1 /* 2 * linux/kernel/posix-timers.c 3 * 4 * 5 * 2002-10-15 Posix Clocks & timers 6 * by George Anzinger george@mvista.com 7 * 8 * Copyright (C) 2002 2003 by MontaVista Software. 9 * 10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 11 * Copyright (C) 2004 Boris Hu 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA 28 */ 29 30 /* These are all the functions necessary to implement 31 * POSIX clocks & timers 32 */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/slab.h> 36 #include <linux/time.h> 37 #include <linux/mutex.h> 38 #include <linux/sched/task.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/list.h> 42 #include <linux/init.h> 43 #include <linux/compiler.h> 44 #include <linux/hash.h> 45 #include <linux/posix-clock.h> 46 #include <linux/posix-timers.h> 47 #include <linux/syscalls.h> 48 #include <linux/wait.h> 49 #include <linux/workqueue.h> 50 #include <linux/export.h> 51 #include <linux/hashtable.h> 52 #include <linux/compat.h> 53 #include <linux/nospec.h> 54 55 #include "timekeeping.h" 56 #include "posix-timers.h" 57 58 /* 59 * Management arrays for POSIX timers. Timers are now kept in static hash table 60 * with 512 entries. 61 * Timer ids are allocated by local routine, which selects proper hash head by 62 * key, constructed from current->signal address and per signal struct counter. 63 * This keeps timer ids unique per process, but now they can intersect between 64 * processes. 65 */ 66 67 /* 68 * Lets keep our timers in a slab cache :-) 69 */ 70 static struct kmem_cache *posix_timers_cache; 71 72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 73 static DEFINE_SPINLOCK(hash_lock); 74 75 static const struct k_clock * const posix_clocks[]; 76 static const struct k_clock *clockid_to_kclock(const clockid_t id); 77 static const struct k_clock clock_realtime, clock_monotonic; 78 79 /* 80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other 81 * SIGEV values. Here we put out an error if this assumption fails. 82 */ 83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 86 #endif 87 88 /* 89 * The timer ID is turned into a timer address by idr_find(). 90 * Verifying a valid ID consists of: 91 * 92 * a) checking that idr_find() returns other than -1. 93 * b) checking that the timer id matches the one in the timer itself. 94 * c) that the timer owner is in the callers thread group. 95 */ 96 97 /* 98 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us 99 * to implement others. This structure defines the various 100 * clocks. 101 * 102 * RESOLUTION: Clock resolution is used to round up timer and interval 103 * times, NOT to report clock times, which are reported with as 104 * much resolution as the system can muster. In some cases this 105 * resolution may depend on the underlying clock hardware and 106 * may not be quantifiable until run time, and only then is the 107 * necessary code is written. The standard says we should say 108 * something about this issue in the documentation... 109 * 110 * FUNCTIONS: The CLOCKs structure defines possible functions to 111 * handle various clock functions. 112 * 113 * The standard POSIX timer management code assumes the 114 * following: 1.) The k_itimer struct (sched.h) is used for 115 * the timer. 2.) The list, it_lock, it_clock, it_id and 116 * it_pid fields are not modified by timer code. 117 * 118 * Permissions: It is assumed that the clock_settime() function defined 119 * for each clock will take care of permission checks. Some 120 * clocks may be set able by any user (i.e. local process 121 * clocks) others not. Currently the only set able clock we 122 * have is CLOCK_REALTIME and its high res counter part, both of 123 * which we beg off on and pass to do_sys_settimeofday(). 124 */ 125 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 126 127 #define lock_timer(tid, flags) \ 128 ({ struct k_itimer *__timr; \ 129 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 130 __timr; \ 131 }) 132 133 static int hash(struct signal_struct *sig, unsigned int nr) 134 { 135 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 136 } 137 138 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 139 struct signal_struct *sig, 140 timer_t id) 141 { 142 struct k_itimer *timer; 143 144 hlist_for_each_entry_rcu(timer, head, t_hash) { 145 if ((timer->it_signal == sig) && (timer->it_id == id)) 146 return timer; 147 } 148 return NULL; 149 } 150 151 static struct k_itimer *posix_timer_by_id(timer_t id) 152 { 153 struct signal_struct *sig = current->signal; 154 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 155 156 return __posix_timers_find(head, sig, id); 157 } 158 159 static int posix_timer_add(struct k_itimer *timer) 160 { 161 struct signal_struct *sig = current->signal; 162 int first_free_id = sig->posix_timer_id; 163 struct hlist_head *head; 164 int ret = -ENOENT; 165 166 do { 167 spin_lock(&hash_lock); 