timer_set() might
814 	 * use ABSTIME, so it needs to switch back.
815 	 */
816 	if (timr->it_clock == CLOCK_REALTIME)
817 		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
818 
819 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
820 	timr->it.real.timer.function = posix_timer_fn;
821 
822 	if (!absolute)
823 		expires = ktime_add_safe(expires, timer->base->get_time());
824 	hrtimer_set_expires(timer, expires);
825 
826 	if (!sigev_none)
827 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
828 }
829 
830 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
831 {
832 	return hrtimer_try_to_cancel(&timr->it.real.timer);
833 }
834 
835 /* Set a POSIX.1b interval timer. */
836 int common_timer_set(struct k_itimer *timr, int flags,
837 		     struct itimerspec64 *new_setting,
838 		     struct itimerspec64 *old_setting)
839 {
840 	const struct k_clock *kc = timr->kclock;
841 	bool sigev_none;
842 	ktime_t expires;
843 
844 	if (old_setting)
845 		common_timer_get(timr, old_setting);
846 
847 	/* Prevent rearming by clearing the interval */
848 	timr->it_interval = 0;
849 	/*
850 	 * Careful here. On SMP systems the timer expiry function could be
851 	 * active and spinning on timr->it_lock.
852 	 */
853 	if (kc->timer_try_to_cancel(timr) < 0)
854 		return TIMER_RETRY;
855 
856 	timr->it_active = 0;
857 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
858 		~REQUEUE_PENDING;
859 	timr->it_overrun_last = 0;
860 
861 	/* Switch off the timer when it_value is zero */
862 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
863 		return 0;
864 
865 	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
866 	expires = timespec64_to_ktime(new_setting->it_value);
867 	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
868 
869 	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
870 	timr->it_active = !sigev_none;
871 	return 0;
872 }
873 
874 static int do_timer_settime(timer_t timer_id, int flags,
875 			    struct itimerspec64 *new_spec64,
876 			    struct itimerspec64 *old_spec64)
877 {
878 	const struct k_clock *kc;
879 	struct k_itimer *timr;
880 	unsigned long flag;
881 	int error = 0;
882 
883 	if (!timespec64_valid(&new_spec64->it_interval) ||
884 	    !timespec64_valid(&new_spec64->it_value))
885 		return -EINVAL;
886 
887 	if (old_spec64)
888 		memset(old_spec64, 0, sizeof(*old_spec64));
889 retry:
890 	timr = lock_timer(timer_id, &flag);
891 	if (!timr)
892 		return -EINVAL;
893 
894 	kc = timr->kclock;
895 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
896 		error = -EINVAL;
897 	else
898 		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
899 
900 	unlock_timer(timr, flag);
901 	if (error == TIMER_RETRY) {
902 		old_spec64 = NULL;	// We already got the old time...
903 		goto retry;
904 	}
905 
906 	return error;
907 }
908 
909 /* Set a POSIX.1b interval timer */
910 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
911 		const struct __kernel_itimerspec __user *, new_setting,
912 		struct __kernel_itimerspec __user *, old_setting)
913 {
914 	struct itimerspec64 new_spec, old_spec;
915 	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
916 	int error = 0;
917 
918 	if (!new_setting)
919 		return -EINVAL;
920 
921 	if (get_itimerspec64(&new_spec, new_setting))
922 		return -EFAULT;
923 
924 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
925 	if (!error && old_setting) {
926 		if (put_itimerspec64(&old_spec, old_setting))
927 			error = -EFAULT;
928 	}
929 	return error;
930 }
931 
932 #ifdef CONFIG_COMPAT_32BIT_TIME
933 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
934 		       struct compat_itimerspec __user *, new,
935 		       struct compat_itimerspec __user *, old)
936 {
937 	struct itimerspec64 new_spec, old_spec;
938 	struct itimerspec64 *rtn = old ? &old_spec : NULL;
939 	int error = 0;
940 
941 	if (!new)
942 		return -EINVAL;
943 	if (get_compat_itimerspec64(&new_spec, new))
944 		return -EFAULT;
945 
946 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
947 	if (!error && old) {
948 		if (put_compat_itimerspec64(&old_spec, old))
949 			error = -EFAULT;
950 	}
951 	return error;
952 }
953 #endif
954 
955 int common_timer_del(struct k_itimer *timer)
956 {
957 	const struct k_clock *kc = timer->kclock;
958 
959 	timer->it_interval = 0;
960 	if (kc->timer_try_to_cancel(timer) < 0)
961 		return TIMER_RETRY;
962 	timer->it_active = 0;
963 	return 0;
964 }
965 
966 static inline int timer_delete_hook(struct k_itimer *timer)
967 {
968 	const struct k_clock *kc = timer->kclock;
969 
970 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
971 		return -EINVAL;
972 	return kc->timer_del(timer);
973 }
974 
975 /* Delete a POSIX.1b interval timer. */
976 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
977 {
978 	struct k_itimer *timer;
979 	unsigned long flags;
980 
981 retry_delete:
982 	timer = lock_timer(timer_id, &flags);
983 	if (!timer)
984 		return -EINVAL;
985 
986 	if (timer_delete_hook(timer) == TIMER_RETRY) {
987 		unlock_timer(timer, flags);
988 		goto retry_delete;
989 	}
990 
991 	spin_lock(&current->sighand->siglock);
992 	list_del(&timer->list);
993 	spin_unlock(&current->sighand->siglock);
994 	/*
995 	 * This keeps any tasks waiting on the spin lock from thinking
996 	 * they got something (see the lock code above).
