1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * 2002-10-15 Posix Clocks & timers 4 * by George Anzinger george@mvista.com 5 * Copyright (C) 2002 2003 by MontaVista Software. 6 * 7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 8 * Copyright (C) 2004 Boris Hu 9 * 10 * These are all the functions necessary to implement POSIX clocks & timers 11 */ 12 #include <linux/mm.h> 13 #include <linux/interrupt.h> 14 #include <linux/slab.h> 15 #include <linux/time.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/task.h> 18 19 #include <linux/uaccess.h> 20 #include <linux/list.h> 21 #include <linux/init.h> 22 #include <linux/compiler.h> 23 #include <linux/hash.h> 24 #include <linux/posix-clock.h> 25 #include <linux/posix-timers.h> 26 #include <linux/syscalls.h> 27 #include <linux/wait.h> 28 #include <linux/workqueue.h> 29 #include <linux/export.h> 30 #include <linux/hashtable.h> 31 #include <linux/compat.h> 32 #include <linux/nospec.h> 33 #include <linux/time_namespace.h> 34 35 #include "timekeeping.h" 36 #include "posix-timers.h" 37 38 static struct kmem_cache *posix_timers_cache; 39 40 /* 41 * Timers are managed in a hash table for lockless lookup. The hash key is 42 * constructed from current::signal and the timer ID and the timer is 43 * matched against current::signal and the timer ID when walking the hash 44 * bucket list. 45 * 46 * This allows checkpoint/restore to reconstruct the exact timer IDs for 47 * a process. 48 */ 49 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 50 static DEFINE_SPINLOCK(hash_lock); 51 52 static const struct k_clock * const posix_clocks[]; 53 static const struct k_clock *clockid_to_kclock(const clockid_t id); 54 static const struct k_clock clock_realtime, clock_monotonic; 55 56 /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */ 57 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 58 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 59 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 60 #endif 61 62 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 63 64 #define lock_timer(tid, flags) \ 65 ({ struct k_itimer *__timr; \ 66 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 67 __timr; \ 68 }) 69 70 static int hash(struct signal_struct *sig, unsigned int nr) 71 { 72 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 73 } 74 75 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 76 struct signal_struct *sig, 77 timer_t id) 78 { 79 struct k_itimer *timer; 80 81 hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) { 82 /* timer->it_signal can be set concurrently */ 83 if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id)) 84 return timer; 85 } 86 return NULL; 87 } 88 89 static struct k_itimer *posix_timer_by_id(timer_t id) 90 { 91 struct signal_struct *sig = current->signal; 92 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 93 94 return __posix_timers_find(head, sig, id); 95 } 96 97 static int posix_timer_add(struct k_itimer *timer) 98 { 99 struct signal_struct *sig = current->signal; 100 struct hlist_head *head; 101 unsigned int cnt, id; 102 103 /* 104 * FIXME: Replace this by a per signal struct xarray once there is 105 * a plan to handle the resulting CRIU regression gracefully. 106 */ 107 for (cnt = 0; cnt <= INT_MAX; cnt++) { 108 spin_lock(&hash_lock); 109 id = sig->next_posix_timer_id; 110 111 /* Write the next ID back. Clamp it to the positive space */ 112 sig->next_posix_timer_id = (id + 1) & INT_MAX; 113 114 head = &posix_timers_hashtable[hash(sig, id)]; 115 if (!__posix_timers_find(head, sig, id)) { 116 hlist_add_head_rcu(&timer->t_hash, head); 117 spin_unlock(&hash_lock); 118 return id; 119 } 120 spin_unlock(&hash_lock); 121 } 122 /* POSIX return code when no timer ID could be allocated */ 123 return -EAGAIN; 124 } 125 126 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 127 { 128 spin_unlock_irqrestore(&timr->it_lock, flags); 129 } 130 131 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp) 132 { 133 ktime_get_real_ts64(tp); 134 return 0; 135 } 136 137 static ktime_t posix_get_realtime_ktime(clockid_t which_clock) 138 { 139 return ktime_get_real(); 140 } 141 142 static int posix_clock_realtime_set(const clockid_t which_clock, 143 const struct timespec64 *tp) 144 { 145 return do_sys_settimeofday64(tp, NULL); 146 } 147 148 static int posix_clock_realtime_adj(const clockid_t which_clock, 149 struct __kernel_timex *t) 150 { 151 return do_adjtimex(t); 152 } 153 154 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp) 155 { 156 ktime_get_ts64(tp); 157 timens_add_monotonic(tp); 158 return 0; 159 } 160 161 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock) 162 { 163 return ktime_get(); 164 } 165 166 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 167 { 168 ktime_get_raw_ts64(tp); 169 timens_add_monotonic(tp); 170 return 0; 171 } 172 173 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 174 { 175 ktime_get_coarse_real_ts64(tp); 176 return 0; 177 } 178 179 static int posix_get_monotonic_coarse(clockid_t which_clock, 180 struct timespec64 *tp) 181 { 182 ktime_get_coarse_ts64(tp); 183 timens_add_monotonic(tp); 184 return 0; 185 } 186 187 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 188 { 189 *tp = ktime_to_timespec64(KTIME_LOW_RES); 190 return 0; 191 } 192 193 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp) 194 { 195 ktime_get_boottime_ts64(tp); 196 timens_add_boottime(tp); 197 return 0; 198 } 199 200 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock) 201 { 202 return ktime_get_boottime(); 203 } 204 205 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp) 206 { 207 ktime_get_clocktai_ts64(tp); 208 return 0; 209 } 210 211 static ktime_t posix_get_tai_ktime(clockid_t which_clock) 212 { 213 return ktime_get_clocktai(); 214 } 215 216 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 217 { 218 tp->tv_sec = 0; 219 tp->tv_nsec = hrtimer_resolution; 220 return 0; 221 } 222 223 static __init int init_posix_timers(void) 224 { 225 posix_timers_cache = kmem_cache_create("posix_timers_cache", 226 sizeof(struct k_itimer), 0, 227 SLAB_PANIC | SLAB_ACCOUNT, NULL); 228 return 0; 229 } 230 __initcall(init_posix_timers); 231 232 /* 233 * The siginfo si_overrun field and the return value of timer_getoverrun(2) 234 * are of type int. Clamp the overrun value to INT_MAX 235 */ 236 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) 237 { 238 s64 sum = timr->it_overrun_last + (s64)baseval; 239 240 return sum > (s64)INT_MAX ? INT_MAX : (int)sum; 241 } 242 243 static void common_hrtimer_rearm(struct k_itimer *timr) 244 { 245 struct hrtimer *timer = &timr->it.real.timer; 246 247 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), 248 timr->it_interval); 249 hrtimer_restart(timer); 250 } 251 252 /* 253 * This function is called from the signal delivery code if 254 * info->si_sys_private is not zero, which indicates that the timer has to 255 * be rearmed. Restart the timer and update info::si_overrun. 256 */ 257 void posixtimer_rearm(struct kernel_siginfo *info) 258 { 259 struct k_itimer *timr; 260 unsigned long flags; 261 262 timr = lock_timer(info->si_tid, &flags); 263 if (!timr) 264 return; 265 266 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) { 267 timr->kclock->timer_rearm(timr); 268 269 timr->it_active = 1; 270 timr->it_overrun_last = timr->it_overrun; 271 timr->it_overrun = -1LL; 272 ++timr->it_requeue_pending; 273 274 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); 275 } 276 277 unlock_timer(timr, flags); 278 } 279 280 int posix_timer_queue_signal(struct k_itimer *timr) 281 { 282 int ret, si_private = 0; 283 enum pid_type type; 284 285 lockdep_assert_held(&timr->it_lock); 286 287 timr->it_active = 0; 288 if (timr->it_interval) 289 si_private = ++timr->it_requeue_pending; 290 291 /* 292 * FIXME: if ->sigq is queued we can race with 293 * dequeue_signal()->posixtimer_rearm(). 294 * 295 * If dequeue_signal() sees the "right" value of 296 * si_sys_private it calls posixtimer_rearm(). 297 * We re-queue ->sigq and drop ->it_lock(). 298 * posixtimer_rearm() locks the timer 299 * and re-schedules it while ->sigq is pending. 300 * Not really bad, but not that we want. 301 */ 302 timr->sigq->info.si_sys_private = si_private; 303 304 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID; 305 ret = send_sigqueue(timr->sigq, timr->it_pid, type); 306 /* If we failed to send the signal the timer stops. */ 307 return ret > 0; 308 } 309 310 /* 311 * This function gets called when a POSIX.1b interval timer expires from 312 * the HRTIMER interrupt (soft interrupt on RT kernels). 313 * 314 * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI 315 * based timers. 316 */ 317 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 318 { 319 struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer); 320 enum hrtimer_restart ret = HRTIMER_NORESTART; 321 unsigned long flags; 322 323 spin_lock_irqsave(&timr->it_lock, flags); 324 325 if (posix_timer_queue_signal(timr)) { 326 /* 327 * The signal was not queued due to SIG_IGN. As a 328 * consequence the timer is not going to be rearmed from 329 * the signal delivery path. But as a real signal handler 330 * can be installed later the timer must be rearmed here. 331 */ 332 if (timr->it_interval != 0) { 333 ktime_t now = hrtimer_cb_get_time(timer); 334 335 /* 336 * FIXME: What we really want, is to stop this 337 * timer completely and restart it in case the 338 * SIG_IGN is removed. This is a non trivial 339 * change to the signal handling code. 340 * 341 * For now let timers with an interval less than a 342 * jiffy expire every jiffy and recheck for a 343 * valid signal handler. 344 * 345 * This avoids interrupt starvation in case of a 346 * very small interval, which would expire the 347 * timer immediately again. 348 * 349 * Moving now ahead of time by one jiffy tricks 350 * hrtimer_forward() to expire the timer later, 351 * while it still maintains the overrun accuracy 352 * for the price of a slight inconsistency in the 353 * timer_gettime() case. This is at least better 354 * than a timer storm. 355 * 356 * Only required when high resolution timers are 357 * enabled as the periodic tick based timers are 358 * automatically aligned to the next tick. 359 */ 360 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) { 361 ktime_t kj = TICK_NSEC; 362 363 if (timr->it_interval < kj) 364 now = ktime_add(now, kj); 365 } 366 367 timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval); 368 ret = HRTIMER_RESTART; 369 ++timr->it_requeue_pending; 370 timr->it_active = 1; 371 } 372 } 373 374 unlock_timer(timr, flags); 375 return ret; 376 } 377 378 static struct pid *good_sigevent(sigevent_t * event) 379 { 380 struct pid *pid = task_tgid(current); 381 struct task_struct *rtn; 382 383 switch (event->sigev_notify) { 384 case SIGEV_SIGNAL | SIGEV_THREAD_ID: 385 pid = find_vpid(event->sigev_notify_thread_id); 386 rtn = pid_task(pid, PIDTYPE_PID); 387 if (!rtn || !same_thread_group(rtn, current)) 388 return NULL; 389 fallthrough; 390 case SIGEV_SIGNAL: 391 case SIGEV_THREAD: 392 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) 393 return NULL; 394 fallthrough; 395 case SIGEV_NONE: 396 return pid; 397 default: 398 return NULL; 399 } 400 } 401 402 static struct k_itimer * alloc_posix_timer(void) 403 { 404 struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 405 406 if (!tmr) 407 return tmr; 408 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 409 kmem_cache_free(posix_timers_cache, tmr); 410 return NULL; 411 } 412 clear_siginfo(&tmr->sigq->info); 413 return tmr; 414 } 415 416 static void k_itimer_rcu_free(struct rcu_head *head) 417 { 418 struct k_itimer *tmr = container_of(head, struct k_itimer, rcu); 419 420 kmem_cache_free(posix_timers_cache, tmr); 