168 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; 169 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { 170 hlist_add_head_rcu(&timer->t_hash, head); 171 ret = sig->posix_timer_id; 172 } 173 if (++sig->posix_timer_id < 0) 174 sig->posix_timer_id = 0; 175 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) 176 /* Loop over all possible ids completed */ 177 ret = -EAGAIN; 178 spin_unlock(&hash_lock); 179 } while (ret == -ENOENT); 180 return ret; 181 } 182 183 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 184 { 185 spin_unlock_irqrestore(&timr->it_lock, flags); 186 } 187 188 /* Get clock_realtime */ 189 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp) 190 { 191 ktime_get_real_ts64(tp); 192 return 0; 193 } 194 195 /* Set clock_realtime */ 196 static int posix_clock_realtime_set(const clockid_t which_clock, 197 const struct timespec64 *tp) 198 { 199 return do_sys_settimeofday64(tp, NULL); 200 } 201 202 static int posix_clock_realtime_adj(const clockid_t which_clock, 203 struct timex *t) 204 { 205 return do_adjtimex(t); 206 } 207 208 /* 209 * Get monotonic time for posix timers 210 */ 211 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp) 212 { 213 ktime_get_ts64(tp); 214 return 0; 215 } 216 217 /* 218 * Get monotonic-raw time for posix timers 219 */ 220 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 221 { 222 ktime_get_raw_ts64(tp); 223 return 0; 224 } 225 226 227 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 228 { 229 ktime_get_coarse_real_ts64(tp); 230 return 0; 231 } 232 233 static int posix_get_monotonic_coarse(clockid_t which_clock, 234 struct timespec64 *tp) 235 { 236 ktime_get_coarse_ts64(tp); 237 return 0; 238 } 239 240 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 241 { 242 *tp = ktime_to_timespec64(KTIME_LOW_RES); 243 return 0; 244 } 245 246 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp) 247 { 248 ktime_get_boottime_ts64(tp); 249 return 0; 250 } 251 252 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp) 253 { 254 ktime_get_clocktai_ts64(tp); 255 return 0; 256 } 257 258 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 259 { 260 tp->tv_sec = 0; 261 tp->tv_nsec = hrtimer_resolution; 262 return 0; 263 } 264 265 /* 266 * Initialize everything, well, just everything in Posix clocks/timers ;) 267 */ 268 static __init int init_posix_timers(void) 269 { 270 posix_timers_cache = kmem_cache_create("posix_timers_cache", 271 sizeof (struct k_itimer), 0, SLAB_PANIC, 272 NULL); 273 return 0; 274 } 275 __initcall(init_posix_timers); 276 277 /* 278 * The siginfo si_overrun field and the return value of timer_getoverrun(2) 279 * are of type int. Clamp the overrun value to INT_MAX 280 */ 281 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) 282 { 283 s64 sum = timr->it_overrun_last + (s64)baseval; 284 285 return sum > (s64)INT_MAX ? INT_MAX : (int)sum; 286 } 287 288 static void common_hrtimer_rearm(struct k_itimer *timr) 289 { 290 struct hrtimer *timer = &timr->it.real.timer; 291 292 if (!timr->it_interval) 293 return; 294 295 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), 296 timr->it_interval); 297 hrtimer_restart(timer); 298 } 299 300 /* 301 * This function is exported for use by the signal deliver code. It is 302 * called just prior to the info block being released and passes that 303 * block to us. It's function is to update the overrun entry AND to 304 * restart the timer. It should only be called if the timer is to be 305 * restarted (i.e. we have flagged this in the sys_private entry of the 306 * info block). 307 * 308 * To protect against the timer going away while the interrupt is queued, 309 * we require that the it_requeue_pending flag be set. 310 */ 311 void posixtimer_rearm(struct siginfo *info) 312 { 313 struct k_itimer *timr; 314 unsigned long flags; 315 316 timr = lock_timer(info->si_tid, &flags); 317 if (!timr) 318 return; 319 320 if (timr->it_requeue_pending == info->si_sys_private) { 321 timr->kclock->timer_rearm(timr); 322 323 timr->it_active = 1; 324 timr->it_overrun_last = timr->it_overrun; 325 timr->it_overrun = -1LL; 326 ++timr->it_requeue_pending; 327 328 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); 329 } 330 331 unlock_timer(timr, flags); 332 } 333 334 int posix_timer_event(struct k_itimer *timr, int si_private) 335 { 336 struct task_struct *task; 337 int shared, ret = -1; 338 /* 339 * FIXME: if ->sigq is queued we can race with 340 * dequeue_signal()->posixtimer_rearm(). 341 * 342 * If dequeue_signal() sees the "right" value of 343 * si_sys_private it calls posixtimer_rearm(). 344 * We re-queue ->sigq and drop ->it_lock(). 345 * posixtimer_rearm() locks the timer 346 * and re-schedules it while ->sigq is pending. 