xref: /linux/kernel/time/posix-timers.c (revision 68d3de7fc49c326205811a23d0a146feed0d4fee)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * 2002-10-15  Posix Clocks & timers
4  *                           by George Anzinger george@mvista.com
5  *			     Copyright (C) 2002 2003 by MontaVista Software.
6  *
7  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8  *			     Copyright (C) 2004 Boris Hu
9  *
10  * These are all the functions necessary to implement POSIX clocks & timers
11  */
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/slab.h>
15 #include <linux/time.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/task.h>
18 
19 #include <linux/uaccess.h>
20 #include <linux/list.h>
21 #include <linux/init.h>
22 #include <linux/compiler.h>
23 #include <linux/hash.h>
24 #include <linux/posix-clock.h>
25 #include <linux/posix-timers.h>
26 #include <linux/syscalls.h>
27 #include <linux/wait.h>
28 #include <linux/workqueue.h>
29 #include <linux/export.h>
30 #include <linux/hashtable.h>
31 #include <linux/compat.h>
32 #include <linux/nospec.h>
33 #include <linux/time_namespace.h>
34 
35 #include "timekeeping.h"
36 #include "posix-timers.h"
37 
38 static struct kmem_cache *posix_timers_cache;
39 
40 /*
41  * Timers are managed in a hash table for lockless lookup. The hash key is
42  * constructed from current::signal and the timer ID and the timer is
43  * matched against current::signal and the timer ID when walking the hash
44  * bucket list.
45  *
46  * This allows checkpoint/restore to reconstruct the exact timer IDs for
47  * a process.
48  */
49 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
50 static DEFINE_SPINLOCK(hash_lock);
51 
52 static const struct k_clock * const posix_clocks[];
53 static const struct k_clock *clockid_to_kclock(const clockid_t id);
54 static const struct k_clock clock_realtime, clock_monotonic;
55 
56 /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
57 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
58 			~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
59 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
60 #endif
61 
62 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
63 
64 #define lock_timer(tid, flags)						   \
65 ({	struct k_itimer *__timr;					   \
66 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
67 	__timr;								   \
68 })
69 
70 static int hash(struct signal_struct *sig, unsigned int nr)
71 {
72 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
73 }
74 
75 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
76 					    struct signal_struct *sig,
77 					    timer_t id)
78 {
79 	struct k_itimer *timer;
80 
81 	hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) {
82 		/* timer->it_signal can be set concurrently */
83 		if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
84 			return timer;
85 	}
86 	return NULL;
87 }
88 
89 static struct k_itimer *posix_timer_by_id(timer_t id)
90 {
91 	struct signal_struct *sig = current->signal;
92 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
93 
94 	return __posix_timers_find(head, sig, id);
95 }
96 
97 static int posix_timer_add(struct k_itimer *timer)
98 {
99 	struct signal_struct *sig = current->signal;
100 	struct hlist_head *head;
101 	unsigned int cnt, id;
102 
103 	/*
104 	 * FIXME: Replace this by a per signal struct xarray once there is
105 	 * a plan to handle the resulting CRIU regression gracefully.
106 	 */
107 	for (cnt = 0; cnt <= INT_MAX; cnt++) {
108 		spin_lock(&hash_lock);
109 		id = sig->next_posix_timer_id;
110 
111 		/* Write the next ID back. Clamp it to the positive space */
112 		sig->next_posix_timer_id = (id + 1) & INT_MAX;
113 
114 		head = &posix_timers_hashtable[hash(sig, id)];
115 		if (!__posix_timers_find(head, sig, id)) {
116 			hlist_add_head_rcu(&timer->t_hash, head);
117 			spin_unlock(&hash_lock);
118 			return id;
119 		}
120 		spin_unlock(&hash_lock);
121 	}
122 	/* POSIX return code when no timer ID could be allocated */
123 	return -EAGAIN;
124 }
125 
126 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
127 {
128 	spin_unlock_irqrestore(&timr->it_lock, flags);
129 }
130 
131 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
132 {
133 	ktime_get_real_ts64(tp);
134 	return 0;
135 }
136 
137 static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
138 {
139 	return ktime_get_real();
140 }
141 
142 static int posix_clock_realtime_set(const clockid_t which_clock,
143 				    const struct timespec64 *tp)
144 {
145 	return do_sys_settimeofday64(tp, NULL);
146 }
147 
148 static int posix_clock_realtime_adj(const clockid_t which_clock,
149 				    struct __kernel_timex *t)
150 {
151 	return do_adjtimex(t);
152 }
153 
154 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
155 {
156 	ktime_get_ts64(tp);
157 	timens_add_monotonic(tp);
158 	return 0;
159 }
160 
161 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
162 {
163 	return ktime_get();
164 }
165 
166 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
167 {
168 	ktime_get_raw_ts64(tp);
169 	timens_add_monotonic(tp);
170 	return 0;
171 }
172 
173 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
174 {
175 	ktime_get_coarse_real_ts64(tp);
176 	return 0;
177 }
178 
179 static int posix_get_monotonic_coarse(clockid_t which_clock,
180 						struct timespec64 *tp)
181 {
182 	ktime_get_coarse_ts64(tp);
183 	timens_add_monotonic(tp);
184 	return 0;
185 }
186 
187 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
188 {
189 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
190 	return 0;
191 }
192 
193 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
194 {
195 	ktime_get_boottime_ts64(tp);
196 	timens_add_boottime(tp);
197 	return 0;
198 }
199 
200 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
201 {
202 	return ktime_get_boottime();
203 }
204 
205 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
206 {
207 	ktime_get_clocktai_ts64(tp);
208 	return 0;
209 }
210 
211 static ktime_t posix_get_tai_ktime(clockid_t which_clock)
212 {
213 	return ktime_get_clocktai();
214 }
215 
216 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
217 {
218 	tp->tv_sec = 0;
219 	tp->tv_nsec = hrtimer_resolution;
220 	return 0;
221 }
222 
223 static __init int init_posix_timers(void)
224 {
225 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
226 					sizeof(struct k_itimer), 0,
227 					SLAB_PANIC | SLAB_ACCOUNT, NULL);
228 	return 0;
229 }
230 __initcall(init_posix_timers);
231 
232 /*
233  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
234  * are of type int. Clamp the overrun value to INT_MAX
235  */
236 static inline int timer_overrun_to_int(struct k_itimer *timr)
237 {
238 	if (timr->it_overrun_last > (s64)INT_MAX)
239 		return INT_MAX;
240 
241 	return (int)timr->it_overrun_last;
242 }
243 
244 static void common_hrtimer_rearm(struct k_itimer *timr)
245 {
246 	struct hrtimer *timer = &timr->it.real.timer;
247 
248 	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
249 					    timr->it_interval);
250 	hrtimer_restart(timer);
251 }
252 
253 static bool __posixtimer_deliver_signal(struct kernel_siginfo *info, struct k_itimer *timr)
254 {
255 	guard(spinlock)(&timr->it_lock);
256 
257 	/*
258 	 * Check if the timer is still alive or whether it got modified
259 	 * since the signal was queued. In either case, don't rearm and
260 	 * drop the signal.