421 } 422 423 static void posix_timer_free(struct k_itimer *tmr) 424 { 425 put_pid(tmr->it_pid); 426 sigqueue_free(tmr->sigq); 427 call_rcu(&tmr->rcu, k_itimer_rcu_free); 428 } 429 430 static void posix_timer_unhash_and_free(struct k_itimer *tmr) 431 { 432 spin_lock(&hash_lock); 433 hlist_del_rcu(&tmr->t_hash); 434 spin_unlock(&hash_lock); 435 posix_timer_free(tmr); 436 } 437 438 static int common_timer_create(struct k_itimer *new_timer) 439 { 440 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 441 return 0; 442 } 443 444 /* Create a POSIX.1b interval timer. */ 445 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 446 timer_t __user *created_timer_id) 447 { 448 const struct k_clock *kc = clockid_to_kclock(which_clock); 449 struct k_itimer *new_timer; 450 int error, new_timer_id; 451 452 if (!kc) 453 return -EINVAL; 454 if (!kc->timer_create) 455 return -EOPNOTSUPP; 456 457 new_timer = alloc_posix_timer(); 458 if (unlikely(!new_timer)) 459 return -EAGAIN; 460 461 spin_lock_init(&new_timer->it_lock); 462 463 /* 464 * Add the timer to the hash table. The timer is not yet valid 465 * because new_timer::it_signal is still NULL. The timer id is also 466 * not yet visible to user space. 467 */ 468 new_timer_id = posix_timer_add(new_timer); 469 if (new_timer_id < 0) { 470 posix_timer_free(new_timer); 471 return new_timer_id; 472 } 473 474 new_timer->it_id = (timer_t) new_timer_id; 475 new_timer->it_clock = which_clock; 476 new_timer->kclock = kc; 477 new_timer->it_overrun = -1LL; 478 479 if (event) { 480 rcu_read_lock(); 481 new_timer->it_pid = get_pid(good_sigevent(event)); 482 rcu_read_unlock(); 483 if (!new_timer->it_pid) { 484 error = -EINVAL; 485 goto out; 486 } 487 new_timer->it_sigev_notify = event->sigev_notify; 488 new_timer->sigq->info.si_signo = event->sigev_signo; 489 new_timer->sigq->info.si_value = event->sigev_value; 490 } else { 491 new_timer->it_sigev_notify = SIGEV_SIGNAL; 492 new_timer->sigq->info.si_signo = SIGALRM; 493 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); 494 new_timer->sigq->info.si_value.sival_int = new_timer->it_id; 495 new_timer->it_pid = get_pid(task_tgid(current)); 496 } 497 498 new_timer->sigq->info.si_tid = new_timer->it_id; 499 new_timer->sigq->info.si_code = SI_TIMER; 500 501 if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) { 502 error = -EFAULT; 503 goto out; 504 } 505 /* 506 * After succesful copy out, the timer ID is visible to user space 507 * now but not yet valid because new_timer::signal is still NULL. 508 * 509 * Complete the initialization with the clock specific create 510 * callback. 511 */ 512 error = kc->timer_create(new_timer); 513 if (error) 514 goto out; 515 516 spin_lock_irq(¤t->sighand->siglock); 517 /* This makes the timer valid in the hash table */ 518 WRITE_ONCE(new_timer->it_signal, current->signal); 519 hlist_add_head(&new_timer->list, ¤t->signal->posix_timers); 520 spin_unlock_irq(¤t->sighand->siglock); 521 /* 522 * After unlocking sighand::siglock @new_timer is subject to 523 * concurrent removal and cannot be touched anymore 524 */ 525 return 0; 526 out: 527 posix_timer_unhash_and_free(new_timer); 528 return error; 529 } 530 531 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 532 struct sigevent __user *, timer_event_spec, 533 timer_t __user *, created_timer_id) 534 { 535 if (timer_event_spec) { 536 sigevent_t event; 537 538 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 539 return -EFAULT; 540 return do_timer_create(which_clock, &event, created_timer_id); 541 } 542 return do_timer_create(which_clock, NULL, created_timer_id); 543 } 544 545 #ifdef CONFIG_COMPAT 546 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 547 struct compat_sigevent __user *, timer_event_spec, 548 timer_t __user *, created_timer_id) 549 { 550 if (timer_event_spec) { 551 sigevent_t event; 552 553 if (get_compat_sigevent(&event, timer_event_spec)) 554 return -EFAULT; 555 return do_timer_create(which_clock, &event, created_timer_id); 556 } 557 return do_timer_create(which_clock, NULL, created_timer_id); 558 } 559 #endif 560 561 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 562 { 563 struct k_itimer *timr; 564 565 /* 566 * timer_t could be any type >= int and we want to make sure any 567 * @timer_id outside positive int range fails lookup. 568 */ 569 if ((unsigned long long)timer_id > INT_MAX) 570 return NULL; 571 572 /* 573 * The hash lookup and the timers are RCU protected. 574 * 575 * Timers are added to the hash in invalid state where 576 * timr::it_signal == NULL. timer::it_signal is only set after the 577 * rest of the initialization succeeded. 578 * 579 * Timer destruction happens in steps: 580 * 1) Set timr::it_signal to NULL with timr::it_lock held 581 * 2) Release timr::it_lock 582 * 3) Remove from the hash under hash_lock 583 * 4) Call RCU for removal after the grace period 584 * 585 * Holding rcu_read_lock() accross the lookup ensures that 586 * the timer cannot be freed. 587 * 588 * The lookup validates locklessly that timr::it_signal == 589 * current::it_signal and timr::it_id == @timer_id. timr::it_id 590 * can't change, but timr::it_signal becomes NULL during 591 * destruction. 592 */ 593 rcu_read_lock(); 594 timr = posix_timer_by_id(timer_id); 595 if (timr) { 596 spin_lock_irqsave(&timr->it_lock, *flags); 597 /* 598 * Validate under timr::it_lock that timr::it_signal is 599 * still valid. Pairs with #1 above. 600 */ 601 if (timr->it_signal == current->signal) { 602 rcu_read_unlock(); 603 return timr; 604 } 605 spin_unlock_irqrestore(&timr->it_lock, *flags); 606 } 607 rcu_read_unlock(); 608 609 return NULL; 610 } 611 612 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 613 { 614 struct hrtimer *timer = &timr->it.real.timer; 615 616 return __hrtimer_expires_remaining_adjusted(timer, now); 617 } 618 619 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 620 { 621 struct hrtimer *timer = &timr->it.real.timer; 622 623 return hrtimer_forward(timer, now, timr->it_interval); 624 } 625 626 /* 627 * Get the time remaining on a POSIX.1b interval timer. 