347 * Not really bad, but not that we want. 348 */ 349 timr->sigq->info.si_sys_private = si_private; 350 351 rcu_read_lock(); 352 task = pid_task(timr->it_pid, PIDTYPE_PID); 353 if (task) { 354 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); 355 ret = send_sigqueue(timr->sigq, task, shared); 356 } 357 rcu_read_unlock(); 358 /* If we failed to send the signal the timer stops. */ 359 return ret > 0; 360 } 361 362 /* 363 * This function gets called when a POSIX.1b interval timer expires. It 364 * is used as a callback from the kernel internal timer. The 365 * run_timer_list code ALWAYS calls with interrupts on. 366 367 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. 368 */ 369 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 370 { 371 struct k_itimer *timr; 372 unsigned long flags; 373 int si_private = 0; 374 enum hrtimer_restart ret = HRTIMER_NORESTART; 375 376 timr = container_of(timer, struct k_itimer, it.real.timer); 377 spin_lock_irqsave(&timr->it_lock, flags); 378 379 timr->it_active = 0; 380 if (timr->it_interval != 0) 381 si_private = ++timr->it_requeue_pending; 382 383 if (posix_timer_event(timr, si_private)) { 384 /* 385 * signal was not sent because of sig_ignor 386 * we will not get a call back to restart it AND 387 * it should be restarted. 388 */ 389 if (timr->it_interval != 0) { 390 ktime_t now = hrtimer_cb_get_time(timer); 391 392 /* 393 * FIXME: What we really want, is to stop this 394 * timer completely and restart it in case the 395 * SIG_IGN is removed. This is a non trivial 396 * change which involves sighand locking 397 * (sigh !), which we don't want to do late in 398 * the release cycle. 399 * 400 * For now we just let timers with an interval 401 * less than a jiffie expire every jiffie to 402 * avoid softirq starvation in case of SIG_IGN 403 * and a very small interval, which would put 404 * the timer right back on the softirq pending 405 * list. By moving now ahead of time we trick 406 * hrtimer_forward() to expire the timer 407 * later, while we still maintain the overrun 408 * accuracy, but have some inconsistency in 409 * the timer_gettime() case. This is at least 410 * better than a starved softirq. A more 411 * complex fix which solves also another related 412 * inconsistency is already in the pipeline. 413 */ 414 #ifdef CONFIG_HIGH_RES_TIMERS 415 { 416 ktime_t kj = NSEC_PER_SEC / HZ; 417 418 if (timr->it_interval < kj) 419 now = ktime_add(now, kj); 420 } 421 #endif 422 timr->it_overrun += hrtimer_forward(timer, now, 423 timr->it_interval); 424 ret = HRTIMER_RESTART; 425 ++timr->it_requeue_pending; 426 timr->it_active = 1; 427 } 428 } 429 430 unlock_timer(timr, flags); 431 return ret; 432 } 433 434 static struct pid *good_sigevent(sigevent_t * event) 435 { 436 struct task_struct *rtn = current->group_leader; 437 438 switch (event->sigev_notify) { 439 case SIGEV_SIGNAL | SIGEV_THREAD_ID: 440 rtn = find_task_by_vpid(event->sigev_notify_thread_id); 441 if (!rtn || !same_thread_group(rtn, current)) 442 return NULL; 443 /* FALLTHRU */ 444 case SIGEV_SIGNAL: 445 case SIGEV_THREAD: 446 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) 447 return NULL; 448 /* FALLTHRU */ 449 case SIGEV_NONE: 450 return task_pid(rtn); 451 default: 452 return NULL; 453 } 454 } 455 456 static struct k_itimer * alloc_posix_timer(void) 457 { 458 struct k_itimer *tmr; 459 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 460 if (!tmr) 461 return tmr; 462 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 463 kmem_cache_free(posix_timers_cache, tmr); 464 return NULL; 465 } 466 clear_siginfo(&tmr->sigq->info); 467 return tmr; 468 } 469 470 static void k_itimer_rcu_free(struct rcu_head *head) 471 { 472 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); 473 474 kmem_cache_free(posix_timers_cache, tmr); 475 } 476 477 #define IT_ID_SET 1 478 #define IT_ID_NOT_SET 0 479 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) 480 { 481 if (it_id_set) { 482 unsigned long flags; 483 spin_lock_irqsave(&hash_lock, flags); 484 hlist_del_rcu(&tmr->t_hash); 485 spin_unlock_irqrestore(&hash_lock, flags); 486 } 487 put_pid(tmr->it_pid); 488 sigqueue_free(tmr->sigq); 489 call_rcu(&tmr->it.rcu, k_itimer_rcu_free); 490 } 491 492 static int common_timer_create(struct k_itimer *new_timer) 493 { 494 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 495 return 0; 496 } 497 498 /* Create a POSIX.1b interval timer. */ 499 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 500 timer_t __user *created_timer_id) 501 { 502 const struct k_clock *kc = clockid_to_kclock(which_clock); 503 struct k_itimer *new_timer; 504 int error, new_timer_id; 505 int it_id_set = IT_ID_NOT_SET; 506 507 if (!kc) 508 return -EINVAL; 509 if (!kc->timer_create) 510 return -EOPNOTSUPP; 511 512 new_timer = alloc_posix_timer(); 513 if (unlikely(!new_timer)) 514 return -EAGAIN; 515 516 spin_lock_init(&new_timer->it_lock); 517 new_timer_id = posix_timer_add(new_timer); 518 if (new_timer_id < 0) { 519 error = new_timer_id; 520 goto out; 