261 	 */
262 	if (timr->it_signal_seq != timr->it_sigqueue_seq || WARN_ON_ONCE(!timr->it_signal))
263 		return false;
264 
265 	if (!timr->it_interval || WARN_ON_ONCE(timr->it_status != POSIX_TIMER_REQUEUE_PENDING))
266 		return true;
267 
268 	timr->kclock->timer_rearm(timr);
269 	timr->it_status = POSIX_TIMER_ARMED;
270 	timr->it_overrun_last = timr->it_overrun;
271 	timr->it_overrun = -1LL;
272 	++timr->it_signal_seq;
273 	info->si_overrun = timer_overrun_to_int(timr);
274 	return true;
275 }
276 
277 /*
278  * This function is called from the signal delivery code. It decides
279  * whether the signal should be dropped and rearms interval timers.  The
280  * timer can be unconditionally accessed as there is a reference held on
281  * it.
282  */
283 bool posixtimer_deliver_signal(struct kernel_siginfo *info, struct sigqueue *timer_sigq)
284 {
285 	struct k_itimer *timr = container_of(timer_sigq, struct k_itimer, sigq);
286 	bool ret;
287 
288 	/*
289 	 * Release siglock to ensure proper locking order versus
290 	 * timr::it_lock. Keep interrupts disabled.
291 	 */
292 	spin_unlock(&current->sighand->siglock);
293 
294 	ret = __posixtimer_deliver_signal(info, timr);
295 
296 	/* Drop the reference which was acquired when the signal was queued */
297 	posixtimer_putref(timr);
298 
299 	spin_lock(&current->sighand->siglock);
300 	return ret;
301 }
302 
303 void posix_timer_queue_signal(struct k_itimer *timr)
304 {
305 	lockdep_assert_held(&timr->it_lock);
306 
307 	timr->it_status = timr->it_interval ? POSIX_TIMER_REQUEUE_PENDING : POSIX_TIMER_DISARMED;
308 	posixtimer_send_sigqueue(timr);
309 }
310 
311 /*
312  * This function gets called when a POSIX.1b interval timer expires from
313  * the HRTIMER interrupt (soft interrupt on RT kernels).
314  *
315  * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
316  * based timers.
317  */
318 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
319 {
320 	struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer);
321 
322 	guard(spinlock_irqsave)(&timr->it_lock);
323 	posix_timer_queue_signal(timr);
324 	return HRTIMER_NORESTART;
325 }
326 
327 static struct pid *good_sigevent(sigevent_t * event)
328 {
329 	struct pid *pid = task_tgid(current);
330 	struct task_struct *rtn;
331 
332 	switch (event->sigev_notify) {
333 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
334 		pid = find_vpid(event->sigev_notify_thread_id);
335 		rtn = pid_task(pid, PIDTYPE_PID);
336 		if (!rtn || !same_thread_group(rtn, current))
337 			return NULL;
338 		fallthrough;
339 	case SIGEV_SIGNAL:
340 	case SIGEV_THREAD:
341 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
342 			return NULL;
343 		fallthrough;
344 	case SIGEV_NONE:
345 		return pid;
346 	default:
347 		return NULL;
348 	}
349 }
350 
351 static struct k_itimer *alloc_posix_timer(void)
352 {
353 	struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
354 
355 	if (!tmr)
356 		return tmr;
357 
358 	if (unlikely(!posixtimer_init_sigqueue(&tmr->sigq))) {
359 		kmem_cache_free(posix_timers_cache, tmr);
360 		return NULL;
361 	}
362 	rcuref_init(&tmr->rcuref, 1);
363 	return tmr;
364 }
365 
366 void posixtimer_free_timer(struct k_itimer *tmr)
367 {
368 	put_pid(tmr->it_pid);
369 	if (tmr->sigq.ucounts)
370 		dec_rlimit_put_ucounts(tmr->sigq.ucounts, UCOUNT_RLIMIT_SIGPENDING);
371 	kfree_rcu(tmr, rcu);
372 }
373 
374 static void posix_timer_unhash_and_free(struct k_itimer *tmr)
375 {
376 	spin_lock(&hash_lock);
377 	hlist_del_rcu(&tmr->t_hash);
378 	spin_unlock(&hash_lock);
379 	posixtimer_putref(tmr);
380 }
381 
382 static int common_timer_create(struct k_itimer *new_timer)
383 {
384 	hrtimer_setup(&new_timer->it.real.timer, posix_timer_fn, new_timer->it_clock, 0);
385 	return 0;
386 }
387 
388 /* Create a POSIX.1b interval timer. */
389 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
390 			   timer_t __user *created_timer_id)
391 {
392 	const struct k_clock *kc = clockid_to_kclock(which_clock);
393 	struct k_itimer *new_timer;
394 	int error, new_timer_id;
395 
396 	if (!kc)
397 		return -EINVAL;
398 	if (!kc->timer_create)
399 		return -EOPNOTSUPP;
400 
401 	new_timer = alloc_posix_timer();
402 	if (unlikely(!new_timer))
403 		return -EAGAIN;
404 
405 	spin_lock_init(&new_timer->it_lock);
406 
407 	/*
408 	 * Add the timer to the hash table. The timer is not yet valid
409 	 * because new_timer::it_signal is still NULL. The timer id is also
410 	 * not yet visible to user space.