628 * 629 * Two issues to handle here: 630 * 631 * 1) The timer has a requeue pending. The return value must appear as 632 * if the timer has been requeued right now. 633 * 634 * 2) The timer is a SIGEV_NONE timer. These timers are never enqueued 635 * into the hrtimer queue and therefore never expired. Emulate expiry 636 * here taking #1 into account. 637 */ 638 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 639 { 640 const struct k_clock *kc = timr->kclock; 641 ktime_t now, remaining, iv; 642 bool sig_none; 643 644 sig_none = timr->it_sigev_notify == SIGEV_NONE; 645 iv = timr->it_interval; 646 647 /* interval timer ? */ 648 if (iv) { 649 cur_setting->it_interval = ktime_to_timespec64(iv); 650 } else if (!timr->it_active) { 651 /* 652 * SIGEV_NONE oneshot timers are never queued and therefore 653 * timr->it_active is always false. The check below 654 * vs. remaining time will handle this case. 655 * 656 * For all other timers there is nothing to update here, so 657 * return. 658 */ 659 if (!sig_none) 660 return; 661 } 662 663 now = kc->clock_get_ktime(timr->it_clock); 664 665 /* 666 * If this is an interval timer and either has requeue pending or 667 * is a SIGEV_NONE timer move the expiry time forward by intervals, 668 * so expiry is > now. 669 */ 670 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) 671 timr->it_overrun += kc->timer_forward(timr, now); 672 673 remaining = kc->timer_remaining(timr, now); 674 /* 675 * As @now is retrieved before a possible timer_forward() and 676 * cannot be reevaluated by the compiler @remaining is based on the 677 * same @now value. Therefore @remaining is consistent vs. @now. 678 * 679 * Consequently all interval timers, i.e. @iv > 0, cannot have a 680 * remaining time <= 0 because timer_forward() guarantees to move 681 * them forward so that the next timer expiry is > @now. 682 */ 683 if (remaining <= 0) { 684 /* 685 * A single shot SIGEV_NONE timer must return 0, when it is 686 * expired! Timers which have a real signal delivery mode 687 * must return a remaining time greater than 0 because the 688 * signal has not yet been delivered. 689 */ 690 if (!sig_none) 691 cur_setting->it_value.tv_nsec = 1; 692 } else { 693 cur_setting->it_value = ktime_to_timespec64(remaining); 694 } 695 } 696 697 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 698 { 699 const struct k_clock *kc; 700 struct k_itimer *timr; 701 unsigned long flags; 702 int ret = 0; 703 704 timr = lock_timer(timer_id, &flags); 705 if (!timr) 706 return -EINVAL; 707 708 memset(setting, 0, sizeof(*setting)); 709 kc = timr->kclock; 710 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 711 ret = -EINVAL; 712 else 713 kc->timer_get(timr, setting); 714 715 unlock_timer(timr, flags); 716 return ret; 717 } 718 719 /* Get the time remaining on a POSIX.1b interval timer. */ 720 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 721 struct __kernel_itimerspec __user *, setting) 722 { 723 struct itimerspec64 cur_setting; 724 725 int ret = do_timer_gettime(timer_id, &cur_setting); 726 if (!ret) { 727 if (put_itimerspec64(&cur_setting, setting)) 728 ret = -EFAULT; 729 } 730 return ret; 731 } 732 733 #ifdef CONFIG_COMPAT_32BIT_TIME 734 735 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id, 736 struct old_itimerspec32 __user *, setting) 737 { 738 struct itimerspec64 cur_setting; 739 740 int ret = do_timer_gettime(timer_id, &cur_setting); 741 if (!ret) { 742 if (put_old_itimerspec32(&cur_setting, setting)) 743 ret = -EFAULT; 744 } 745 return ret; 746 } 747 748 #endif 749 750 /** 751 * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer 752 * @timer_id: The timer ID which identifies the timer 753 * 754 * The "overrun count" of a timer is one plus the number of expiration 755 * intervals which have elapsed between the first expiry, which queues the 756 * signal and the actual signal delivery. On signal delivery the "overrun 757 * count" is calculated and cached, so it can be returned directly here. 758 * 759 * As this is relative to the last queued signal the returned overrun count 760 * is meaningless outside of the signal delivery path and even there it 761 * does not accurately reflect the current state when user space evaluates 762 * it. 763 * 764 * Returns: 765 * -EINVAL @timer_id is invalid 766 * 1..INT_MAX The number of overruns related to the last delivered signal 767 */ 768 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 769 { 770 struct k_itimer *timr; 771 unsigned long flags; 772 int overrun; 773 774 timr = lock_timer(timer_id, &flags); 775 if (!timr) 776 return -EINVAL; 777 778 overrun = timer_overrun_to_int(timr, 0); 779 unlock_timer(timr, flags); 780 781 return overrun; 782 } 783 784 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 785 bool absolute, bool sigev_none) 786 { 787 struct hrtimer *timer = &timr->it.real.timer; 788 enum hrtimer_mode mode; 789 790 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 791 /* 792 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 793 * clock modifications, so they become CLOCK_MONOTONIC based under the 794 * hood. See hrtimer_init(). Update timr->kclock, so the generic 795 * functions which use timr->kclock->clock_get_*() work. 796 * 797 * Note: it_clock stays unmodified, because the next timer_set() might 798 * use ABSTIME, so it needs to switch back. 799 */ 800 if (timr->it_clock == CLOCK_REALTIME) 801 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 802 803 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 804 timr->it.real.timer.function = posix_timer_fn; 805 806 if (!absolute) 807 expires = ktime_add_safe(expires, timer->base->get_time()); 808 hrtimer_set_expires(timer, expires); 809 810 if (!sigev_none) 811 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 812 } 813 814 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 815 { 816 return hrtimer_try_to_cancel(&timr->it.real.timer); 817 } 818 819 static void common_timer_wait_running(struct k_itimer *timer) 820 { 821 hrtimer_cancel_wait_running(&timer->it.real.timer); 822 } 823 824 /* 825 * On PREEMPT_RT this prevents priority inversion and a potential livelock 826 * against the ksoftirqd thread in case that ksoftirqd gets preempted while 827 * executing a hrtimer callback. 