997 	 */
998 	timer->it_signal = NULL;
999 
1000 	unlock_timer(timer, flags);
1001 	release_posix_timer(timer, IT_ID_SET);
1002 	return 0;
1003 }
1004 
1005 /*
1006  * return timer owned by the process, used by exit_itimers
1007  */
1008 static void itimer_delete(struct k_itimer *timer)
1009 {
1010 	unsigned long flags;
1011 
1012 retry_delete:
1013 	spin_lock_irqsave(&timer->it_lock, flags);
1014 
1015 	if (timer_delete_hook(timer) == TIMER_RETRY) {
1016 		unlock_timer(timer, flags);
1017 		goto retry_delete;
1018 	}
1019 	list_del(&timer->list);
1020 	/*
1021 	 * This keeps any tasks waiting on the spin lock from thinking
1022 	 * they got something (see the lock code above).
1023 	 */
1024 	timer->it_signal = NULL;
1025 
1026 	unlock_timer(timer, flags);
1027 	release_posix_timer(timer, IT_ID_SET);
1028 }
1029 
1030 /*
1031  * This is called by do_exit or de_thread, only when there are no more
1032  * references to the shared signal_struct.
1033  */
1034 void exit_itimers(struct signal_struct *sig)
1035 {
1036 	struct k_itimer *tmr;
1037 
1038 	while (!list_empty(&sig->posix_timers)) {
1039 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1040 		itimer_delete(tmr);
1041 	}
1042 }
1043 
1044 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1045 		const struct __kernel_timespec __user *, tp)
1046 {
1047 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1048 	struct timespec64 new_tp;
1049 
1050 	if (!kc || !kc->clock_set)
1051 		return -EINVAL;
1052 
1053 	if (get_timespec64(&new_tp, tp))
1054 		return -EFAULT;
1055 
1056 	return kc->clock_set(which_clock, &new_tp);
1057 }
1058 
1059 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1060 		struct __kernel_timespec __user *, tp)
1061 {
1062 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1063 	struct timespec64 kernel_tp;
1064 	int error;
1065 
1066 	if (!kc)
1067 		return -EINVAL;
1068 
1069 	error = kc->clock_get(which_clock, &kernel_tp);
1070 
1071 	if (!error && put_timespec64(&kernel_tp, tp))
1072 		error = -EFAULT;
1073 
1074 	return error;
1075 }
1076 
1077 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1078 		struct timex __user *, utx)
1079 {
1080 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1081 	struct timex ktx;
1082 	int err;
1083 
1084 	if (!kc)
1085 		return -EINVAL;
1086 	if (!kc->clock_adj)
1087 		return -EOPNOTSUPP;
1088 
1089 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1090 		return -EFAULT;
1091 
1092 	err = kc->clock_adj(which_clock, &ktx);
1093 
1094 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1095 		return -EFAULT;
1096 
1097 	return err;
1098 }
1099 
1100 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1101 		struct __kernel_timespec __user *, tp)
1102 {
1103 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1104 	struct timespec64 rtn_tp;
1105 	int error;
1106 
1107 	if (!kc)
1108 		return -EINVAL;
1109 
1110 	error = kc->clock_getres(which_clock, &rtn_tp);
1111 
1112 	if (!error && tp && put_timespec64(&rtn_tp, tp))
1113 		error = -EFAULT;
1114 
1115 	return error;
1116 }
1117 
1118 #ifdef CONFIG_COMPAT_32BIT_TIME
1119 
1120 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1121 		       struct compat_timespec __user *, tp)
1122 {
1123 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1124 	struct timespec64 ts;
1125 
1126 	if (!kc || !kc->clock_set)
1127 		return -EINVAL;
1128 
1129 	if (compat_get_timespec64(&ts, tp))
1130 		return -EFAULT;
1131 
1132 	return kc->clock_set(which_clock, &ts);
1133 }
1134 
1135 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1136 		       struct compat_timespec __user *, tp)