411 	 */
412 	new_timer_id = posix_timer_add(new_timer);
413 	if (new_timer_id < 0) {
414 		posixtimer_free_timer(new_timer);
415 		return new_timer_id;
416 	}
417 
418 	new_timer->it_id = (timer_t) new_timer_id;
419 	new_timer->it_clock = which_clock;
420 	new_timer->kclock = kc;
421 	new_timer->it_overrun = -1LL;
422 
423 	if (event) {
424 		rcu_read_lock();
425 		new_timer->it_pid = get_pid(good_sigevent(event));
426 		rcu_read_unlock();
427 		if (!new_timer->it_pid) {
428 			error = -EINVAL;
429 			goto out;
430 		}
431 		new_timer->it_sigev_notify     = event->sigev_notify;
432 		new_timer->sigq.info.si_signo = event->sigev_signo;
433 		new_timer->sigq.info.si_value = event->sigev_value;
434 	} else {
435 		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
436 		new_timer->sigq.info.si_signo = SIGALRM;
437 		memset(&new_timer->sigq.info.si_value, 0, sizeof(sigval_t));
438 		new_timer->sigq.info.si_value.sival_int = new_timer->it_id;
439 		new_timer->it_pid = get_pid(task_tgid(current));
440 	}
441 
442 	if (new_timer->it_sigev_notify & SIGEV_THREAD_ID)
443 		new_timer->it_pid_type = PIDTYPE_PID;
444 	else
445 		new_timer->it_pid_type = PIDTYPE_TGID;
446 
447 	new_timer->sigq.info.si_tid = new_timer->it_id;
448 	new_timer->sigq.info.si_code = SI_TIMER;
449 
450 	if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
451 		error = -EFAULT;
452 		goto out;
453 	}
454 	/*
455 	 * After succesful copy out, the timer ID is visible to user space
456 	 * now but not yet valid because new_timer::signal is still NULL.
457 	 *
458 	 * Complete the initialization with the clock specific create
459 	 * callback.
460 	 */
461 	error = kc->timer_create(new_timer);
462 	if (error)
463 		goto out;
464 
465 	spin_lock_irq(&current->sighand->siglock);
466 	/* This makes the timer valid in the hash table */
467 	WRITE_ONCE(new_timer->it_signal, current->signal);
468 	hlist_add_head(&new_timer->list, &current->signal->posix_timers);
469 	spin_unlock_irq(&current->sighand->siglock);
470 	/*
471 	 * After unlocking sighand::siglock @new_timer is subject to
472 	 * concurrent removal and cannot be touched anymore
473 	 */
474 	return 0;
475 out:
476 	posix_timer_unhash_and_free(new_timer);
477 	return error;
478 }
479 
480 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
481 		struct sigevent __user *, timer_event_spec,
482 		timer_t __user *, created_timer_id)
483 {
484 	if (timer_event_spec) {
485 		sigevent_t event;
486 
487 		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
488 			return -EFAULT;
489 		return do_timer_create(which_clock, &event, created_timer_id);
490 	}
491 	return do_timer_create(which_clock, NULL, created_timer_id);
492 }
493 
494 #ifdef CONFIG_COMPAT
495 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
496 		       struct compat_sigevent __user *, timer_event_spec,
497 		       timer_t __user *, created_timer_id)
498 {
499 	if (timer_event_spec) {
500 		sigevent_t event;
501 
502 		if (get_compat_sigevent(&event, timer_event_spec))
503 			return -EFAULT;
504 		return do_timer_create(which_clock, &event, created_timer_id);
505 	}
506 	return do_timer_create(which_clock, NULL, created_timer_id);
507 }
508 #endif
509 
510 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
511 {
512 	struct k_itimer *timr;
513 
514 	/*
515 	 * timer_t could be any type >= int and we want to make sure any
516 	 * @timer_id outside positive int range fails lookup.
517 	 */
518 	if ((unsigned long long)timer_id > INT_MAX)
519 		return NULL;
520 
521 	/*
522 	 * The hash lookup and the timers are RCU protected.
523 	 *
524 	 * Timers are added to the hash in invalid state where
525 	 * timr::it_signal == NULL. timer::it_signal is only set after the
526 	 * rest of the initialization succeeded.
527 	 *
528 	 * Timer destruction happens in steps:
529 	 *  1) Set timr::it_signal to NULL with timr::it_lock held
530 	 *  2) Release timr::it_lock
531 	 *  3) Remove from the hash under hash_lock
532 	 *  4) Put the reference count.
533 	 *
534 	 * The reference count might not drop to zero if timr::sigq is
535 	 * queued. In that case the signal delivery or flush will put the
536 	 * last reference count.
537 	 *
538 	 * When the reference count reaches zero, the timer is scheduled
539 	 * for RCU removal after the grace period.
540 	 *
541 	 * Holding rcu_read_lock() across the lookup ensures that
542 	 * the timer cannot be freed.
543 	 *
544 	 * The lookup validates locklessly that timr::it_signal ==
545 	 * current::it_signal and timr::it_id == @timer_id. timr::it_id
546 	 * can't change, but timr::it_signal becomes NULL during
547 	 * destruction.
548 	 */
549 	rcu_read_lock();
550 	timr = posix_timer_by_id(timer_id);
551 	if (timr) {
552 		spin_lock_irqsave(&timr->it_lock, *flags);
553 		/*
554 		 * Validate under timr::it_lock that timr::it_signal is
555 		 * still valid. Pairs with #1 above.
556 		 */
557 		if (timr->it_signal == current->signal) {
558 			rcu_read_unlock();
559 			return timr;
560 		}
561 		spin_unlock_irqrestore(&timr->it_lock, *flags);
562 	}
563 	rcu_read_unlock();
564 
565 	return NULL;
566 }
567 
568 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
569 {
570 	struct hrtimer *timer = &timr->it.real.timer;
571 
572 	return __hrtimer_expires_remaining_adjusted(timer, now);
573 }
574 
575 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
576 {
577 	struct hrtimer *timer = &timr->it.real.timer;
578 
579 	return hrtimer_forward(timer, now, timr->it_interval);
580 }
581 
582 /*
583  * Get the time remaining on a POSIX.1b interval timer.
584  *
585  * Two issues to handle here:
586  *
587  *  1) The timer has a requeue pending. The return value must appear as
588  *     if the timer has been requeued right now.
589  *
590  *  2) The timer is a SIGEV_NONE timer. These timers are never enqueued
591  *     into the hrtimer queue and therefore never expired. Emulate expiry
592  *     here taking #1 into account.
593  */
594 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
595 {
596 	const struct k_clock *kc = timr->kclock;
597 	ktime_t now, remaining, iv;
598 	bool sig_none;
599 
600 	sig_none = timr->it_sigev_notify == SIGEV_NONE;
601 	iv = timr->it_interval;
602 
603 	/* interval timer ? */
604 	if (iv) {
605 		cur_setting->it_interval = ktime_to_timespec64(iv);
606 	} else if (timr->it_status == POSIX_TIMER_DISARMED) {
607 		/*
608 		 * SIGEV_NONE oneshot timers are never queued and therefore
609 		 * timr->it_status is always DISARMED. The check below
610 		 * vs. remaining time will handle this case.