828 * 829 * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this 830 * just results in a cpu_relax(). 831 * 832 * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is 833 * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this 834 * prevents spinning on an eventually scheduled out task and a livelock 835 * when the task which tries to delete or disarm the timer has preempted 836 * the task which runs the expiry in task work context. 837 */ 838 static struct k_itimer *timer_wait_running(struct k_itimer *timer, 839 unsigned long *flags) 840 { 841 const struct k_clock *kc = READ_ONCE(timer->kclock); 842 timer_t timer_id = READ_ONCE(timer->it_id); 843 844 /* Prevent kfree(timer) after dropping the lock */ 845 rcu_read_lock(); 846 unlock_timer(timer, *flags); 847 848 /* 849 * kc->timer_wait_running() might drop RCU lock. So @timer 850 * cannot be touched anymore after the function returns! 851 */ 852 if (!WARN_ON_ONCE(!kc->timer_wait_running)) 853 kc->timer_wait_running(timer); 854 855 rcu_read_unlock(); 856 /* Relock the timer. It might be not longer hashed. */ 857 return lock_timer(timer_id, flags); 858 } 859 860 /* 861 * Set up the new interval and reset the signal delivery data 862 */ 863 void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_setting) 864 { 865 if (new_setting->it_value.tv_sec || new_setting->it_value.tv_nsec) 866 timer->it_interval = timespec64_to_ktime(new_setting->it_interval); 867 else 868 timer->it_interval = 0; 869 870 /* Prevent reloading in case there is a signal pending */ 871 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & ~REQUEUE_PENDING; 872 /* Reset overrun accounting */ 873 timer->it_overrun_last = 0; 874 timer->it_overrun = -1LL; 875 } 876 877 /* Set a POSIX.1b interval timer. */ 878 int common_timer_set(struct k_itimer *timr, int flags, 879 struct itimerspec64 *new_setting, 880 struct itimerspec64 *old_setting) 881 { 882 const struct k_clock *kc = timr->kclock; 883 bool sigev_none; 884 ktime_t expires; 885 886 if (old_setting) 887 common_timer_get(timr, old_setting); 888 889 /* Prevent rearming by clearing the interval */ 890 timr->it_interval = 0; 891 /* 892 * Careful here. On SMP systems the timer expiry function could be 893 * active and spinning on timr->it_lock. 894 */ 895 if (kc->timer_try_to_cancel(timr) < 0) 896 return TIMER_RETRY; 897 898 timr->it_active = 0; 899 posix_timer_set_common(timr, new_setting); 900 901 /* Keep timer disarmed when it_value is zero */ 902 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 903 return 0; 904 905 expires = timespec64_to_ktime(new_setting->it_value); 906 if (flags & TIMER_ABSTIME) 907 expires = timens_ktime_to_host(timr->it_clock, expires); 908 sigev_none = timr->it_sigev_notify == SIGEV_NONE; 909 910 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 911 timr->it_active = !sigev_none; 912 return 0; 913 } 914 915 static int do_timer_settime(timer_t timer_id, int tmr_flags, 916 struct itimerspec64 *new_spec64, 917 struct itimerspec64 *old_spec64) 918 { 919 const struct k_clock *kc; 920 struct k_itimer *timr; 921 unsigned long flags; 922 int error; 923 924 if (!timespec64_valid(&new_spec64->it_interval) || 925 !timespec64_valid(&new_spec64->it_value)) 926 return -EINVAL; 927 928 if (old_spec64) 929 memset(old_spec64, 0, sizeof(*old_spec64)); 930 931 timr = lock_timer(timer_id, &flags); 932 retry: 933 if (!timr) 934 return -EINVAL; 935 936 if (old_spec64) 937 old_spec64->it_interval = ktime_to_timespec64(timr->it_interval); 938 939 kc = timr->kclock; 940 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 941 error = -EINVAL; 942 else 943 error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64); 944 945 if (error == TIMER_RETRY) { 946 // We already got the old time... 947 old_spec64 = NULL; 948 /* Unlocks and relocks the timer if it still exists */ 949 timr = timer_wait_running(timr, &flags); 950 goto retry; 951 } 952 unlock_timer(timr, flags); 953 954 return error; 955 } 956 957 /* Set a POSIX.1b interval timer */ 958 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 959 const struct __kernel_itimerspec __user *, new_setting, 960 struct __kernel_itimerspec __user *, old_setting) 961 { 962 struct itimerspec64 new_spec, old_spec, *rtn; 963 int error = 0; 964 965 if (!new_setting) 966 return -EINVAL; 967 968 if (get_itimerspec64(&new_spec, new_setting)) 969 return -EFAULT; 970 971 rtn = old_setting ? &old_spec : NULL; 972 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 973 if (!error && old_setting) { 974 if (put_itimerspec64(&old_spec, old_setting)) 975 error = -EFAULT; 976 } 977 return error; 978 } 979 980 #ifdef CONFIG_COMPAT_32BIT_TIME 981 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags, 982 struct old_itimerspec32 __user *, new, 983 struct old_itimerspec32 __user *, old) 984 { 985 struct itimerspec64 new_spec, old_spec; 986 struct itimerspec64 *rtn = old ? &old_spec : NULL; 987 int error = 0; 988 989 if (!new) 990 return -EINVAL; 991 if (get_old_itimerspec32(&new_spec, new)) 992 return -EFAULT; 993 994 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 995 if (!error && old) { 996 if (put_old_itimerspec32(&old_spec, old)) 997 error = -EFAULT; 998 } 999 return error; 1000 } 1001 #endif 1002 1003 int common_timer_del(struct k_itimer *timer) 1004 { 1005 const struct k_clock *kc = timer->kclock; 