521 } 522 523 it_id_set = IT_ID_SET; 524 new_timer->it_id = (timer_t) new_timer_id; 525 new_timer->it_clock = which_clock; 526 new_timer->kclock = kc; 527 new_timer->it_overrun = -1LL; 528 529 if (event) { 530 rcu_read_lock(); 531 new_timer->it_pid = get_pid(good_sigevent(event)); 532 rcu_read_unlock(); 533 if (!new_timer->it_pid) { 534 error = -EINVAL; 535 goto out; 536 } 537 new_timer->it_sigev_notify = event->sigev_notify; 538 new_timer->sigq->info.si_signo = event->sigev_signo; 539 new_timer->sigq->info.si_value = event->sigev_value; 540 } else { 541 new_timer->it_sigev_notify = SIGEV_SIGNAL; 542 new_timer->sigq->info.si_signo = SIGALRM; 543 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); 544 new_timer->sigq->info.si_value.sival_int = new_timer->it_id; 545 new_timer->it_pid = get_pid(task_tgid(current)); 546 } 547 548 new_timer->sigq->info.si_tid = new_timer->it_id; 549 new_timer->sigq->info.si_code = SI_TIMER; 550 551 if (copy_to_user(created_timer_id, 552 &new_timer_id, sizeof (new_timer_id))) { 553 error = -EFAULT; 554 goto out; 555 } 556 557 error = kc->timer_create(new_timer); 558 if (error) 559 goto out; 560 561 spin_lock_irq(¤t->sighand->siglock); 562 new_timer->it_signal = current->signal; 563 list_add(&new_timer->list, ¤t->signal->posix_timers); 564 spin_unlock_irq(¤t->sighand->siglock); 565 566 return 0; 567 /* 568 * In the case of the timer belonging to another task, after 569 * the task is unlocked, the timer is owned by the other task 570 * and may cease to exist at any time. Don't use or modify 571 * new_timer after the unlock call. 572 */ 573 out: 574 release_posix_timer(new_timer, it_id_set); 575 return error; 576 } 577 578 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 579 struct sigevent __user *, timer_event_spec, 580 timer_t __user *, created_timer_id) 581 { 582 if (timer_event_spec) { 583 sigevent_t event; 584 585 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 586 return -EFAULT; 587 return do_timer_create(which_clock, &event, created_timer_id); 588 } 589 return do_timer_create(which_clock, NULL, created_timer_id); 590 } 591 592 #ifdef CONFIG_COMPAT 593 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 594 struct compat_sigevent __user *, timer_event_spec, 595 timer_t __user *, created_timer_id) 596 { 597 if (timer_event_spec) { 598 sigevent_t event; 599 600 if (get_compat_sigevent(&event, timer_event_spec)) 601 return -EFAULT; 602 return do_timer_create(which_clock, &event, created_timer_id); 603 } 604 return do_timer_create(which_clock, NULL, created_timer_id); 605 } 606 #endif 607 608 /* 609 * Locking issues: We need to protect the result of the id look up until 610 * we get the timer locked down so it is not deleted under us. The 611 * removal is done under the idr spinlock so we use that here to bridge 612 * the find to the timer lock. To avoid a dead lock, the timer id MUST 613 * be release with out holding the timer lock. 614 */ 615 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 616 { 617 struct k_itimer *timr; 618 619 /* 620 * timer_t could be any type >= int and we want to make sure any 621 * @timer_id outside positive int range fails lookup. 622 */ 623 if ((unsigned long long)timer_id > INT_MAX) 624 return NULL; 625 626 rcu_read_lock(); 627 timr = posix_timer_by_id(timer_id); 628 if (timr) { 629 spin_lock_irqsave(&timr->it_lock, *flags); 630 if (timr->it_signal == current->signal) { 631 rcu_read_unlock(); 632 return timr; 633 } 634 spin_unlock_irqrestore(&timr->it_lock, *flags); 635 } 636 rcu_read_unlock(); 637 638 return NULL; 639 } 640 641 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 642 { 643 struct hrtimer *timer = &timr->it.real.timer; 644 645 return __hrtimer_expires_remaining_adjusted(timer, now); 646 } 647 648 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 649 { 650 struct hrtimer *timer = &timr->it.real.timer; 651 652 return hrtimer_forward(timer, now, timr->it_interval); 653 } 654 655 /* 656 * Get the time remaining on a POSIX.1b interval timer. This function 657 * is ALWAYS called with spin_lock_irq on the timer, thus it must not 658 * mess with irq. 659 * 660 * We have a couple of messes to clean up here. First there is the case 661 * of a timer that has a requeue pending. These timers should appear to 662 * be in the timer list with an expiry as if we were to requeue them 663 * now. 664 * 665 * The second issue is the SIGEV_NONE timer which may be active but is 666 * not really ever put in the timer list (to save system resources). 667 * This timer may be expired, and if so, we will do it here. Otherwise 668 * it is the same as a requeue pending timer WRT to what we should 669 * report. 