611 		 *
612 		 * For all other timers there is nothing to update here, so
613 		 * return.
614 		 */
615 		if (!sig_none)
616 			return;
617 	}
618 
619 	now = kc->clock_get_ktime(timr->it_clock);
620 
621 	/*
622 	 * If this is an interval timer and either has requeue pending or
623 	 * is a SIGEV_NONE timer move the expiry time forward by intervals,
624 	 * so expiry is > now.
625 	 */
626 	if (iv && timr->it_status != POSIX_TIMER_ARMED)
627 		timr->it_overrun += kc->timer_forward(timr, now);
628 
629 	remaining = kc->timer_remaining(timr, now);
630 	/*
631 	 * As @now is retrieved before a possible timer_forward() and
632 	 * cannot be reevaluated by the compiler @remaining is based on the
633 	 * same @now value. Therefore @remaining is consistent vs. @now.
634 	 *
635 	 * Consequently all interval timers, i.e. @iv > 0, cannot have a
636 	 * remaining time <= 0 because timer_forward() guarantees to move
637 	 * them forward so that the next timer expiry is > @now.
638 	 */
639 	if (remaining <= 0) {
640 		/*
641 		 * A single shot SIGEV_NONE timer must return 0, when it is
642 		 * expired! Timers which have a real signal delivery mode
643 		 * must return a remaining time greater than 0 because the
644 		 * signal has not yet been delivered.
645 		 */
646 		if (!sig_none)
647 			cur_setting->it_value.tv_nsec = 1;
648 	} else {
649 		cur_setting->it_value = ktime_to_timespec64(remaining);
650 	}
651 }
652 
653 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
654 {
655 	const struct k_clock *kc;
656 	struct k_itimer *timr;
657 	unsigned long flags;
658 	int ret = 0;
659 
660 	timr = lock_timer(timer_id, &flags);
661 	if (!timr)
662 		return -EINVAL;
663 
664 	memset(setting, 0, sizeof(*setting));
665 	kc = timr->kclock;
666 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
667 		ret = -EINVAL;
668 	else
669 		kc->timer_get(timr, setting);
670 
671 	unlock_timer(timr, flags);
672 	return ret;
673 }
674 
675 /* Get the time remaining on a POSIX.1b interval timer. */
676 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
677 		struct __kernel_itimerspec __user *, setting)
678 {
679 	struct itimerspec64 cur_setting;
680 
681 	int ret = do_timer_gettime(timer_id, &cur_setting);
682 	if (!ret) {
683 		if (put_itimerspec64(&cur_setting, setting))
684 			ret = -EFAULT;
685 	}
686 	return ret;
687 }
688 
689 #ifdef CONFIG_COMPAT_32BIT_TIME
690 
691 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
692 		struct old_itimerspec32 __user *, setting)
693 {
694 	struct itimerspec64 cur_setting;
695 
696 	int ret = do_timer_gettime(timer_id, &cur_setting);
697 	if (!ret) {
698 		if (put_old_itimerspec32(&cur_setting, setting))
699 			ret = -EFAULT;
700 	}
701 	return ret;
702 }
703 
704 #endif
705 
706 /**
707  * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
708  * @timer_id:	The timer ID which identifies the timer
709  *
710  * The "overrun count" of a timer is one plus the number of expiration
711  * intervals which have elapsed between the first expiry, which queues the
712  * signal and the actual signal delivery. On signal delivery the "overrun
713  * count" is calculated and cached, so it can be returned directly here.
714  *
715  * As this is relative to the last queued signal the returned overrun count
716  * is meaningless outside of the signal delivery path and even there it
717  * does not accurately reflect the current state when user space evaluates
718  * it.
719  *
720  * Returns:
721  *	-EINVAL		@timer_id is invalid
722  *	1..INT_MAX	The number of overruns related to the last delivered signal
723  */
724 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
725 {
726 	struct k_itimer *timr;
727 	unsigned long flags;
728 	int overrun;
729 
730 	timr = lock_timer(timer_id, &flags);
731 	if (!timr)
732 		return -EINVAL;
733 
734 	overrun = timer_overrun_to_int(timr);
735 	unlock_timer(timr, flags);
736 
737 	return overrun;
738 }
739 
740 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
741 			       bool absolute, bool sigev_none)
742 {
743 	struct hrtimer *timer = &timr->it.real.timer;
744 	enum hrtimer_mode mode;
745 
746 	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
747 	/*
748 	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
749 	 * clock modifications, so they become CLOCK_MONOTONIC based under the
750 	 * hood. See hrtimer_setup(). Update timr->kclock, so the generic
751 	 * functions which use timr->kclock->clock_get_*() work.
752 	 *
753 	 * Note: it_clock stays unmodified, because the next timer_set() might
754 	 * use ABSTIME, so it needs to switch back.
755 	 */
756 	if (timr->it_clock == CLOCK_REALTIME)
757 		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
758 
759 	hrtimer_setup(&timr->it.real.timer, posix_timer_fn, timr->it_clock, mode);
760 
761 	if (!absolute)
762 		expires = ktime_add_safe(expires, timer->base->get_time());
763 	hrtimer_set_expires(timer, expires);
764 
765 	if (!sigev_none)
766 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
767 }
768 
769 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
770 {
771 	return hrtimer_try_to_cancel(&timr->it.real.timer);
772 }
773 
774 static void common_timer_wait_running(struct k_itimer *timer)
775 {
776 	hrtimer_cancel_wait_running(&timer->it.real.timer);
777 }
778 
779 /*
780  * On PREEMPT_RT this prevents priority inversion and a potential livelock
781  * against the ksoftirqd thread in case that ksoftirqd gets preempted while
782  * executing a hrtimer callback.
783  *
784  * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
785  * just results in a cpu_relax().
786  *
787  * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
788  * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
789  * prevents spinning on an eventually scheduled out task and a livelock
790  * when the task which tries to delete or disarm the timer has preempted
791  * the task which runs the expiry in task work context.
792  */
793 static struct k_itimer *timer_wait_running(struct k_itimer *timer,
794 					   unsigned long *flags)
795 {
796 	const struct k_clock *kc = READ_ONCE(timer->kclock);
797 	timer_t timer_id = READ_ONCE(timer->it_id);
798 
799 	/* Prevent kfree(timer) after dropping the lock */
800 	rcu_read_lock();
801 	unlock_timer(timer, *flags);
802 
803 	/*
804 	 * kc->timer_wait_running() might drop RCU lock. So @timer
805 	 * cannot be touched anymore after the function returns!