1006 1007 timer->it_interval = 0; 1008 if (kc->timer_try_to_cancel(timer) < 0) 1009 return TIMER_RETRY; 1010 timer->it_active = 0; 1011 return 0; 1012 } 1013 1014 static inline int timer_delete_hook(struct k_itimer *timer) 1015 { 1016 const struct k_clock *kc = timer->kclock; 1017 1018 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 1019 return -EINVAL; 1020 return kc->timer_del(timer); 1021 } 1022 1023 /* Delete a POSIX.1b interval timer. */ 1024 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 1025 { 1026 struct k_itimer *timer; 1027 unsigned long flags; 1028 1029 timer = lock_timer(timer_id, &flags); 1030 1031 retry_delete: 1032 if (!timer) 1033 return -EINVAL; 1034 1035 if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) { 1036 /* Unlocks and relocks the timer if it still exists */ 1037 timer = timer_wait_running(timer, &flags); 1038 goto retry_delete; 1039 } 1040 1041 spin_lock(¤t->sighand->siglock); 1042 hlist_del(&timer->list); 1043 spin_unlock(¤t->sighand->siglock); 1044 /* 1045 * A concurrent lookup could check timer::it_signal lockless. It 1046 * will reevaluate with timer::it_lock held and observe the NULL. 1047 */ 1048 WRITE_ONCE(timer->it_signal, NULL); 1049 1050 unlock_timer(timer, flags); 1051 posix_timer_unhash_and_free(timer); 1052 return 0; 1053 } 1054 1055 /* 1056 * Delete a timer if it is armed, remove it from the hash and schedule it 1057 * for RCU freeing. 1058 */ 1059 static void itimer_delete(struct k_itimer *timer) 1060 { 1061 unsigned long flags; 1062 1063 /* 1064 * irqsave is required to make timer_wait_running() work. 1065 */ 1066 spin_lock_irqsave(&timer->it_lock, flags); 1067 1068 retry_delete: 1069 /* 1070 * Even if the timer is not longer accessible from other tasks 1071 * it still might be armed and queued in the underlying timer 1072 * mechanism. Worse, that timer mechanism might run the expiry 1073 * function concurrently. 1074 */ 1075 if (timer_delete_hook(timer) == TIMER_RETRY) { 1076 /* 1077 * Timer is expired concurrently, prevent livelocks 1078 * and pointless spinning on RT. 1079 * 1080 * timer_wait_running() drops timer::it_lock, which opens 1081 * the possibility for another task to delete the timer. 1082 * 1083 * That's not possible here because this is invoked from 1084 * do_exit() only for the last thread of the thread group. 1085 * So no other task can access and delete that timer. 1086 */ 1087 if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer)) 1088 return; 1089 1090 goto retry_delete; 1091 } 1092 hlist_del(&timer->list); 1093 1094 /* 1095 * Setting timer::it_signal to NULL is technically not required 1096 * here as nothing can access the timer anymore legitimately via 1097 * the hash table. Set it to NULL nevertheless so that all deletion 1098 * paths are consistent. 1099 */ 1100 WRITE_ONCE(timer->it_signal, NULL); 1101 1102 spin_unlock_irqrestore(&timer->it_lock, flags); 1103 posix_timer_unhash_and_free(timer); 1104 } 1105 1106 /* 1107 * Invoked from do_exit() when the last thread of a thread group exits. 1108 * At that point no other task can access the timers of the dying 1109 * task anymore. 1110 */ 1111 void exit_itimers(struct task_struct *tsk) 1112 { 1113 struct hlist_head timers; 1114 1115 if (hlist_empty(&tsk->signal->posix_timers)) 1116 return; 1117 1118 /* Protect against concurrent read via /proc/$PID/timers */ 1119 spin_lock_irq(&tsk->sighand->siglock); 1120 hlist_move_list(&tsk->signal->posix_timers, &timers); 1121 spin_unlock_irq(&tsk->sighand->siglock); 1122 1123 /* The timers are not longer accessible via tsk::signal */ 1124 while (!hlist_empty(&timers)) 1125 itimer_delete(hlist_entry(timers.first, struct k_itimer, list)); 1126 } 1127 1128 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1129 const struct __kernel_timespec __user *, tp) 1130 { 1131 const struct k_clock *kc = clockid_to_kclock(which_clock); 1132 struct timespec64 new_tp; 1133 1134 if (!kc || !kc->clock_set) 1135 return -EINVAL; 1136 1137 if (get_timespec64(&new_tp, tp)) 1138 return -EFAULT; 1139 1140 /* 1141 * Permission checks have to be done inside the clock specific 1142 * setter callback. 1143 */ 1144 return kc->clock_set(which_clock, &new_tp); 1145 } 1146 1147 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1148 struct __kernel_timespec __user *, tp) 1149 { 1150 const struct k_clock *kc = clockid_to_kclock(which_clock); 1151 struct timespec64 kernel_tp; 1152 int error; 1153 1154 if (!kc) 1155 return -EINVAL; 1156 1157 error = kc->clock_get_timespec(which_clock, &kernel_tp); 1158 1159 if (!error && put_timespec64(&kernel_tp, tp)) 1160 error = -EFAULT; 1161 1162 return error; 1163 } 1164 1165 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx) 1166 { 1167 const struct k_clock *kc = clockid_to_kclock(which_clock); 1168 1169 if (!kc) 1170 return -EINVAL; 1171 if (!kc->clock_adj) 1172 return -EOPNOTSUPP; 1173 1174 return kc->clock_adj(which_clock, ktx); 1175 } 1176 1177 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1178 struct __kernel_timex __user *, utx) 1179 { 1180 struct __kernel_timex ktx; 1181 int err; 1182 1183 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1184 return -EFAULT; 1185 1186 err = do_clock_adjtime(which_clock, &ktx); 1187 1188 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1189 return -EFAULT; 1190 1191 return err; 1192 } 1193 1194 /** 1195 * sys_clock_getres - Get the resolution of a clock 1196 * @which_clock: The clock to get the resolution for 1197 * @tp: Pointer to a a user space timespec64 for storage 1198 * 1199 * POSIX defines: 1200 * 1201 * "The clock_getres() function shall return the resolution of any 1202 * clock. Clock resolutions are implementation-defined and cannot be set by 1203 * a process. If the argument res is not NULL, the resolution of the 1204 * specified clock shall be stored in the location pointed to by res. If 1205 * res is NULL, the clock resolution is not returned. If the time argument 1206 * of clock_settime() is not a multiple of res, then the value is truncated 1207 * to a multiple of res." 1208 * 1209 * Due to the various hardware constraints the real resolution can vary 1210 * wildly and even change during runtime when the underlying devices are 1211 * replaced. The kernel also can use hardware devices with different 1212 * resolutions for reading the time and for arming timers. 