670 */ 671 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 672 { 673 const struct k_clock *kc = timr->kclock; 674 ktime_t now, remaining, iv; 675 struct timespec64 ts64; 676 bool sig_none; 677 678 sig_none = timr->it_sigev_notify == SIGEV_NONE; 679 iv = timr->it_interval; 680 681 /* interval timer ? */ 682 if (iv) { 683 cur_setting->it_interval = ktime_to_timespec64(iv); 684 } else if (!timr->it_active) { 685 /* 686 * SIGEV_NONE oneshot timers are never queued. Check them 687 * below. 688 */ 689 if (!sig_none) 690 return; 691 } 692 693 /* 694 * The timespec64 based conversion is suboptimal, but it's not 695 * worth to implement yet another callback. 696 */ 697 kc->clock_get(timr->it_clock, &ts64); 698 now = timespec64_to_ktime(ts64); 699 700 /* 701 * When a requeue is pending or this is a SIGEV_NONE timer move the 702 * expiry time forward by intervals, so expiry is > now. 703 */ 704 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) 705 timr->it_overrun += kc->timer_forward(timr, now); 706 707 remaining = kc->timer_remaining(timr, now); 708 /* Return 0 only, when the timer is expired and not pending */ 709 if (remaining <= 0) { 710 /* 711 * A single shot SIGEV_NONE timer must return 0, when 712 * it is expired ! 713 */ 714 if (!sig_none) 715 cur_setting->it_value.tv_nsec = 1; 716 } else { 717 cur_setting->it_value = ktime_to_timespec64(remaining); 718 } 719 } 720 721 /* Get the time remaining on a POSIX.1b interval timer. */ 722 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 723 { 724 struct k_itimer *timr; 725 const struct k_clock *kc; 726 unsigned long flags; 727 int ret = 0; 728 729 timr = lock_timer(timer_id, &flags); 730 if (!timr) 731 return -EINVAL; 732 733 memset(setting, 0, sizeof(*setting)); 734 kc = timr->kclock; 735 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 736 ret = -EINVAL; 737 else 738 kc->timer_get(timr, setting); 739 740 unlock_timer(timr, flags); 741 return ret; 742 } 743 744 /* Get the time remaining on a POSIX.1b interval timer. */ 745 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 746 struct __kernel_itimerspec __user *, setting) 747 { 748 struct itimerspec64 cur_setting; 749 750 int ret = do_timer_gettime(timer_id, &cur_setting); 751 if (!ret) { 752 if (put_itimerspec64(&cur_setting, setting)) 753 ret = -EFAULT; 754 } 755 return ret; 756 } 757 758 #ifdef CONFIG_COMPAT_32BIT_TIME 759 760 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 761 struct compat_itimerspec __user *, setting) 762 { 763 struct itimerspec64 cur_setting; 764 765 int ret = do_timer_gettime(timer_id, &cur_setting); 766 if (!ret) { 767 if (put_compat_itimerspec64(&cur_setting, setting)) 768 ret = -EFAULT; 769 } 770 return ret; 771 } 772 773 #endif 774 775 /* 776 * Get the number of overruns of a POSIX.1b interval timer. This is to 777 * be the overrun of the timer last delivered. At the same time we are 778 * accumulating overruns on the next timer. The overrun is frozen when 779 * the signal is delivered, either at the notify time (if the info block 780 * is not queued) or at the actual delivery time (as we are informed by 781 * the call back to posixtimer_rearm(). So all we need to do is 782 * to pick up the frozen overrun. 783 */ 784 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 785 { 786 struct k_itimer *timr; 787 int overrun; 788 unsigned long flags; 789 790 timr = lock_timer(timer_id, &flags); 791 if (!timr) 792 return -EINVAL; 793 794 overrun = timer_overrun_to_int(timr, 0); 795 unlock_timer(timr, flags); 796 797 return overrun; 798 } 799 800 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 801 bool absolute, bool sigev_none) 802 { 803 struct hrtimer *timer = &timr->it.real.timer; 804 enum hrtimer_mode mode; 805 806 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 807 /* 808 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 809 * clock modifications, so they become CLOCK_MONOTONIC based under the 810 * hood. See hrtimer_init(). Update timr->kclock, so the generic 811 * functions which use timr->kclock->clock_get() work. 812 * 813 * Note: it_clock stays unmodified, because the next timer_set() might 814 * use ABSTIME, so it needs to switch back. 815 */ 816 if (timr->it_clock == CLOCK_REALTIME) 817 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 818 819 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 820 timr->it.real.timer.function = posix_timer_fn; 821 822 if (!absolute) 823 expires = ktime_add_safe(expires, timer->base->get_time()); 824 hrtimer_set_expires(timer, expires); 825 826 if (!sigev_none) 827 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 828 } 829 830 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 831 { 832 return hrtimer_try_to_cancel(&timr->it.real.timer); 833 } 834 835 /* Set a POSIX.1b interval timer. */ 836 int common_timer_set(struct k_itimer *timr, int flags, 837 struct itimerspec64 *new_setting, 838 struct itimerspec64 *old_setting) 839 { 840 const struct k_clock *kc = timr->kclock; 841 bool sigev_none; 842 ktime_t expires; 843 844 if (old_setting) 845 