1 /* 2 * linux/kernel/posix-timers.c 3 * 4 * 5 * 2002-10-15 Posix Clocks & timers 6 * by George Anzinger george@mvista.com 7 * 8 * Copyright (C) 2002 2003 by MontaVista Software. 9 * 10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 11 * Copyright (C) 2004 Boris Hu 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA 28 */ 29 30 /* These are all the functions necessary to implement 31 * POSIX clocks & timers 32 */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/slab.h> 36 #include <linux/time.h> 37 #include <linux/mutex.h> 38 39 #include <asm/uaccess.h> 40 #include <linux/list.h> 41 #include <linux/init.h> 42 #include <linux/compiler.h> 43 #include <linux/hash.h> 44 #include <linux/posix-clock.h> 45 #include <linux/posix-timers.h> 46 #include <linux/syscalls.h> 47 #include <linux/wait.h> 48 #include <linux/workqueue.h> 49 #include <linux/export.h> 50 #include <linux/hashtable.h> 51 52 /* 53 * Management arrays for POSIX timers. Timers are now kept in static hash table 54 * with 512 entries. 55 * Timer ids are allocated by local routine, which selects proper hash head by 56 * key, constructed from current->signal address and per signal struct counter. 57 * This keeps timer ids unique per process, but now they can intersect between 58 * processes. 59 */ 60 61 /* 62 * Lets keep our timers in a slab cache :-) 63 */ 64 static struct kmem_cache *posix_timers_cache; 65 66 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 67 static DEFINE_SPINLOCK(hash_lock); 68 69 /* 70 * we assume that the new SIGEV_THREAD_ID shares no bits with the other 71 * SIGEV values. Here we put out an error if this assumption fails. 72 */ 73 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 74 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 75 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 76 #endif 77 78 /* 79 * parisc wants ENOTSUP instead of EOPNOTSUPP 80 */ 81 #ifndef ENOTSUP 82 # define ENANOSLEEP_NOTSUP EOPNOTSUPP 83 #else 84 # define ENANOSLEEP_NOTSUP ENOTSUP 85 #endif 86 87 /* 88 * The timer ID is turned into a timer address by idr_find(). 89 * Verifying a valid ID consists of: 90 * 91 * a) checking that idr_find() returns other than -1. 92 * b) checking that the timer id matches the one in the timer itself. 93 * c) that the timer owner is in the callers thread group. 94 */ 95 96 /* 97 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us 98 * to implement others. This structure defines the various 99 * clocks. 100 * 101 * RESOLUTION: Clock resolution is used to round up timer and interval 102 * times, NOT to report clock times, which are reported with as 103 * much resolution as the system can muster. In some cases this 104 * resolution may depend on the underlying clock hardware and 105 * may not be quantifiable until run time, and only then is the 106 * necessary code is written. The standard says we should say 107 * something about this issue in the documentation... 108 * 109 * FUNCTIONS: The CLOCKs structure defines possible functions to 110 * handle various clock functions. 111 * 112 * The standard POSIX timer management code assumes the 113 * following: 1.) The k_itimer struct (sched.h) is used for 114 * the timer. 2.) The list, it_lock, it_clock, it_id and 115 * it_pid fields are not modified by timer code. 116 * 117 * Permissions: It is assumed that the clock_settime() function defined 118 * for each clock will take care of permission checks. Some 119 * clocks may be set able by any user (i.e. local process 120 * clocks) others not. Currently the only set able clock we 121 * have is CLOCK_REALTIME and its high res counter part, both of 122 * which we beg off on and pass to do_sys_settimeofday(). 123 */ 124 125 static struct k_clock posix_clocks[MAX_CLOCKS]; 126 127 /* 128 * These ones are defined below. 