806 	 */
807 	if (!WARN_ON_ONCE(!kc->timer_wait_running))
808 		kc->timer_wait_running(timer);
809 
810 	rcu_read_unlock();
811 	/* Relock the timer. It might be not longer hashed. */
812 	return lock_timer(timer_id, flags);
813 }
814 
815 /*
816  * Set up the new interval and reset the signal delivery data
817  */
818 void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_setting)
819 {
820 	if (new_setting->it_value.tv_sec || new_setting->it_value.tv_nsec)
821 		timer->it_interval = timespec64_to_ktime(new_setting->it_interval);
822 	else
823 		timer->it_interval = 0;
824 
825 	/* Reset overrun accounting */
826 	timer->it_overrun_last = 0;
827 	timer->it_overrun = -1LL;
828 }
829 
830 /* Set a POSIX.1b interval timer. */
831 int common_timer_set(struct k_itimer *timr, int flags,
832 		     struct itimerspec64 *new_setting,
833 		     struct itimerspec64 *old_setting)
834 {
835 	const struct k_clock *kc = timr->kclock;
836 	bool sigev_none;
837 	ktime_t expires;
838 
839 	if (old_setting)
840 		common_timer_get(timr, old_setting);
841 
842 	/*
843 	 * Careful here. On SMP systems the timer expiry function could be
844 	 * active and spinning on timr->it_lock.
845 	 */
846 	if (kc->timer_try_to_cancel(timr) < 0)
847 		return TIMER_RETRY;
848 
849 	timr->it_status = POSIX_TIMER_DISARMED;
850 	posix_timer_set_common(timr, new_setting);
851 
852 	/* Keep timer disarmed when it_value is zero */
853 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
854 		return 0;
855 
856 	expires = timespec64_to_ktime(new_setting->it_value);
857 	if (flags & TIMER_ABSTIME)
858 		expires = timens_ktime_to_host(timr->it_clock, expires);
859 	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
860 
861 	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
862 	if (!sigev_none)
863 		timr->it_status = POSIX_TIMER_ARMED;
864 	return 0;
865 }
866 
867 static int do_timer_settime(timer_t timer_id, int tmr_flags,
868 			    struct itimerspec64 *new_spec64,
869 			    struct itimerspec64 *old_spec64)
870 {
871 	const struct k_clock *kc;
872 	struct k_itimer *timr;
873 	unsigned long flags;
874 	int error;
875 
876 	if (!timespec64_valid(&new_spec64->it_interval) ||
877 	    !timespec64_valid(&new_spec64->it_value))
878 		return -EINVAL;
879 
880 	if (old_spec64)
881 		memset(old_spec64, 0, sizeof(*old_spec64));
882 
883 	timr = lock_timer(timer_id, &flags);
884 retry:
885 	if (!timr)
886 		return -EINVAL;
887 
888 	if (old_spec64)
889 		old_spec64->it_interval = ktime_to_timespec64(timr->it_interval);
890 
891 	/* Prevent signal delivery and rearming. */
892 	timr->it_signal_seq++;
893 
894 	kc = timr->kclock;
895 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
896 		error = -EINVAL;
897 	else
898 		error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
899 
900 	if (error == TIMER_RETRY) {
901 		// We already got the old time...
902 		old_spec64 = NULL;
903 		/* Unlocks and relocks the timer if it still exists */
904 		timr = timer_wait_running(timr, &flags);
905 		goto retry;
906 	}
907 	unlock_timer(timr, flags);
908 
909 	return error;
910 }
911 
912 /* Set a POSIX.1b interval timer */
913 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
914 		const struct __kernel_itimerspec __user *, new_setting,
915 		struct __kernel_itimerspec __user *, old_setting)
916 {
917 	struct itimerspec64 new_spec, old_spec, *rtn;
918 	int error = 0;
919 
920 	if (!new_setting)
921 		return -EINVAL;
922 
923 	if (get_itimerspec64(&new_spec, new_setting))
924 		return -EFAULT;
925 
926 	rtn = old_setting ? &old_spec : NULL;
927 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
928 	if (!error && old_setting) {
929 		if (put_itimerspec64(&old_spec, old_setting))
930 			error = -EFAULT;
931 	}
932 	return error;
933 }
934 
935 #ifdef CONFIG_COMPAT_32BIT_TIME
936 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
937 		struct old_itimerspec32 __user *, new,
938 		struct old_itimerspec32 __user *, old)
939 {
940 	struct itimerspec64 new_spec, old_spec;
941 	struct itimerspec64 *rtn = old ? &old_spec : NULL;
942 	int error = 0;
943 
944 	if (!new)
945 		return -EINVAL;
946 	if (get_old_itimerspec32(&new_spec, new))
947 		return -EFAULT;
948 
949 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
950 	if (!error && old) {
951 		if (put_old_itimerspec32(&old_spec, old))
952 			error = -EFAULT;
953 	}
954 	return error;
955 }
956 #endif
957 
958 int common_timer_del(struct k_itimer *timer)
959 {
960 	const struct k_clock *kc = timer->kclock;
961 
962 	if (kc->timer_try_to_cancel(timer) < 0)
963 		return TIMER_RETRY;
964 	timer->it_status = POSIX_TIMER_DISARMED;
965 	return 0;
966 }
967 
968 /*
969  * If the deleted timer is on the ignored list, remove it and
970  * drop the associated reference.
971  */
972 static inline void posix_timer_cleanup_ignored(struct k_itimer *tmr)
973 {
974 	if (!hlist_unhashed(&tmr->ignored_list)) {
975 		hlist_del_init(&tmr->ignored_list);
976 		posixtimer_putref(tmr);
977 	}
978 }
979 
980 static inline int timer_delete_hook(struct k_itimer *timer)
981 {
982 	const struct k_clock *kc = timer->kclock;
983 
984 	/* Prevent signal delivery and rearming. */
985 	timer->it_signal_seq++;
986 
987 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
988 		return -EINVAL;
989 	return kc->timer_del(timer);
990 }
991 
992 /* Delete a POSIX.1b interval timer. */
993 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
994 {
995 	struct k_itimer *timer;
996 	unsigned long flags;
997 
998 	timer = lock_timer(timer_id, &flags);
999 
1000 retry_delete:
1001 	if (!timer)
1002 		return -EINVAL;
1003 
1004 	if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1005 		/* Unlocks and relocks the timer if it still exists */
1006 		timer = timer_wait_running(timer, &flags);
1007 		goto retry_delete;
1008 	}
1009 
1010 	spin_lock(&current->sighand->siglock);
1011 	hlist_del(&timer->list);
1012 	posix_timer_cleanup_ignored(timer);
1013 	/*
1014 	 * A concurrent lookup could check timer::it_signal lockless. It
1015 	 * will reevaluate with timer::it_lock held and observe the NULL.