common_timer_get(timr, old_setting); 846 847 /* Prevent rearming by clearing the interval */ 848 timr->it_interval = 0; 849 /* 850 * Careful here. On SMP systems the timer expiry function could be 851 * active and spinning on timr->it_lock. 852 */ 853 if (kc->timer_try_to_cancel(timr) < 0) 854 return TIMER_RETRY; 855 856 timr->it_active = 0; 857 timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 858 ~REQUEUE_PENDING; 859 timr->it_overrun_last = 0; 860 861 /* Switch off the timer when it_value is zero */ 862 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 863 return 0; 864 865 timr->it_interval = timespec64_to_ktime(new_setting->it_interval); 866 expires = timespec64_to_ktime(new_setting->it_value); 867 sigev_none = timr->it_sigev_notify == SIGEV_NONE; 868 869 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 870 timr->it_active = !sigev_none; 871 return 0; 872 } 873 874 static int do_timer_settime(timer_t timer_id, int flags, 875 struct itimerspec64 *new_spec64, 876 struct itimerspec64 *old_spec64) 877 { 878 const struct k_clock *kc; 879 struct k_itimer *timr; 880 unsigned long flag; 881 int error = 0; 882 883 if (!timespec64_valid(&new_spec64->it_interval) || 884 !timespec64_valid(&new_spec64->it_value)) 885 return -EINVAL; 886 887 if (old_spec64) 888 memset(old_spec64, 0, sizeof(*old_spec64)); 889 retry: 890 timr = lock_timer(timer_id, &flag); 891 if (!timr) 892 return -EINVAL; 893 894 kc = timr->kclock; 895 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 896 error = -EINVAL; 897 else 898 error = kc->timer_set(timr, flags, new_spec64, old_spec64); 899 900 unlock_timer(timr, flag); 901 if (error == TIMER_RETRY) { 902 old_spec64 = NULL; // We already got the old time... 903 goto retry; 904 } 905 906 return error; 907 } 908 909 /* Set a POSIX.1b interval timer */ 910 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 911 const struct __kernel_itimerspec __user *, new_setting, 912 struct __kernel_itimerspec __user *, old_setting) 913 { 914 struct itimerspec64 new_spec, old_spec; 915 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; 916 int error = 0; 917 918 if (!new_setting) 919 return -EINVAL; 920 921 if (get_itimerspec64(&new_spec, new_setting)) 922 return -EFAULT; 923 924 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 925 if (!error && old_setting) { 926 if (put_itimerspec64(&old_spec, old_setting)) 927 error = -EFAULT; 928 } 929 return error; 930 } 931 932 #ifdef CONFIG_COMPAT_32BIT_TIME 933 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 934 struct compat_itimerspec __user *, new, 935 struct compat_itimerspec __user *, old) 936 { 937 struct itimerspec64 new_spec, old_spec; 938 struct itimerspec64 *rtn = old ? &old_spec : NULL; 939 int error = 0; 940 941 if (!new) 942 return -EINVAL; 943 if (get_compat_itimerspec64(&new_spec, new)) 944 return -EFAULT; 945 946 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 947 if (!error && old) { 948 if (put_compat_itimerspec64(&old_spec, old)) 949 error = -EFAULT; 950 } 951 return error; 952 } 953 #endif 954 955 int common_timer_del(struct k_itimer *timer) 956 { 957 const struct k_clock *kc = timer->kclock; 958 959 timer->it_interval = 0; 960 if (kc->timer_try_to_cancel(timer) < 0) 961 return TIMER_RETRY; 962 timer->it_active = 0; 963 return 0; 964 } 965 966 static inline int timer_delete_hook(struct k_itimer *timer) 967 { 968 const struct k_clock *kc = timer->kclock; 969 970 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 971 return -EINVAL; 972 return kc->timer_del(timer); 973 } 974 975 /* Delete a POSIX.1b interval timer. */ 976 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 977 { 978 struct k_itimer *timer; 979 unsigned long flags; 980 981 retry_delete: 982 timer = lock_timer(timer_id, &flags); 983 if (!timer) 984 return -EINVAL; 985 986 if (timer_delete_hook(timer) == TIMER_RETRY) { 987 unlock_timer(timer, flags); 988 goto retry_delete; 989 } 990 991 spin_lock(¤t->sighand->siglock); 992 list_del(&timer->list); 993 spin_unlock(¤t->sighand->siglock); 994 /* 995 * This keeps any tasks waiting on the spin lock from thinking 996 * they got something (see the lock code above). 997 */ 998 timer->it_signal = NULL; 999 1000 unlock_timer(timer, flags); 1001 release_posix_timer(timer, IT_ID_SET); 1002 return 0; 1003 } 1004 1005 /* 1006 * return timer owned by the process, used by exit_itimers 1007 */ 1008 static void itimer_delete(struct k_itimer *timer) 1009 { 1010 unsigned long flags; 1011 1012 retry_delete: 1013 spin_lock_irqsave(&timer->it_lock, flags); 1014 1015 if (timer_delete_hook(timer) == TIMER_RETRY) { 1016 unlock_timer(timer, flags); 1017 goto retry_delete; 1018 } 1019 list_del(&timer->list); 1020 /* 1021 * This keeps any tasks waiting on the spin lock from thinking 1022 * they got something (see the lock code above). 