129 */ 130 static int common_nsleep(const clockid_t, int flags, struct timespec *t, 131 struct timespec __user *rmtp); 132 static int common_timer_create(struct k_itimer *new_timer); 133 static void common_timer_get(struct k_itimer *, struct itimerspec *); 134 static int common_timer_set(struct k_itimer *, int, 135 struct itimerspec *, struct itimerspec *); 136 static int common_timer_del(struct k_itimer *timer); 137 138 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data); 139 140 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 141 142 #define lock_timer(tid, flags) \ 143 ({ struct k_itimer *__timr; \ 144 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 145 __timr; \ 146 }) 147 148 static int hash(struct signal_struct *sig, unsigned int nr) 149 { 150 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 151 } 152 153 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 154 struct signal_struct *sig, 155 timer_t id) 156 { 157 struct k_itimer *timer; 158 159 hlist_for_each_entry_rcu(timer, head, t_hash) { 160 if ((timer->it_signal == sig) && (timer->it_id == id)) 161 return timer; 162 } 163 return NULL; 164 } 165 166 static struct k_itimer *posix_timer_by_id(timer_t id) 167 { 168 struct signal_struct *sig = current->signal; 169 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 170 171 return __posix_timers_find(head, sig, id); 172 } 173 174 static int posix_timer_add(struct k_itimer *timer) 175 { 176 struct signal_struct *sig = current->signal; 177 int first_free_id = sig->posix_timer_id; 178 struct hlist_head *head; 179 int ret = -ENOENT; 180 181 do { 182 spin_lock(&hash_lock); 183 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; 184 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { 185 hlist_add_head_rcu(&timer->t_hash, head); 186 ret = sig->posix_timer_id; 187 } 188 if (++sig->posix_timer_id < 0) 189 sig->posix_timer_id = 0; 190 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) 191 /* Loop over all possible ids completed */ 192 ret = -EAGAIN; 193 spin_unlock(&hash_lock); 194 } while (ret == -ENOENT); 195 return ret; 196 } 197 198 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 199 { 200 spin_unlock_irqrestore(&timr->it_lock, flags); 201 } 202 203 /* Get clock_realtime */ 204 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp) 205 { 206 ktime_get_real_ts(tp); 207 return 0; 208 } 209 210 /* Set clock_realtime */ 211 static int posix_clock_realtime_set(const clockid_t which_clock, 212 const struct timespec *tp) 213 { 214 return do_sys_settimeofday(tp, NULL); 215 } 216 217 static int posix_clock_realtime_adj(const clockid_t which_clock, 218 struct timex *t) 219 { 220 return do_adjtimex(t); 221 } 222 223 /* 224 * Get monotonic time for posix timers 225 */ 226 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) 227 { 228 ktime_get_ts(tp); 229 return 0; 230 } 231 232 /* 233 * Get monotonic-raw time for posix timers 234 */ 235 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) 236 { 237 getrawmonotonic(tp); 238 return 0; 239 } 240 241 242 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) 243 { 244 *tp = current_kernel_time(); 245 return 0; 246 } 247 248 static int posix_get_monotonic_coarse(clockid_t which_clock, 249 struct timespec *tp) 250 { 251 *tp = get_monotonic_coarse(); 252 return 0; 253 } 254 255 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) 256 { 257 *tp = ktime_to_timespec(KTIME_LOW_RES); 258 return 0; 259 } 260 261 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp) 262 { 263 get_monotonic_boottime(tp); 264 return 0; 265 } 266 267 static int posix_get_tai(clockid_t which_clock, struct timespec *tp) 268 { 269 timekeeping_clocktai(tp); 270 return 0; 271 } 272 273 /* 274 * Initialize everything, well, just everything in Posix clocks/timers ;) 275 */ 276 static __init int init_posix_timers(void) 277 { 278 struct k_clock clock_realtime = { 279 .clock_getres = hrtimer_get_res, 280 .clock_get = posix_clock_realtime_get, 281 .clock_set = posix_clock_realtime_set, 282 .clock_adj = posix_clock_realtime_adj, 283 .nsleep = common_nsleep, 284 .nsleep_restart = hrtimer_nanosleep_restart, 285 .timer_create = common_timer_create, 286 .timer_set = common_timer_set, 287 .timer_get = common_timer_get, 288 .timer_del = common_timer_del, 289 }; 290 struct k_clock clock_monotonic = { 