1016 	 *
1017 	 * It must be written with siglock held so that the signal code
1018 	 * observes timer->it_signal == NULL in do_sigaction(SIG_IGN),
1019 	 * which prevents it from moving a pending signal of a deleted
1020 	 * timer to the ignore list.
1021 	 */
1022 	WRITE_ONCE(timer->it_signal, NULL);
1023 	spin_unlock(&current->sighand->siglock);
1024 
1025 	unlock_timer(timer, flags);
1026 	posix_timer_unhash_and_free(timer);
1027 	return 0;
1028 }
1029 
1030 /*
1031  * Delete a timer if it is armed, remove it from the hash and schedule it
1032  * for RCU freeing.
1033  */
1034 static void itimer_delete(struct k_itimer *timer)
1035 {
1036 	unsigned long flags;
1037 
1038 	/*
1039 	 * irqsave is required to make timer_wait_running() work.
1040 	 */
1041 	spin_lock_irqsave(&timer->it_lock, flags);
1042 
1043 retry_delete:
1044 	/*
1045 	 * Even if the timer is not longer accessible from other tasks
1046 	 * it still might be armed and queued in the underlying timer
1047 	 * mechanism. Worse, that timer mechanism might run the expiry
1048 	 * function concurrently.
1049 	 */
1050 	if (timer_delete_hook(timer) == TIMER_RETRY) {
1051 		/*
1052 		 * Timer is expired concurrently, prevent livelocks
1053 		 * and pointless spinning on RT.
1054 		 *
1055 		 * timer_wait_running() drops timer::it_lock, which opens
1056 		 * the possibility for another task to delete the timer.
1057 		 *
1058 		 * That's not possible here because this is invoked from
1059 		 * do_exit() only for the last thread of the thread group.
1060 		 * So no other task can access and delete that timer.
1061 		 */
1062 		if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer))
1063 			return;
1064 
1065 		goto retry_delete;
1066 	}
1067 	hlist_del(&timer->list);
1068 
1069 	posix_timer_cleanup_ignored(timer);
1070 
1071 	/*
1072 	 * Setting timer::it_signal to NULL is technically not required
1073 	 * here as nothing can access the timer anymore legitimately via
1074 	 * the hash table. Set it to NULL nevertheless so that all deletion
1075 	 * paths are consistent.
1076 	 */
1077 	WRITE_ONCE(timer->it_signal, NULL);
1078 
1079 	spin_unlock_irqrestore(&timer->it_lock, flags);
1080 	posix_timer_unhash_and_free(timer);
1081 }
1082 
1083 /*
1084  * Invoked from do_exit() when the last thread of a thread group exits.
1085  * At that point no other task can access the timers of the dying
1086  * task anymore.
1087  */
1088 void exit_itimers(struct task_struct *tsk)
1089 {
1090 	struct hlist_head timers;
1091 
1092 	if (hlist_empty(&tsk->signal->posix_timers))
1093 		return;
1094 
1095 	/* Protect against concurrent read via /proc/$PID/timers */
1096 	spin_lock_irq(&tsk->sighand->siglock);
1097 	hlist_move_list(&tsk->signal->posix_timers, &timers);
1098 	spin_unlock_irq(&tsk->sighand->siglock);
1099 
1100 	/* The timers are not longer accessible via tsk::signal */
1101 	while (!hlist_empty(&timers))
1102 		itimer_delete(hlist_entry(timers.first, struct k_itimer, list));
1103 
1104 	/*
1105 	 * There should be no timers on the ignored list. itimer_delete() has
1106 	 * mopped them up.
1107 	 */
1108 	if (!WARN_ON_ONCE(!hlist_empty(&tsk->signal->ignored_posix_timers)))
1109 		return;
1110 
1111 	hlist_move_list(&tsk->signal->ignored_posix_timers, &timers);
1112 	while (!hlist_empty(&timers)) {
1113 		posix_timer_cleanup_ignored(hlist_entry(timers.first, struct k_itimer,
1114 							ignored_list));
1115 	}
1116 }
1117 
1118 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1119 		const struct __kernel_timespec __user *, tp)
1120 {
1121 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1122 	struct timespec64 new_tp;
1123 
1124 	if (!kc || !kc->clock_set)
1125 		return -EINVAL;
1126 
1127 	if (get_timespec64(&new_tp, tp))
1128 		return -EFAULT;
1129 
1130 	/*
1131 	 * Permission checks have to be done inside the clock specific
1132 	 * setter callback.
1133 	 */
1134 	return kc->clock_set(which_clock, &new_tp);
1135 }
1136 
1137 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1138 		struct __kernel_timespec __user *, tp)
1139 {
1140 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1141 	struct timespec64 kernel_tp;
1142 	int error;
1143 
1144 	if (!kc)
1145 		return -EINVAL;
1146 
1147 	error = kc->clock_get_timespec(which_clock, &kernel_tp);
1148 
1149 	if (!error && put_timespec64(&kernel_tp, tp))
1150 		error = -EFAULT;
1151 
1152 	return error;
1153 }
1154 
1155 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1156 {
1157 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1158 
1159 	if (!kc)
1160 		return -EINVAL;
1161 	if (!kc->clock_adj)
1162 		return -EOPNOTSUPP;
1163 
1164 	return kc->clock_adj(which_clock, ktx);
1165 }
1166 
1167 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1168 		struct __kernel_timex __user *, utx)
1169 {
1170 	struct __kernel_timex ktx;
1171 	int err;
1172 
1173 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1174 		return -EFAULT;
1175 
1176 	err = do_clock_adjtime(which_clock, &ktx);
1177 
1178 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1179 		return -EFAULT;
1180 
1181 	return err;
1182 }
1183 
1184 /**
1185  * sys_clock_getres - Get the resolution of a clock
1186  * @which_clock:	The clock to get the resolution for
1187  * @tp:			Pointer to a a user space timespec64 for storage
1188  *
1189  * POSIX defines:
1190  *
1191  * "The clock_getres() function shall return the resolution of any
1192  * clock. Clock resolutions are implementation-defined and cannot be set by
1193  * a process. If the argument res is not NULL, the resolution of the
1194  * specified clock shall be stored in the location pointed to by res. If
1195  * res is NULL, the clock resolution is not returned. If the time argument
1196  * of clock_settime() is not a multiple of res, then the value is truncated
1197  * to a multiple of res."