1213 * 1214 * The kernel therefore deviates from the POSIX spec in various aspects: 1215 * 1216 * 1) The resolution returned to user space 1217 * 1218 * For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI, 1219 * CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW 1220 * the kernel differentiates only two cases: 1221 * 1222 * I) Low resolution mode: 1223 * 1224 * When high resolution timers are disabled at compile or runtime 1225 * the resolution returned is nanoseconds per tick, which represents 1226 * the precision at which timers expire. 1227 * 1228 * II) High resolution mode: 1229 * 1230 * When high resolution timers are enabled the resolution returned 1231 * is always one nanosecond independent of the actual resolution of 1232 * the underlying hardware devices. 1233 * 1234 * For CLOCK_*_ALARM the actual resolution depends on system 1235 * state. When system is running the resolution is the same as the 1236 * resolution of the other clocks. During suspend the actual 1237 * resolution is the resolution of the underlying RTC device which 1238 * might be way less precise than the clockevent device used during 1239 * running state. 1240 * 1241 * For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution 1242 * returned is always nanoseconds per tick. 1243 * 1244 * For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution 1245 * returned is always one nanosecond under the assumption that the 1246 * underlying scheduler clock has a better resolution than nanoseconds 1247 * per tick. 1248 * 1249 * For dynamic POSIX clocks (PTP devices) the resolution returned is 1250 * always one nanosecond. 1251 * 1252 * 2) Affect on sys_clock_settime() 1253 * 1254 * The kernel does not truncate the time which is handed in to 1255 * sys_clock_settime(). The kernel internal timekeeping is always using 1256 * nanoseconds precision independent of the clocksource device which is 1257 * used to read the time from. The resolution of that device only 1258 * affects the presicion of the time returned by sys_clock_gettime(). 1259 * 1260 * Returns: 1261 * 0 Success. @tp contains the resolution 1262 * -EINVAL @which_clock is not a valid clock ID 1263 * -EFAULT Copying the resolution to @tp faulted 1264 * -ENODEV Dynamic POSIX clock is not backed by a device 1265 * -EOPNOTSUPP Dynamic POSIX clock does not support getres() 1266 */ 1267 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1268 struct __kernel_timespec __user *, tp) 1269 { 1270 const struct k_clock *kc = clockid_to_kclock(which_clock); 1271 struct timespec64 rtn_tp; 1272 int error; 1273 1274 if (!kc) 1275 return -EINVAL; 1276 1277 error = kc->clock_getres(which_clock, &rtn_tp); 1278 1279 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1280 error = -EFAULT; 1281 1282 return error; 1283 } 1284 1285 #ifdef CONFIG_COMPAT_32BIT_TIME 1286 1287 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock, 1288 struct old_timespec32 __user *, tp) 1289 { 1290 const struct k_clock *kc = clockid_to_kclock(which_clock); 1291 struct timespec64 ts; 1292 1293 if (!kc || !kc->clock_set) 1294 return -EINVAL; 1295 1296 if (get_old_timespec32(&ts, tp)) 1297 return -EFAULT; 1298 1299 return kc->clock_set(which_clock, &ts); 1300 } 1301 1302 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock, 1303 struct old_timespec32 __user *, tp) 1304 { 1305 const struct k_clock *kc = clockid_to_kclock(which_clock); 1306 struct timespec64 ts; 1307 int err; 1308 1309 if (!kc) 1310 return -EINVAL; 1311 1312 err = kc->clock_get_timespec(which_clock, &ts); 1313 1314 if (!err && put_old_timespec32(&ts, tp)) 1315 err = -EFAULT; 1316 1317 return err; 1318 } 1319 1320 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock, 1321 struct old_timex32 __user *, utp) 1322 { 1323 struct __kernel_timex ktx; 1324 int err; 1325 1326 err = get_old_timex32(&ktx, utp); 1327 if (err) 1328 return err; 1329 1330 err = do_clock_adjtime(which_clock, &ktx); 1331 1332 if (err >= 0 && put_old_timex32(utp, &ktx)) 1333 return -EFAULT; 1334 1335 return err; 1336 } 1337 1338 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock, 1339 struct old_timespec32 __user *, tp) 1340 { 1341 const struct k_clock *kc = clockid_to_kclock(which_clock); 1342 struct timespec64 ts; 1343 int err; 1344 1345 if (!kc) 1346 return -EINVAL; 1347 1348 err = kc->clock_getres(which_clock, &ts); 1349 if (!err && tp && put_old_timespec32(&ts, tp)) 1350 return -EFAULT; 1351 1352 return err; 1353 } 1354 1355 #endif 1356 1357 /* 1358 * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI 1359 */ 1360 static int common_nsleep(const clockid_t which_clock, int flags, 1361 const struct timespec64 *rqtp) 1362 { 1363 ktime_t texp = timespec64_to_ktime(*rqtp); 1364 1365 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? 1366 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1367 which_clock); 1368 } 1369 1370 /* 1371 * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME 1372 * 1373 * Absolute nanosleeps for these clocks are time-namespace adjusted. 1374 */ 1375 static int common_nsleep_timens(const clockid_t which_clock, int flags, 1376 const struct timespec64 *rqtp) 1377 { 1378 ktime_t texp = timespec64_to_ktime(*rqtp); 1379 1380 if (flags & TIMER_ABSTIME) 1381 texp = timens_ktime_to_host(which_clock, texp); 1382 1383 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? 