291 .clock_getres = hrtimer_get_res, 292 .clock_get = posix_ktime_get_ts, 293 .nsleep = common_nsleep, 294 .nsleep_restart = hrtimer_nanosleep_restart, 295 .timer_create = common_timer_create, 296 .timer_set = common_timer_set, 297 .timer_get = common_timer_get, 298 .timer_del = common_timer_del, 299 }; 300 struct k_clock clock_monotonic_raw = { 301 .clock_getres = hrtimer_get_res, 302 .clock_get = posix_get_monotonic_raw, 303 }; 304 struct k_clock clock_realtime_coarse = { 305 .clock_getres = posix_get_coarse_res, 306 .clock_get = posix_get_realtime_coarse, 307 }; 308 struct k_clock clock_monotonic_coarse = { 309 .clock_getres = posix_get_coarse_res, 310 .clock_get = posix_get_monotonic_coarse, 311 }; 312 struct k_clock clock_tai = { 313 .clock_getres = hrtimer_get_res, 314 .clock_get = posix_get_tai, 315 .nsleep = common_nsleep, 316 .nsleep_restart = hrtimer_nanosleep_restart, 317 .timer_create = common_timer_create, 318 .timer_set = common_timer_set, 319 .timer_get = common_timer_get, 320 .timer_del = common_timer_del, 321 }; 322 struct k_clock clock_boottime = { 323 .clock_getres = hrtimer_get_res, 324 .clock_get = posix_get_boottime, 325 .nsleep = common_nsleep, 326 .nsleep_restart = hrtimer_nanosleep_restart, 327 .timer_create = common_timer_create, 328 .timer_set = common_timer_set, 329 .timer_get = common_timer_get, 330 .timer_del = common_timer_del, 331 }; 332 333 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime); 334 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic); 335 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); 336 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); 337 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); 338 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime); 339 posix_timers_register_clock(CLOCK_TAI, &clock_tai); 340 341 posix_timers_cache = kmem_cache_create("posix_timers_cache", 342 sizeof (struct k_itimer), 0, SLAB_PANIC, 343 NULL); 344 return 0; 345 } 346 347 __initcall(init_posix_timers); 348 349 static void schedule_next_timer(struct k_itimer *timr) 350 { 351 struct hrtimer *timer = &timr->it.real.timer; 352 353 if (timr->it.real.interval.tv64 == 0) 354 return; 355 356 timr->it_overrun += (unsigned int) hrtimer_forward(timer, 357 timer->base->get_time(), 358 timr->it.real.interval); 359 360 timr->it_overrun_last = timr->it_overrun; 361 timr->it_overrun = -1; 362 ++timr->it_requeue_pending; 363 hrtimer_restart(timer); 364 } 365 366 /* 367 * This function is exported for use by the signal deliver code. It is 368 * called just prior to the info block being released and passes that 369 * block to us. It's function is to update the overrun entry AND to 370 * restart the timer. It should only be called if the timer is to be 371 * restarted (i.e. we have flagged this in the sys_private entry of the 372 * info block). 373 * 374 * To protect against the timer going away while the interrupt is queued, 375 * we require that the it_requeue_pending flag be set. 376 */ 377 void do_schedule_next_timer(struct siginfo *info) 378 { 379 struct k_itimer *timr; 380 unsigned long flags; 381 382 timr = lock_timer(info->si_tid, &flags); 383 384 if (timr && timr->it_requeue_pending == info->si_sys_private) { 385 if (timr->it_clock < 0) 386 posix_cpu_timer_schedule(timr); 387 else 388 schedule_next_timer(timr); 389 390 info->si_overrun += timr->it_overrun_last; 391 } 392 393 if (timr) 394 unlock_timer(timr, flags); 395 } 396 397 int posix_timer_event(struct k_itimer *timr, int si_private) 398 { 399 struct task_struct *task; 400 int shared, ret = -1; 401 /* 402 * FIXME: if ->sigq is queued we can race with 403 * dequeue_signal()->do_schedule_next_timer(). 404 * 405 * If dequeue_signal() sees the "right" value of 406 * si_sys_private it calls do_schedule_next_timer(). 407 * We re-queue ->sigq and drop ->it_lock(). 408 * do_schedule_next_timer() locks the timer 409 * and re-schedules it while ->sigq is pending. 