1198  *
1199  * Due to the various hardware constraints the real resolution can vary
1200  * wildly and even change during runtime when the underlying devices are
1201  * replaced. The kernel also can use hardware devices with different
1202  * resolutions for reading the time and for arming timers.
1203  *
1204  * The kernel therefore deviates from the POSIX spec in various aspects:
1205  *
1206  * 1) The resolution returned to user space
1207  *
1208  *    For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
1209  *    CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
1210  *    the kernel differentiates only two cases:
1211  *
1212  *    I)  Low resolution mode:
1213  *
1214  *	  When high resolution timers are disabled at compile or runtime
1215  *	  the resolution returned is nanoseconds per tick, which represents
1216  *	  the precision at which timers expire.
1217  *
1218  *    II) High resolution mode:
1219  *
1220  *	  When high resolution timers are enabled the resolution returned
1221  *	  is always one nanosecond independent of the actual resolution of
1222  *	  the underlying hardware devices.
1223  *
1224  *	  For CLOCK_*_ALARM the actual resolution depends on system
1225  *	  state. When system is running the resolution is the same as the
1226  *	  resolution of the other clocks. During suspend the actual
1227  *	  resolution is the resolution of the underlying RTC device which
1228  *	  might be way less precise than the clockevent device used during
1229  *	  running state.
1230  *
1231  *   For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
1232  *   returned is always nanoseconds per tick.
1233  *
1234  *   For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
1235  *   returned is always one nanosecond under the assumption that the
1236  *   underlying scheduler clock has a better resolution than nanoseconds
1237  *   per tick.
1238  *
1239  *   For dynamic POSIX clocks (PTP devices) the resolution returned is
1240  *   always one nanosecond.
1241  *
1242  * 2) Affect on sys_clock_settime()
1243  *
1244  *    The kernel does not truncate the time which is handed in to
1245  *    sys_clock_settime(). The kernel internal timekeeping is always using
1246  *    nanoseconds precision independent of the clocksource device which is
1247  *    used to read the time from. The resolution of that device only
1248  *    affects the presicion of the time returned by sys_clock_gettime().
1249  *
1250  * Returns:
1251  *	0		Success. @tp contains the resolution
1252  *	-EINVAL		@which_clock is not a valid clock ID
1253  *	-EFAULT		Copying the resolution to @tp faulted
1254  *	-ENODEV		Dynamic POSIX clock is not backed by a device
1255  *	-EOPNOTSUPP	Dynamic POSIX clock does not support getres()
1256  */
1257 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1258 		struct __kernel_timespec __user *, tp)
1259 {
1260 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1261 	struct timespec64 rtn_tp;
1262 	int error;
1263 
1264 	if (!kc)
1265 		return -EINVAL;
1266 
1267 	error = kc->clock_getres(which_clock, &rtn_tp);
1268 
1269 	if (!error && tp && put_timespec64(&rtn_tp, tp))
1270 		error = -EFAULT;
1271 
1272 	return error;
1273 }
1274 
1275 #ifdef CONFIG_COMPAT_32BIT_TIME
1276 
1277 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1278 		struct old_timespec32 __user *, tp)
1279 {
1280 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1281 	struct timespec64 ts;
1282 
1283 	if (!kc || !kc->clock_set)
1284 		return -EINVAL;
1285 
1286 	if (get_old_timespec32(&ts, tp))
1287 		return -EFAULT;
1288 
1289 	return kc->clock_set(which_clock, &ts);
1290 }
1291 
1292 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1293 		struct old_timespec32 __user *, tp)
1294 {
1295 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1296 	struct timespec64 ts;
1297 	int err;
1298 
1299 	if (!kc)
1300 		return -EINVAL;
1301 
1302 	err = kc->clock_get_timespec(which_clock, &ts);
1303 
1304 	if (!err && put_old_timespec32(&ts, tp))
1305 		err = -EFAULT;
1306 
1307 	return err;
1308 }
1309 
1310 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1311 		struct old_timex32 __user *, utp)
1312 {
1313 	struct __kernel_timex ktx;
1314 	int err;
1315 
1316 	err = get_old_timex32(&ktx, utp);
1317 	if (err)
1318 		return err;
1319 
1320 	err = do_clock_adjtime(which_clock, &ktx);
1321 
1322 	if (err >= 0 && put_old_timex32(utp, &ktx))
1323 		return -EFAULT;
1324 
1325 	return err;
1326 }
1327 
1328 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1329 		struct old_timespec32 __user *, tp)
1330 {
1331 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1332 	struct timespec64 ts;
1333 	int err;
1334 
1335 	if (!kc)
1336 		return -EINVAL;
1337 
1338 	err = kc->clock_getres(which_clock, &ts);
1339 	if (!err && tp && put_old_timespec32(&ts, tp))
1340 		return -EFAULT;
1341 
1342 	return err;
1343 }
1344 
1345 #endif
1346 
1347 /*
1348  * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
1349  */
1350 static int common_nsleep(const clockid_t which_clock, int flags,
1351 			 const struct timespec64 *rqtp)
1352 {
1353 	ktime_t texp = timespec64_to_ktime(*rqtp);
1354 
1355 	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1356 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1357 				 which_clock);
1358 }
1359 
1360 /*
1361  * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
1362  *
1363  * Absolute nanosleeps for these clocks are time-namespace adjusted.