1137 {
1138 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1139 	struct timespec64 ts;
1140 	int err;
1141 
1142 	if (!kc)
1143 		return -EINVAL;
1144 
1145 	err = kc->clock_get(which_clock, &ts);
1146 
1147 	if (!err && compat_put_timespec64(&ts, tp))
1148 		err = -EFAULT;
1149 
1150 	return err;
1151 }
1152 
1153 #endif
1154 
1155 #ifdef CONFIG_COMPAT
1156 
1157 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1158 		       struct compat_timex __user *, utp)
1159 {
1160 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1161 	struct timex ktx;
1162 	int err;
1163 
1164 	if (!kc)
1165 		return -EINVAL;
1166 	if (!kc->clock_adj)
1167 		return -EOPNOTSUPP;
1168 
1169 	err = compat_get_timex(&ktx, utp);
1170 	if (err)
1171 		return err;
1172 
1173 	err = kc->clock_adj(which_clock, &ktx);
1174 
1175 	if (err >= 0)
1176 		err = compat_put_timex(utp, &ktx);
1177 
1178 	return err;
1179 }
1180 
1181 #endif
1182 
1183 #ifdef CONFIG_COMPAT_32BIT_TIME
1184 
1185 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1186 		       struct compat_timespec __user *, tp)
1187 {
1188 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1189 	struct timespec64 ts;
1190 	int err;
1191 
1192 	if (!kc)
1193 		return -EINVAL;
1194 
1195 	err = kc->clock_getres(which_clock, &ts);
1196 	if (!err && tp && compat_put_timespec64(&ts, tp))
1197 		return -EFAULT;
1198 
1199 	return err;
1200 }
1201 
1202 #endif
1203 
1204 /*
1205  * nanosleep for monotonic and realtime clocks
1206  */
1207 static int common_nsleep(const clockid_t which_clock, int flags,
1208 			 const struct timespec64 *rqtp)
1209 {
1210 	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1211 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1212 				 which_clock);
1213 }
1214 
1215 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1216 		const struct __kernel_timespec __user *, rqtp,
1217 		struct __kernel_timespec __user *, rmtp)
1218 {
1219 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1220 	struct timespec64 t;
1221 
1222 	if (!kc)
1223 		return -EINVAL;
1224 	if (!kc->nsleep)
1225 		return -EOPNOTSUPP;
1226 
1227 	if (get_timespec64(&t, rqtp))
1228 		return -EFAULT;
1229 
1230 	if (!timespec64_valid(&t))
1231 		return -EINVAL;
1232 	if (flags & TIMER_ABSTIME)
1233 		rmtp = NULL;
1234 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1235 	current->restart_block.nanosleep.rmtp = rmtp;
1236 
1237 	return kc->nsleep(which_clock, flags, &t);
1238 }
1239 
1240 #ifdef CONFIG_COMPAT_32BIT_TIME
1241 
1242 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1243 		       struct compat_timespec __user *, rqtp,
1244 		       struct compat_timespec __user *, rmtp)
1245 {
1246 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1247 	struct timespec64 t;
1248 
1249 	if (!kc)
1250 		return -EINVAL;
1251 	if (!kc->nsleep)
1252 		return -EOPNOTSUPP;
1253 
1254 	if (compat_get_timespec64(&t, rqtp))
1255 		return -EFAULT;
1256 
1257 	if (!timespec64_valid(&t))
1258 		return -EINVAL;
1259 	if (flags & TIMER_ABSTIME)
1260 		rmtp = NULL;
1261 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1262 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1263 
1264 	return kc->nsleep(which_clock, flags, &t);
1265 }
1266 
1267 #endif
1268 
1269 static const struct k_clock clock_realtime = {
1270 	.clock_getres		= posix_get_hrtimer_res,
1271 	.clock_get		= posix_clock_realtime_get,
1272 	.clock_set		= posix_clock_realtime_set,
1273 	.clock_adj		= posix_clock_realtime_adj,
1274 	.nsleep			= common_nsleep,
1275 	.timer_create		= common_timer_create,
1276 	.timer_set		= common_timer_set,