410 * Not really bad, but not that we want. 411 */ 412 timr->sigq->info.si_sys_private = si_private; 413 414 rcu_read_lock(); 415 task = pid_task(timr->it_pid, PIDTYPE_PID); 416 if (task) { 417 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); 418 ret = send_sigqueue(timr->sigq, task, shared); 419 } 420 rcu_read_unlock(); 421 /* If we failed to send the signal the timer stops. */ 422 return ret > 0; 423 } 424 EXPORT_SYMBOL_GPL(posix_timer_event); 425 426 /* 427 * This function gets called when a POSIX.1b interval timer expires. It 428 * is used as a callback from the kernel internal timer. The 429 * run_timer_list code ALWAYS calls with interrupts on. 430 431 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. 432 */ 433 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 434 { 435 struct k_itimer *timr; 436 unsigned long flags; 437 int si_private = 0; 438 enum hrtimer_restart ret = HRTIMER_NORESTART; 439 440 timr = container_of(timer, struct k_itimer, it.real.timer); 441 spin_lock_irqsave(&timr->it_lock, flags); 442 443 if (timr->it.real.interval.tv64 != 0) 444 si_private = ++timr->it_requeue_pending; 445 446 if (posix_timer_event(timr, si_private)) { 447 /* 448 * signal was not sent because of sig_ignor 449 * we will not get a call back to restart it AND 450 * it should be restarted. 451 */ 452 if (timr->it.real.interval.tv64 != 0) { 453 ktime_t now = hrtimer_cb_get_time(timer); 454 455 /* 456 * FIXME: What we really want, is to stop this 457 * timer completely and restart it in case the 458 * SIG_IGN is removed. This is a non trivial 459 * change which involves sighand locking 460 * (sigh !), which we don't want to do late in 461 * the release cycle. 462 * 463 * For now we just let timers with an interval 464 * less than a jiffie expire every jiffie to 465 * avoid softirq starvation in case of SIG_IGN 466 * and a very small interval, which would put 467 * the timer right back on the softirq pending 468 * list. By moving now ahead of time we trick 469 * hrtimer_forward() to expire the timer 470 * later, while we still maintain the overrun 471 * accuracy, but have some inconsistency in 472 * the timer_gettime() case. This is at least 473 * better than a starved softirq. A more 474 * complex fix which solves also another related 475 * inconsistency is already in the pipeline. 476 */ 477 #ifdef CONFIG_HIGH_RES_TIMERS 478 { 479 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ); 480 481 if (timr->it.real.interval.tv64 < kj.tv64) 482 now = ktime_add(now, kj); 483 } 484 #endif 485 timr->it_overrun += (unsigned int) 486 hrtimer_forward(timer, now, 487 timr->it.real.interval); 488 ret = HRTIMER_RESTART; 489 ++timr->it_requeue_pending; 490 } 491 } 492 493 unlock_timer(timr, flags); 494 return ret; 495 } 496 497 static struct pid *good_sigevent(sigevent_t * event) 498 { 499 struct task_struct *rtn = current->group_leader; 500 501 if ((event->sigev_notify & SIGEV_THREAD_ID ) && 502 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) || 503 !same_thread_group(rtn, current) || 504 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) 505 return NULL; 506 507 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && 508 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) 509 return NULL; 510 511 return task_pid(rtn); 512 } 513 514 void posix_timers_register_clock(const clockid_t clock_id, 515 struct k_clock *new_clock) 516 { 517 if ((unsigned) clock_id >= MAX_CLOCKS) { 518 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n", 519 clock_id); 520 return; 521 } 522 523 if (!new_clock->clock_get) { 524 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n", 525 clock_id); 526 return; 527 } 528 if (!new_clock->clock_getres) { 529 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n", 530 clock_id); 531 return; 532 } 533 534 posix_clocks[clock_id] = *new_clock; 535 } 536 EXPORT_SYMBOL_GPL(posix_timers_register_clock); 537 538 static struct k_itimer * alloc_posix_timer(void) 539 { 540 struct k_itimer *tmr; 541 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 542 if (!tmr) 543 return tmr; 544 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 545 kmem_cache_free(posix_timers_cache, tmr); 