1364  */
1365 static int common_nsleep_timens(const clockid_t which_clock, int flags,
1366 				const struct timespec64 *rqtp)
1367 {
1368 	ktime_t texp = timespec64_to_ktime(*rqtp);
1369 
1370 	if (flags & TIMER_ABSTIME)
1371 		texp = timens_ktime_to_host(which_clock, texp);
1372 
1373 	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1374 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1375 				 which_clock);
1376 }
1377 
1378 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1379 		const struct __kernel_timespec __user *, rqtp,
1380 		struct __kernel_timespec __user *, rmtp)
1381 {
1382 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1383 	struct timespec64 t;
1384 
1385 	if (!kc)
1386 		return -EINVAL;
1387 	if (!kc->nsleep)
1388 		return -EOPNOTSUPP;
1389 
1390 	if (get_timespec64(&t, rqtp))
1391 		return -EFAULT;
1392 
1393 	if (!timespec64_valid(&t))
1394 		return -EINVAL;
1395 	if (flags & TIMER_ABSTIME)
1396 		rmtp = NULL;
1397 	current->restart_block.fn = do_no_restart_syscall;
1398 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1399 	current->restart_block.nanosleep.rmtp = rmtp;
1400 
1401 	return kc->nsleep(which_clock, flags, &t);
1402 }
1403 
1404 #ifdef CONFIG_COMPAT_32BIT_TIME
1405 
1406 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1407 		struct old_timespec32 __user *, rqtp,
1408 		struct old_timespec32 __user *, rmtp)
1409 {
1410 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1411 	struct timespec64 t;
1412 
1413 	if (!kc)
1414 		return -EINVAL;
1415 	if (!kc->nsleep)
1416 		return -EOPNOTSUPP;
1417 
1418 	if (get_old_timespec32(&t, rqtp))
1419 		return -EFAULT;
1420 
1421 	if (!timespec64_valid(&t))
1422 		return -EINVAL;
1423 	if (flags & TIMER_ABSTIME)
1424 		rmtp = NULL;
1425 	current->restart_block.fn = do_no_restart_syscall;
1426 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1427 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1428 
1429 	return kc->nsleep(which_clock, flags, &t);
1430 }
1431 
1432 #endif
1433 
1434 static const struct k_clock clock_realtime = {
1435 	.clock_getres		= posix_get_hrtimer_res,
1436 	.clock_get_timespec	= posix_get_realtime_timespec,
1437 	.clock_get_ktime	= posix_get_realtime_ktime,
1438 	.clock_set		= posix_clock_realtime_set,
1439 	.clock_adj		= posix_clock_realtime_adj,
1440 	.nsleep			= common_nsleep,
1441 	.timer_create		= common_timer_create,
1442 	.timer_set		= common_timer_set,
1443 	.timer_get		= common_timer_get,
1444 	.timer_del		= common_timer_del,
1445 	.timer_rearm		= common_hrtimer_rearm,
1446 	.timer_forward		= common_hrtimer_forward,
1447 	.timer_remaining	= common_hrtimer_remaining,
1448 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1449 	.timer_wait_running	= common_timer_wait_running,
1450 	.timer_arm		= common_hrtimer_arm,
1451 };
1452 
1453 static const struct k_clock clock_monotonic = {
1454 	.clock_getres		= posix_get_hrtimer_res,
1455 	.clock_get_timespec	= posix_get_monotonic_timespec,
1456 	.clock_get_ktime	= posix_get_monotonic_ktime,
1457 	.nsleep			= common_nsleep_timens,
1458 	.timer_create		= common_timer_create,
1459 	.timer_set		= common_timer_set,
1460 	.timer_get		= common_timer_get,
1461 	.timer_del		= common_timer_del,
1462 	.timer_rearm		= common_hrtimer_rearm,
1463 	.timer_forward		= common_hrtimer_forward,
1464 	.timer_remaining	= common_hrtimer_remaining,
1465 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1466 	.timer_wait_running	= common_timer_wait_running,
1467 	.timer_arm		= common_hrtimer_arm,
1468 };
1469 
1470 static const struct k_clock clock_monotonic_raw = {
1471 	.clock_getres		= posix_get_hrtimer_res,
1472 	.clock_get_timespec	= posix_get_monotonic_raw,
1473 };
1474 
1475 static const struct k_clock clock_realtime_coarse = {
1476 	.clock_getres		= posix_get_coarse_res,
1477 	.clock_get_timespec	= posix_get_realtime_coarse,
1478 };
1479 
1480 static const struct k_clock clock_monotonic_coarse = {
1481 	.clock_getres		= posix_get_coarse_res,
1482 	.clock_get_timespec	= posix_get_monotonic_coarse,
1483 };
1484 
1485 static const struct k_clock clock_tai = {
1486 	.clock_getres		= posix_get_hrtimer_res,
1487 	.clock_get_ktime	= posix_get_tai_ktime,
1488 	.clock_get_timespec	= posix_get_tai_timespec,
1489 	.nsleep			= common_nsleep,
1490 	.timer_create		= common_timer_create,
1491 	.timer_set		= common_timer_set,
1492 	.timer_get		= common_timer_get,
1493 	.timer_del		= common_timer_del,
1494 	.timer_rearm		= common_hrtimer_rearm,
1495 	.timer_forward		= common_hrtimer_forward,
1496 	.timer_remaining	= common_hrtimer_remaining,
1497 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1498 	.timer_wait_running	= common_timer_wait_running,
1499 	.timer_arm		= common_hrtimer_arm,
1500 };
1501 
1502 static const struct k_clock clock_boottime = {
1503 	.clock_getres		= posix_get_hrtimer_res,
1504 	.clock_get_ktime	= posix_get_boottime_ktime,
1505 	.clock_get_timespec	= posix_get_boottime_timespec,
1506 	.nsleep			= common_nsleep_timens,
1507 	.timer_create		= common_timer_create,
1508 	.timer_set		= common_timer_set,
1509 	.timer_get		= common_timer_get,
1510 	.timer_del		= common_timer_del,
1511 	.timer_rearm		= common_hrtimer_rearm,
1512 	.timer_forward		= common_hrtimer_forward,
1513 	.timer_remaining	= common_hrtimer_remaining,
1514 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1515 	.timer_wait_running	= common_timer_wait_running,
1516 	.timer_arm		= common_hrtimer_arm,
1517 };
1518 
1519 static const struct k_clock * const posix_clocks[] = {
1520 	[CLOCK_REALTIME]		= &clock_realtime,
1521 	[CLOCK_MONOTONIC]		= &clock_monotonic,
1522 	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1523 	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1524 	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1525 	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1526 	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1527 	[CLOCK_BOOTTIME]		= &clock_boottime,
1528 	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1529 	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1530 	[CLOCK_TAI]			= &clock_tai,
1531 };
1532 
1533 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1534 {
1535 	clockid_t idx = id;
1536 
1537 	if (id < 0) {
1538 		return (id & CLOCKFD_MASK) == CLOCKFD ?
1539 			&clock_posix_dynamic : &clock_posix_cpu;
1540 	}
1541 
1542 	if (id >= ARRAY_SIZE(posix_clocks))
1543 		return NULL;
1544 
1545 	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1546 }
1547