1023 */ 1024 timer->it_signal = NULL; 1025 1026 unlock_timer(timer, flags); 1027 release_posix_timer(timer, IT_ID_SET); 1028 } 1029 1030 /* 1031 * This is called by do_exit or de_thread, only when there are no more 1032 * references to the shared signal_struct. 1033 */ 1034 void exit_itimers(struct signal_struct *sig) 1035 { 1036 struct k_itimer *tmr; 1037 1038 while (!list_empty(&sig->posix_timers)) { 1039 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); 1040 itimer_delete(tmr); 1041 } 1042 } 1043 1044 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1045 const struct __kernel_timespec __user *, tp) 1046 { 1047 const struct k_clock *kc = clockid_to_kclock(which_clock); 1048 struct timespec64 new_tp; 1049 1050 if (!kc || !kc->clock_set) 1051 return -EINVAL; 1052 1053 if (get_timespec64(&new_tp, tp)) 1054 return -EFAULT; 1055 1056 return kc->clock_set(which_clock, &new_tp); 1057 } 1058 1059 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1060 struct __kernel_timespec __user *, tp) 1061 { 1062 const struct k_clock *kc = clockid_to_kclock(which_clock); 1063 struct timespec64 kernel_tp; 1064 int error; 1065 1066 if (!kc) 1067 return -EINVAL; 1068 1069 error = kc->clock_get(which_clock, &kernel_tp); 1070 1071 if (!error && put_timespec64(&kernel_tp, tp)) 1072 error = -EFAULT; 1073 1074 return error; 1075 } 1076 1077 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1078 struct timex __user *, utx) 1079 { 1080 const struct k_clock *kc = clockid_to_kclock(which_clock); 1081 struct timex ktx; 1082 int err; 1083 1084 if (!kc) 1085 return -EINVAL; 1086 if (!kc->clock_adj) 1087 return -EOPNOTSUPP; 1088 1089 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1090 return -EFAULT; 1091 1092 err = kc->clock_adj(which_clock, &ktx); 1093 1094 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1095 return -EFAULT; 1096 1097 return err; 1098 } 1099 1100 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1101 struct __kernel_timespec __user *, tp) 1102 { 1103 const struct k_clock *kc = clockid_to_kclock(which_clock); 1104 struct timespec64 rtn_tp; 1105 int error; 1106 1107 if (!kc) 1108 return -EINVAL; 1109 1110 error = kc->clock_getres(which_clock, &rtn_tp); 1111 1112 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1113 error = -EFAULT; 1114 1115 return error; 1116 } 1117 1118 #ifdef CONFIG_COMPAT_32BIT_TIME 1119 1120 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock, 1121 struct compat_timespec __user *, tp) 1122 { 1123 const struct k_clock *kc = clockid_to_kclock(which_clock); 1124 struct timespec64 ts; 1125 1126 if (!kc || !kc->clock_set) 1127 return -EINVAL; 1128 1129 if (compat_get_timespec64(&ts, tp)) 1130 return -EFAULT; 1131 1132 return kc->clock_set(which_clock, &ts); 1133 } 1134 1135 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock, 1136 struct compat_timespec __user *, tp) 1137 { 1138 const struct k_clock *kc = clockid_to_kclock(which_clock); 1139 struct timespec64 ts; 1140 int err; 1141 1142 if (!kc) 1143 return -EINVAL; 1144 1145 err = kc->clock_get(which_clock, &ts); 1146 1147 if (!err && compat_put_timespec64(&ts, tp)) 1148 err = -EFAULT; 1149 1150 return err; 1151 } 1152 1153 #endif 1154 1155 #ifdef CONFIG_COMPAT 1156 1157 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock, 1158 struct compat_timex __user *, utp) 1159 { 1160 const struct k_clock *kc = clockid_to_kclock(which_clock); 1161 struct timex ktx; 1162 int err; 1163 1164 if (!kc) 1165 return -EINVAL; 1166 if (!kc->clock_adj) 1167 return -EOPNOTSUPP; 1168 1169 err = compat_get_timex(&ktx, utp); 1170 if (err) 1171 return err; 1172 1173 err = kc->clock_adj(which_clock, &ktx); 1174 1175 if (err >= 0) 1176 err = compat_put_timex(utp, &ktx); 1177 1178 return err; 1179 } 1180 1181 #endif 1182 1183 #ifdef CONFIG_COMPAT_32BIT_TIME 1184 1185 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock, 1186 struct compat_timespec __user *, tp) 1187 { 1188 const struct k_clock *kc = clockid_to_kclock(which_clock); 1189 struct timespec64 ts; 1190 int err; 1191 1192 if (!kc) 1193 return -EINVAL; 1194 1195 err = kc->clock_getres(which_clock, &ts); 1196 if (!err && tp && compat_put_timespec64(&ts, tp)) 1197 return -EFAULT; 1198 1199 return err; 1200 } 1201 1202 #endif 1203 1204 /* 1205 * nanosleep for monotonic and realtime clocks 1206 */ 1207 static int common_nsleep(const clockid_t which_clock, int flags, 1208 const struct timespec64 *rqtp) 1209 { 1210 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? 