546 return NULL; 547 } 548 memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); 549 return tmr; 550 } 551 552 static void k_itimer_rcu_free(struct rcu_head *head) 553 { 554 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); 555 556 kmem_cache_free(posix_timers_cache, tmr); 557 } 558 559 #define IT_ID_SET 1 560 #define IT_ID_NOT_SET 0 561 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) 562 { 563 if (it_id_set) { 564 unsigned long flags; 565 spin_lock_irqsave(&hash_lock, flags); 566 hlist_del_rcu(&tmr->t_hash); 567 spin_unlock_irqrestore(&hash_lock, flags); 568 } 569 put_pid(tmr->it_pid); 570 sigqueue_free(tmr->sigq); 571 call_rcu(&tmr->it.rcu, k_itimer_rcu_free); 572 } 573 574 static struct k_clock *clockid_to_kclock(const clockid_t id) 575 { 576 if (id < 0) 577 return (id & CLOCKFD_MASK) == CLOCKFD ? 578 &clock_posix_dynamic : &clock_posix_cpu; 579 580 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres) 581 return NULL; 582 return &posix_clocks[id]; 583 } 584 585 static int common_timer_create(struct k_itimer *new_timer) 586 { 587 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 588 return 0; 589 } 590 591 /* Create a POSIX.1b interval timer. */ 592 593 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 594 struct sigevent __user *, timer_event_spec, 595 timer_t __user *, created_timer_id) 596 { 597 struct k_clock *kc = clockid_to_kclock(which_clock); 598 struct k_itimer *new_timer; 599 int error, new_timer_id; 600 sigevent_t event; 601 int it_id_set = IT_ID_NOT_SET; 602 603 if (!kc) 604 return -EINVAL; 605 if (!kc->timer_create) 606 return -EOPNOTSUPP; 607 608 new_timer = alloc_posix_timer(); 609 if (unlikely(!new_timer)) 610 return -EAGAIN; 611 612 spin_lock_init(&new_timer->it_lock); 613 new_timer_id = posix_timer_add(new_timer); 614 if (new_timer_id < 0) { 615 error = new_timer_id; 616 goto out; 617 } 618 619 it_id_set = IT_ID_SET; 620 new_timer->it_id = (timer_t) new_timer_id; 621 new_timer->it_clock = which_clock; 622 new_timer->it_overrun = -1; 623 624 if (timer_event_spec) { 625 if (copy_from_user(&event, timer_event_spec, sizeof (event))) { 626 error = -EFAULT; 627 goto out; 628 } 629 rcu_read_lock(); 630 new_timer->it_pid = get_pid(good_sigevent(&event)); 631 rcu_read_unlock(); 632 if (!new_timer->it_pid) { 633 error = -EINVAL; 634 goto out; 635 } 636 } else { 637 event.sigev_notify = SIGEV_SIGNAL; 638 event.sigev_signo = SIGALRM; 639 event.sigev_value.sival_int = new_timer->it_id; 640 new_timer->it_pid = get_pid(task_tgid(current)); 641 } 642 643 new_timer->it_sigev_notify = event.sigev_notify; 644 new_timer->sigq->info.si_signo = event.sigev_signo; 645 new_timer->sigq->info.si_value = event.sigev_value; 646 new_timer->sigq->info.si_tid = new_timer->it_id; 647 new_timer->sigq->info.si_code = SI_TIMER; 648 649 if (copy_to_user(created_timer_id, 650 &new_timer_id, sizeof (new_timer_id))) { 651 error = -EFAULT; 652 goto out; 653 } 654 655 error = kc->timer_create(new_timer); 656 if (error) 657 goto out; 658 659 spin_lock_irq(¤t->sighand->siglock); 660 new_timer->it_signal = current->signal; 661 list_add(&new_timer->list, ¤t->signal->posix_timers); 662 spin_unlock_irq(¤t->sighand->siglock); 663 664 return 0; 665 /* 666 * In the case of the timer belonging to another task, after 667 * the task is unlocked, the timer is owned by the other task 668 * and may cease to exist at any time. Don't use or modify 669 * new_timer after the unlock call. 670 */ 671 out: 672 release_posix_timer(new_timer, it_id_set); 673 return error; 674 } 675 676 /* 677 * Locking issues: We need to protect the result of the id look up until 678 * we get the timer locked down so it is not deleted under us. The 679 * removal is done under the idr spinlock so we use that here to bridge 680 * the find to the timer lock. To avoid a dead lock, the timer id MUST 681 * be release with out holding the timer lock. 682 */ 683 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 684 { 685 struct k_itimer *timr; 686 687 /* 688 * timer_t could be any type >= int and we want to make sure any 689 * @timer_id outside positive int range fails lookup. 