1277 	.timer_get		= common_timer_get,
1278 	.timer_del		= common_timer_del,
1279 	.timer_rearm		= common_hrtimer_rearm,
1280 	.timer_forward		= common_hrtimer_forward,
1281 	.timer_remaining	= common_hrtimer_remaining,
1282 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1283 	.timer_arm		= common_hrtimer_arm,
1284 };
1285 
1286 static const struct k_clock clock_monotonic = {
1287 	.clock_getres		= posix_get_hrtimer_res,
1288 	.clock_get		= posix_ktime_get_ts,
1289 	.nsleep			= common_nsleep,
1290 	.timer_create		= common_timer_create,
1291 	.timer_set		= common_timer_set,
1292 	.timer_get		= common_timer_get,
1293 	.timer_del		= common_timer_del,
1294 	.timer_rearm		= common_hrtimer_rearm,
1295 	.timer_forward		= common_hrtimer_forward,
1296 	.timer_remaining	= common_hrtimer_remaining,
1297 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1298 	.timer_arm		= common_hrtimer_arm,
1299 };
1300 
1301 static const struct k_clock clock_monotonic_raw = {
1302 	.clock_getres		= posix_get_hrtimer_res,
1303 	.clock_get		= posix_get_monotonic_raw,
1304 };
1305 
1306 static const struct k_clock clock_realtime_coarse = {
1307 	.clock_getres		= posix_get_coarse_res,
1308 	.clock_get		= posix_get_realtime_coarse,
1309 };
1310 
1311 static const struct k_clock clock_monotonic_coarse = {
1312 	.clock_getres		= posix_get_coarse_res,
1313 	.clock_get		= posix_get_monotonic_coarse,
1314 };
1315 
1316 static const struct k_clock clock_tai = {
1317 	.clock_getres		= posix_get_hrtimer_res,
1318 	.clock_get		= posix_get_tai,
1319 	.nsleep			= common_nsleep,
1320 	.timer_create		= common_timer_create,
1321 	.timer_set		= common_timer_set,
1322 	.timer_get		= common_timer_get,
1323 	.timer_del		= common_timer_del,
1324 	.timer_rearm		= common_hrtimer_rearm,
1325 	.timer_forward		= common_hrtimer_forward,
1326 	.timer_remaining	= common_hrtimer_remaining,
1327 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1328 	.timer_arm		= common_hrtimer_arm,
1329 };
1330 
1331 static const struct k_clock clock_boottime = {
1332 	.clock_getres		= posix_get_hrtimer_res,
1333 	.clock_get		= posix_get_boottime,
1334 	.nsleep			= common_nsleep,
1335 	.timer_create		= common_timer_create,
1336 	.timer_set		= common_timer_set,
1337 	.timer_get		= common_timer_get,
1338 	.timer_del		= common_timer_del,
1339 	.timer_rearm		= common_hrtimer_rearm,
1340 	.timer_forward		= common_hrtimer_forward,
1341 	.timer_remaining	= common_hrtimer_remaining,
1342 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1343 	.timer_arm		= common_hrtimer_arm,
1344 };
1345 
1346 static const struct k_clock * const posix_clocks[] = {
1347 	[CLOCK_REALTIME]		= &clock_realtime,
1348 	[CLOCK_MONOTONIC]		= &clock_monotonic,
1349 	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1350 	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1351 	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1352 	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1353 	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1354 	[CLOCK_BOOTTIME]		= &clock_boottime,
1355 	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1356 	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1357 	[CLOCK_TAI]			= &clock_tai,
1358 };
1359 
1360 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1361 {
1362 	clockid_t idx = id;
1363 
1364 	if (id < 0) {
1365 		return (id & CLOCKFD_MASK) == CLOCKFD ?
1366 			&clock_posix_dynamic : &clock_posix_cpu;
1367 	}
1368 
1369 	if (id >= ARRAY_SIZE(posix_clocks))
1370 		return NULL;
1371 
1372 	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1373 }
1374