1384 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1385 which_clock); 1386 } 1387 1388 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1389 const struct __kernel_timespec __user *, rqtp, 1390 struct __kernel_timespec __user *, rmtp) 1391 { 1392 const struct k_clock *kc = clockid_to_kclock(which_clock); 1393 struct timespec64 t; 1394 1395 if (!kc) 1396 return -EINVAL; 1397 if (!kc->nsleep) 1398 return -EOPNOTSUPP; 1399 1400 if (get_timespec64(&t, rqtp)) 1401 return -EFAULT; 1402 1403 if (!timespec64_valid(&t)) 1404 return -EINVAL; 1405 if (flags & TIMER_ABSTIME) 1406 rmtp = NULL; 1407 current->restart_block.fn = do_no_restart_syscall; 1408 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1409 current->restart_block.nanosleep.rmtp = rmtp; 1410 1411 return kc->nsleep(which_clock, flags, &t); 1412 } 1413 1414 #ifdef CONFIG_COMPAT_32BIT_TIME 1415 1416 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags, 1417 struct old_timespec32 __user *, rqtp, 1418 struct old_timespec32 __user *, rmtp) 1419 { 1420 const struct k_clock *kc = clockid_to_kclock(which_clock); 1421 struct timespec64 t; 1422 1423 if (!kc) 1424 return -EINVAL; 1425 if (!kc->nsleep) 1426 return -EOPNOTSUPP; 1427 1428 if (get_old_timespec32(&t, rqtp)) 1429 return -EFAULT; 1430 1431 if (!timespec64_valid(&t)) 1432 return -EINVAL; 1433 if (flags & TIMER_ABSTIME) 1434 rmtp = NULL; 1435 current->restart_block.fn = do_no_restart_syscall; 1436 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1437 current->restart_block.nanosleep.compat_rmtp = rmtp; 1438 1439 return kc->nsleep(which_clock, flags, &t); 1440 } 1441 1442 #endif 1443 1444 static const struct k_clock clock_realtime = { 1445 .clock_getres = posix_get_hrtimer_res, 1446 .clock_get_timespec = posix_get_realtime_timespec, 1447 .clock_get_ktime = posix_get_realtime_ktime, 1448 .clock_set = posix_clock_realtime_set, 1449 .clock_adj = posix_clock_realtime_adj, 1450 .nsleep = common_nsleep, 1451 .timer_create = common_timer_create, 1452 .timer_set = common_timer_set, 1453 .timer_get = common_timer_get, 1454 .timer_del = common_timer_del, 1455 .timer_rearm = common_hrtimer_rearm, 1456 .timer_forward = common_hrtimer_forward, 1457 .timer_remaining = common_hrtimer_remaining, 1458 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1459 .timer_wait_running = common_timer_wait_running, 1460 .timer_arm = common_hrtimer_arm, 1461 }; 1462 1463 static const struct k_clock clock_monotonic = { 1464 .clock_getres = posix_get_hrtimer_res, 1465 .clock_get_timespec = posix_get_monotonic_timespec, 1466 .clock_get_ktime = posix_get_monotonic_ktime, 1467 .nsleep = common_nsleep_timens, 1468 .timer_create = common_timer_create, 1469 .timer_set = common_timer_set, 1470 .timer_get = common_timer_get, 1471 .timer_del = common_timer_del, 1472 .timer_rearm = common_hrtimer_rearm, 1473 .timer_forward = common_hrtimer_forward, 1474 .timer_remaining = common_hrtimer_remaining, 1475 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1476 .timer_wait_running = common_timer_wait_running, 1477 .timer_arm = common_hrtimer_arm, 1478 }; 1479 1480 static const struct k_clock clock_monotonic_raw = { 1481 .clock_getres = posix_get_hrtimer_res, 1482 .clock_get_timespec = posix_get_monotonic_raw, 1483 }; 1484 1485 static const struct k_clock clock_realtime_coarse = { 1486 .clock_getres = posix_get_coarse_res, 1487 .clock_get_timespec = posix_get_realtime_coarse, 1488 }; 1489 1490 static const struct k_clock clock_monotonic_coarse = { 1491 .clock_getres = posix_get_coarse_res, 1492 .clock_get_timespec = posix_get_monotonic_coarse, 1493 }; 1494 1495 static const struct k_clock clock_tai = { 1496 .clock_getres = posix_get_hrtimer_res, 1497 .clock_get_ktime = posix_get_tai_ktime, 1498 .clock_get_timespec = posix_get_tai_timespec, 1499 .nsleep = common_nsleep, 1500 .timer_create = common_timer_create, 1501 .timer_set = common_timer_set, 1502 .timer_get = common_timer_get, 1503 .timer_del = common_timer_del, 1504 .timer_rearm = common_hrtimer_rearm, 1505 .timer_forward = common_hrtimer_forward, 1506 .timer_remaining = common_hrtimer_remaining, 1507 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1508 .timer_wait_running = common_timer_wait_running, 1509 .timer_arm = common_hrtimer_arm, 1510 }; 1511 1512 static const struct k_clock clock_boottime = { 1513 .clock_getres = posix_get_hrtimer_res, 1514 .clock_get_ktime = posix_get_boottime_ktime, 1515 .clock_get_timespec = posix_get_boottime_timespec, 1516 .nsleep = common_nsleep_timens, 1517 .timer_create = common_timer_create, 1518 .timer_set = common_timer_set, 1519 .timer_get = common_timer_get, 1520 .timer_del = common_timer_del, 1521 .timer_rearm = common_hrtimer_rearm, 1522 .timer_forward = common_hrtimer_forward, 1523 .timer_remaining = common_hrtimer_remaining, 1524 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1525 .timer_wait_running = common_timer_wait_running, 1526 .timer_arm = common_hrtimer_arm, 1527 }; 1528 1529 static const struct k_clock * const posix_clocks[] = { 1530 [CLOCK_REALTIME] = &clock_realtime, 1531 [CLOCK_MONOTONIC] = &clock_monotonic, 1532 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1533 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1534 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1535 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1536 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1537 [CLOCK_BOOTTIME] = &clock_boottime, 1538 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1539 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1540 [CLOCK_TAI] = &clock_tai, 1541 }; 1542 1543 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1544 { 1545 clockid_t idx = id; 1546 1547 if (id < 0) { 1548 return (id & CLOCKFD_MASK) == CLOCKFD ? 1549 &clock_posix_dynamic : &clock_posix_cpu; 1550 } 1551 1552 if (id >= ARRAY_SIZE(posix_clocks)) 1553 return NULL; 1554 1555 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; 1556 } 1557