690 */ 691 if ((unsigned long long)timer_id > INT_MAX) 692 return NULL; 693 694 rcu_read_lock(); 695 timr = posix_timer_by_id(timer_id); 696 if (timr) { 697 spin_lock_irqsave(&timr->it_lock, *flags); 698 if (timr->it_signal == current->signal) { 699 rcu_read_unlock(); 700 return timr; 701 } 702 spin_unlock_irqrestore(&timr->it_lock, *flags); 703 } 704 rcu_read_unlock(); 705 706 return NULL; 707 } 708 709 /* 710 * Get the time remaining on a POSIX.1b interval timer. This function 711 * is ALWAYS called with spin_lock_irq on the timer, thus it must not 712 * mess with irq. 713 * 714 * We have a couple of messes to clean up here. First there is the case 715 * of a timer that has a requeue pending. These timers should appear to 716 * be in the timer list with an expiry as if we were to requeue them 717 * now. 718 * 719 * The second issue is the SIGEV_NONE timer which may be active but is 720 * not really ever put in the timer list (to save system resources). 721 * This timer may be expired, and if so, we will do it here. Otherwise 722 * it is the same as a requeue pending timer WRT to what we should 723 * report. 724 */ 725 static void 726 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) 727 { 728 ktime_t now, remaining, iv; 729 struct hrtimer *timer = &timr->it.real.timer; 730 731 memset(cur_setting, 0, sizeof(struct itimerspec)); 732 733 iv = timr->it.real.interval; 734 735 /* interval timer ? */ 736 if (iv.tv64) 737 cur_setting->it_interval = ktime_to_timespec(iv); 738 else if (!hrtimer_active(timer) && 739 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) 740 return; 741 742 now = timer->base->get_time(); 743 744 /* 745 * When a requeue is pending or this is a SIGEV_NONE 746 * timer move the expiry time forward by intervals, so 747 * expiry is > now. 748 */ 749 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING || 750 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) 751 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv); 752 753 remaining = ktime_sub(hrtimer_get_expires(timer), now); 754 /* Return 0 only, when the timer is expired and not pending */ 755 if (remaining.tv64 <= 0) { 756 /* 757 * A single shot SIGEV_NONE timer must return 0, when 758 * it is expired ! 759 */ 760 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) 761 cur_setting->it_value.tv_nsec = 1; 762 } else 763 cur_setting->it_value = ktime_to_timespec(remaining); 764 } 765 766 /* Get the time remaining on a POSIX.1b interval timer. */ 767 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 768 struct itimerspec __user *, setting) 769 { 770 struct itimerspec cur_setting; 771 struct k_itimer *timr; 772 struct k_clock *kc; 773 unsigned long flags; 774 int ret = 0; 775 776 timr = lock_timer(timer_id, &flags); 777 if (!timr) 778 return -EINVAL; 779 780 kc = clockid_to_kclock(timr->it_clock); 781 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 782 ret = -EINVAL; 783 else 784 kc->timer_get(timr, &cur_setting); 785 786 unlock_timer(timr, flags); 787 788 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting))) 789 return -EFAULT; 790 791 return ret; 792 } 793 794 /* 795 * Get the number of overruns of a POSIX.1b interval timer. This is to 796 * be the overrun of the timer last delivered. At the same time we are 797 * accumulating overruns on the next timer. The overrun is frozen when 798 * the signal is delivered, either at the notify time (if the info block 799 * is not queued) or at the actual delivery time (as we are informed by 800 * the call back to do_schedule_next_timer(). So all we need to do is 801 * to pick up the frozen overrun. 