1211 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1212 which_clock); 1213 } 1214 1215 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1216 const struct __kernel_timespec __user *, rqtp, 1217 struct __kernel_timespec __user *, rmtp) 1218 { 1219 const struct k_clock *kc = clockid_to_kclock(which_clock); 1220 struct timespec64 t; 1221 1222 if (!kc) 1223 return -EINVAL; 1224 if (!kc->nsleep) 1225 return -EOPNOTSUPP; 1226 1227 if (get_timespec64(&t, rqtp)) 1228 return -EFAULT; 1229 1230 if (!timespec64_valid(&t)) 1231 return -EINVAL; 1232 if (flags & TIMER_ABSTIME) 1233 rmtp = NULL; 1234 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1235 current->restart_block.nanosleep.rmtp = rmtp; 1236 1237 return kc->nsleep(which_clock, flags, &t); 1238 } 1239 1240 #ifdef CONFIG_COMPAT_32BIT_TIME 1241 1242 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags, 1243 struct compat_timespec __user *, rqtp, 1244 struct compat_timespec __user *, rmtp) 1245 { 1246 const struct k_clock *kc = clockid_to_kclock(which_clock); 1247 struct timespec64 t; 1248 1249 if (!kc) 1250 return -EINVAL; 1251 if (!kc->nsleep) 1252 return -EOPNOTSUPP; 1253 1254 if (compat_get_timespec64(&t, rqtp)) 1255 return -EFAULT; 1256 1257 if (!timespec64_valid(&t)) 1258 return -EINVAL; 1259 if (flags & TIMER_ABSTIME) 1260 rmtp = NULL; 1261 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1262 current->restart_block.nanosleep.compat_rmtp = rmtp; 1263 1264 return kc->nsleep(which_clock, flags, &t); 1265 } 1266 1267 #endif 1268 1269 static const struct k_clock clock_realtime = { 1270 .clock_getres = posix_get_hrtimer_res, 1271 .clock_get = posix_clock_realtime_get, 1272 .clock_set = posix_clock_realtime_set, 1273 .clock_adj = posix_clock_realtime_adj, 1274 .nsleep = common_nsleep, 1275 .timer_create = common_timer_create, 1276 .timer_set = common_timer_set, 1277 .timer_get = common_timer_get, 1278 .timer_del = common_timer_del, 1279 .timer_rearm = common_hrtimer_rearm, 1280 .timer_forward = common_hrtimer_forward, 1281 .timer_remaining = common_hrtimer_remaining, 1282 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1283 .timer_arm = common_hrtimer_arm, 1284 }; 1285 1286 static const struct k_clock clock_monotonic = { 1287 .clock_getres = posix_get_hrtimer_res, 1288 .clock_get = posix_ktime_get_ts, 1289 .nsleep = common_nsleep, 1290 .timer_create = common_timer_create, 1291 .timer_set = common_timer_set, 1292 .timer_get = common_timer_get, 1293 .timer_del = common_timer_del, 1294 .timer_rearm = common_hrtimer_rearm, 1295 .timer_forward = common_hrtimer_forward, 1296 .timer_remaining = common_hrtimer_remaining, 1297 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1298 .timer_arm = common_hrtimer_arm, 1299 }; 1300 1301 static const struct k_clock clock_monotonic_raw = { 1302 .clock_getres = posix_get_hrtimer_res, 1303 .clock_get = posix_get_monotonic_raw, 1304 }; 1305 1306 static const struct k_clock clock_realtime_coarse = { 1307 .clock_getres = posix_get_coarse_res, 1308 .clock_get = posix_get_realtime_coarse, 1309 }; 1310 1311 static const struct k_clock clock_monotonic_coarse = { 1312 .clock_getres = posix_get_coarse_res, 1313 .clock_get = posix_get_monotonic_coarse, 1314 }; 1315 1316 static const struct k_clock clock_tai = { 1317 .clock_getres = posix_get_hrtimer_res, 1318 .clock_get = posix_get_tai, 1319 .nsleep = common_nsleep, 1320 .timer_create = common_timer_create, 1321 .timer_set = common_timer_set, 1322 .timer_get = common_timer_get, 1323 .timer_del = common_timer_del, 1324 .timer_rearm = common_hrtimer_rearm, 1325 .timer_forward = common_hrtimer_forward, 1326 .timer_remaining = common_hrtimer_remaining, 1327 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1328 .timer_arm = common_hrtimer_arm, 1329 }; 1330 1331 static const struct k_clock clock_boottime = { 1332 .clock_getres = posix_get_hrtimer_res, 1333 .clock_get = posix_get_boottime, 1334 .nsleep = common_nsleep, 1335 .timer_create = common_timer_create, 1336 .timer_set = common_timer_set, 1337 .timer_get = common_timer_get, 1338 .timer_del = common_timer_del, 1339 .timer_rearm = common_hrtimer_rearm, 1340 .timer_forward = common_hrtimer_forward, 1341 .timer_remaining = common_hrtimer_remaining, 1342 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1343 .timer_arm = common_hrtimer_arm, 1344 }; 1345 1346 static const struct k_clock * const posix_clocks[] = { 1347 [CLOCK_REALTIME] = &clock_realtime, 1348 [CLOCK_MONOTONIC] = &clock_monotonic, 1349 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1350 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1351 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1352 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1353 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1354 [CLOCK_BOOTTIME] = &clock_boottime, 1355 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1356 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1357 [CLOCK_TAI] = &clock_tai, 1358 }; 1359 1360 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1361 { 1362 clockid_t idx = id; 1363 1364 if (id < 0) { 1365 return (id & CLOCKFD_MASK) == CLOCKFD ? 1366 &clock_posix_dynamic : &clock_posix_cpu; 1367 } 1368 1369 if (id >= ARRAY_SIZE(posix_clocks)) 1370 return NULL; 1371 1372 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; 1373 } 1374