802 */ 803 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 804 { 805 struct k_itimer *timr; 806 int overrun; 807 unsigned long flags; 808 809 timr = lock_timer(timer_id, &flags); 810 if (!timr) 811 return -EINVAL; 812 813 overrun = timr->it_overrun_last; 814 unlock_timer(timr, flags); 815 816 return overrun; 817 } 818 819 /* Set a POSIX.1b interval timer. */ 820 /* timr->it_lock is taken. */ 821 static int 822 common_timer_set(struct k_itimer *timr, int flags, 823 struct itimerspec *new_setting, struct itimerspec *old_setting) 824 { 825 struct hrtimer *timer = &timr->it.real.timer; 826 enum hrtimer_mode mode; 827 828 if (old_setting) 829 common_timer_get(timr, old_setting); 830 831 /* disable the timer */ 832 timr->it.real.interval.tv64 = 0; 833 /* 834 * careful here. If smp we could be in the "fire" routine which will 835 * be spinning as we hold the lock. But this is ONLY an SMP issue. 836 */ 837 if (hrtimer_try_to_cancel(timer) < 0) 838 return TIMER_RETRY; 839 840 timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 841 ~REQUEUE_PENDING; 842 timr->it_overrun_last = 0; 843 844 /* switch off the timer when it_value is zero */ 845 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 846 return 0; 847 848 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 849 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 850 timr->it.real.timer.function = posix_timer_fn; 851 852 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value)); 853 854 /* Convert interval */ 855 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); 856 857 /* SIGEV_NONE timers are not queued ! See common_timer_get */ 858 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) { 859 /* Setup correct expiry time for relative timers */ 860 if (mode == HRTIMER_MODE_REL) { 861 hrtimer_add_expires(timer, timer->base->get_time()); 862 } 863 return 0; 864 } 865 866 hrtimer_start_expires(timer, mode); 867 return 0; 868 } 869 870 /* Set a POSIX.1b interval timer */ 871 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 872 const struct itimerspec __user *, new_setting, 873 struct itimerspec __user *, old_setting) 874 { 875 struct k_itimer *timr; 876 struct itimerspec new_spec, old_spec; 877 int error = 0; 878 unsigned long flag; 879 struct itimerspec *rtn = old_setting ? &old_spec : NULL; 880 struct k_clock *kc; 881 882 if (!new_setting) 883 return -EINVAL; 884 885 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) 886 return -EFAULT; 887 888 if (!timespec_valid(&new_spec.it_interval) || 889 !timespec_valid(&new_spec.it_value)) 890 return -EINVAL; 891 retry: 892 timr = lock_timer(timer_id, &flag); 893 if (!timr) 894 return -EINVAL; 895 896 kc = clockid_to_kclock(timr->it_clock); 897 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 898 error = -EINVAL; 899 else 900 error = kc->timer_set(timr, flags, &new_spec, rtn); 901 902 unlock_timer(timr, flag); 903 if (error == TIMER_RETRY) { 904 rtn = NULL; // We already got the old time... 905 goto retry; 906 } 907 908 if (old_setting && !error && 909 copy_to_user(old_setting, &old_spec, sizeof (old_spec))) 910 error = -EFAULT; 911 912 return error; 913 } 914 915 static int common_timer_del(struct k_itimer *timer) 916 { 917 timer->it.real.interval.tv64 = 0; 918 919 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) 920 return TIMER_RETRY; 921 return 0; 922 } 923 924 static inline int timer_delete_hook(struct k_itimer *timer) 925 { 926 struct k_clock *kc = clockid_to_kclock(timer->it_clock); 927 928 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 929 return -EINVAL; 930 return kc->timer_del(timer); 931 } 932 933 /* Delete a POSIX.1b interval timer. */ 934 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 935 { 936 struct k_itimer *timer; 937 unsigned long flags; 938 939 retry_delete: 940 timer = lock_timer(timer_id, &flags); 941 if (!timer) 942 return -EINVAL; 943 944 if (timer_delete_hook(timer) == TIMER_RETRY) { 945 unlock_timer(timer, flags); 946 goto retry_delete; 947 } 948 949 spin_lock(¤t->sighand->siglock); 950 list_del(&timer->list); 951 spin_unlock(¤t->sighand->siglock); 952 /* 953 * This keeps any tasks waiting on the spin lock from thinking 954 * they got something (see the lock code above). 955 */ 956 timer->it_signal = NULL; 957 958 unlock_timer(timer, flags); 959 release_posix_timer(timer, IT_ID_SET); 960 return 0; 961 } 962 963 /* 964 * return timer owned by the process, used by exit_itimers 965 */ 966 static void itimer_delete(struct k_itimer *timer) 967 { 968 unsigned long flags; 969 970 retry_delete: 971 spin_lock_irqsave(&timer->it_lock, flags); 972 973 if (timer_delete_hook(timer) == TIMER_RETRY) { 974 unlock_timer(timer, flags); 975 goto retry_delete; 976 } 977 list_del(&timer->list); 978 /* 979 * This keeps any tasks waiting on the spin lock from thinking 980 * they got something (see the lock code above). 981 */ 982 timer->it_signal = NULL; 983 984 unlock_timer(timer, flags); 985 release_posix_timer(timer, IT_ID_SET); 986 } 987 988 /* 989 * This is called by do_exit or de_thread, only when there are no more 990 * references to the shared signal_struct. 991 */ 992 void exit_itimers(struct signal_struct *sig) 993 { 994 struct k_itimer *tmr; 995 996 while (!list_empty(&sig->posix_timers)) { 997 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); 998 itimer_delete(tmr); 999 } 1000 } 1001 1002 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1003 const struct timespec __user *, tp) 1004 { 1005 struct k_clock *kc = clockid_to_kclock(which_clock); 1006 struct timespec new_tp; 1007 1008 if (!kc || !kc->clock_set) 1009 return -EINVAL; 1010 1011 if (copy_from_user(&new_tp, tp, sizeof (*tp))) 1012 return -EFAULT; 1013 1014 return kc->clock_set(which_clock, &new_tp); 1015 } 1016 1017 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1018 struct timespec __user *,tp) 1019 { 1020 struct k_clock *kc = clockid_to_kclock(which_clock); 1021 struct timespec kernel_tp; 1022 int error; 1023 1024 if (!kc) 1025 return -EINVAL; 1026 1027 error = kc->clock_get(which_clock, &kernel_tp); 1028 1029 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) 1030 error = -EFAULT; 1031 1032 return error; 1033 } 1034 1035 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1036 struct timex __user *, utx) 1037 { 1038 struct k_clock *kc = clockid_to_kclock(which_clock); 1039 struct timex ktx; 1040 int err; 1041 1042 if (!kc) 1043 return -EINVAL; 1044 if (!kc->clock_adj) 1045 return -EOPNOTSUPP; 1046 1047 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1048 return -EFAULT; 1049 1050 err = kc->clock_adj(which_clock, &ktx); 1051 1052 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1053 return -EFAULT; 1054 1055 return err; 1056 } 1057 1058 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1059 struct timespec __user *, tp) 1060 { 1061 struct k_clock *kc = clockid_to_kclock(which_clock); 1062 struct timespec rtn_tp; 1063 int error; 1064 1065 if (!kc) 1066 return -EINVAL; 1067 1068 error = kc->clock_getres(which_clock, &rtn_tp); 1069 1070 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) 1071 error = -EFAULT; 1072 1073 return error; 1074 } 1075 1076 /* 1077 * nanosleep for monotonic and realtime clocks 1078 */ 1079 static int common_nsleep(const clockid_t which_clock, int flags, 1080 struct timespec *tsave, struct timespec __user *rmtp) 1081 { 1082 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ? 1083 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1084 which_clock); 1085 } 1086 1087 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1088 const struct timespec __user *, rqtp, 1089 struct timespec __user *, rmtp) 1090 { 1091 struct k_clock *kc = clockid_to_kclock(which_clock); 1092 struct timespec t; 1093 1094 if (!kc) 1095 return -EINVAL; 1096 if (!kc->nsleep) 1097 return -ENANOSLEEP_NOTSUP; 1098 1099 if (copy_from_user(&t, rqtp, sizeof (struct timespec))) 1100 return -EFAULT; 1101 1102 if (!timespec_valid(&t)) 1103 return -EINVAL; 1104 1105 return kc->nsleep(which_clock, flags, &t, rmtp); 1106 } 1107 1108 /* 1109 * This will restart clock_nanosleep. This is required only by 1110 * compat_clock_nanosleep_restart for now. 1111 */ 1112 long clock_nanosleep_restart(struct restart_block *restart_block) 1113 { 1114 clockid_t which_clock = restart_block->nanosleep.clockid; 1115 struct k_clock *kc = clockid_to_kclock(which_clock); 1116 1117 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart)) 1118 return -EINVAL; 1119 1120 return kc->nsleep_restart(restart_block); 1121 } 1122