xref: /linux/kernel/time/posix-timers.c (revision 4ab5a5d2a4a2289c2af07accbec7170ca5671f41)
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53 #include <linux/nospec.h>
54 
55 #include "timekeeping.h"
56 #include "posix-timers.h"
57 
58 /*
59  * Management arrays for POSIX timers. Timers are now kept in static hash table
60  * with 512 entries.
61  * Timer ids are allocated by local routine, which selects proper hash head by
62  * key, constructed from current->signal address and per signal struct counter.
63  * This keeps timer ids unique per process, but now they can intersect between
64  * processes.
65  */
66 
67 /*
68  * Lets keep our timers in a slab cache :-)
69  */
70 static struct kmem_cache *posix_timers_cache;
71 
72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73 static DEFINE_SPINLOCK(hash_lock);
74 
75 static const struct k_clock * const posix_clocks[];
76 static const struct k_clock *clockid_to_kclock(const clockid_t id);
77 static const struct k_clock clock_realtime, clock_monotonic;
78 
79 /*
80  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81  * SIGEV values.  Here we put out an error if this assumption fails.
82  */
83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86 #endif
87 
88 /*
89  * The timer ID is turned into a timer address by idr_find().
90  * Verifying a valid ID consists of:
91  *
92  * a) checking that idr_find() returns other than -1.
93  * b) checking that the timer id matches the one in the timer itself.
94  * c) that the timer owner is in the callers thread group.
95  */
96 
97 /*
98  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
99  *	    to implement others.  This structure defines the various
100  *	    clocks.
101  *
102  * RESOLUTION: Clock resolution is used to round up timer and interval
103  *	    times, NOT to report clock times, which are reported with as
104  *	    much resolution as the system can muster.  In some cases this
105  *	    resolution may depend on the underlying clock hardware and
106  *	    may not be quantifiable until run time, and only then is the
107  *	    necessary code is written.	The standard says we should say
108  *	    something about this issue in the documentation...
109  *
110  * FUNCTIONS: The CLOCKs structure defines possible functions to
111  *	    handle various clock functions.
112  *
113  *	    The standard POSIX timer management code assumes the
114  *	    following: 1.) The k_itimer struct (sched.h) is used for
115  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
116  *	    it_pid fields are not modified by timer code.
117  *
118  * Permissions: It is assumed that the clock_settime() function defined
119  *	    for each clock will take care of permission checks.	 Some
120  *	    clocks may be set able by any user (i.e. local process
121  *	    clocks) others not.	 Currently the only set able clock we
122  *	    have is CLOCK_REALTIME and its high res counter part, both of
123  *	    which we beg off on and pass to do_sys_settimeofday().
124  */
125 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
126 
127 #define lock_timer(tid, flags)						   \
128 ({	struct k_itimer *__timr;					   \
129 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
130 	__timr;								   \
131 })
132 
133 static int hash(struct signal_struct *sig, unsigned int nr)
134 {
135 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
136 }
137 
138 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
139 					    struct signal_struct *sig,
140 					    timer_t id)
141 {
142 	struct k_itimer *timer;
143 
144 	hlist_for_each_entry_rcu(timer, head, t_hash) {
145 		if ((timer->it_signal == sig) && (timer->it_id == id))
146 			return timer;
147 	}
148 	return NULL;
149 }
150 
151 static struct k_itimer *posix_timer_by_id(timer_t id)
152 {
153 	struct signal_struct *sig = current->signal;
154 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
155 
156 	return __posix_timers_find(head, sig, id);
157 }
158 
159 static int posix_timer_add(struct k_itimer *timer)
160 {
161 	struct signal_struct *sig = current->signal;
162 	int first_free_id = sig->posix_timer_id;
163 	struct hlist_head *head;
164 	int ret = -ENOENT;
165 
166 	do {
167 		spin_lock(&hash_lock);
168 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
169 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
170 			hlist_add_head_rcu(&timer->t_hash, head);
171 			ret = sig->posix_timer_id;
172 		}
173 		if (++sig->posix_timer_id < 0)
174 			sig->posix_timer_id = 0;
175 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
176 			/* Loop over all possible ids completed */
177 			ret = -EAGAIN;
178 		spin_unlock(&hash_lock);
179 	} while (ret == -ENOENT);
180 	return ret;
181 }
182 
183 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
184 {
185 	spin_unlock_irqrestore(&timr->it_lock, flags);
186 }
187 
188 /* Get clock_realtime */
189 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
190 {
191 	ktime_get_real_ts64(tp);
192 	return 0;
193 }
194 
195 /* Set clock_realtime */
196 static int posix_clock_realtime_set(const clockid_t which_clock,
197 				    const struct timespec64 *tp)
198 {
199 	return do_sys_settimeofday64(tp, NULL);
200 }
201 
202 static int posix_clock_realtime_adj(const clockid_t which_clock,
203 				    struct timex *t)
204 {
205 	return do_adjtimex(t);
206 }
207 
208 /*
209  * Get monotonic time for posix timers
210  */
211 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
212 {
213 	ktime_get_ts64(tp);
214 	return 0;
215 }
216 
217 /*
218  * Get monotonic-raw time for posix timers
219  */
220 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
221 {
222 	ktime_get_raw_ts64(tp);
223 	return 0;
224 }
225 
226 
227 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
228 {
229 	ktime_get_coarse_real_ts64(tp);
230 	return 0;
231 }
232 
233 static int posix_get_monotonic_coarse(clockid_t which_clock,
234 						struct timespec64 *tp)
235 {
236 	ktime_get_coarse_ts64(tp);
237 	return 0;
238 }
239 
240 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
241 {
242 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
243 	return 0;
244 }
245 
246 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
247 {
248 	ktime_get_boottime_ts64(tp);
249 	return 0;
250 }
251 
252 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
253 {
254 	ktime_get_clocktai_ts64(tp);
255 	return 0;
256 }
257 
258 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
259 {
260 	tp->tv_sec = 0;
261 	tp->tv_nsec = hrtimer_resolution;
262 	return 0;
263 }
264 
265 /*
266  * Initialize everything, well, just everything in Posix clocks/timers ;)
267  */
268 static __init int init_posix_timers(void)
269 {
270 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
271 					sizeof (struct k_itimer), 0, SLAB_PANIC,
272 					NULL);
273 	return 0;
274 }
275 __initcall(init_posix_timers);
276 
277 /*
278  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
279  * are of type int. Clamp the overrun value to INT_MAX
280  */
281 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
282 {
283 	s64 sum = timr->it_overrun_last + (s64)baseval;
284 
285 	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
286 }
287 
288 static void common_hrtimer_rearm(struct k_itimer *timr)
289 {
290 	struct hrtimer *timer = &timr->it.real.timer;
291 
292 	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
293 					    timr->it_interval);
294 	hrtimer_restart(timer);
295 }
296 
297 /*
298  * This function is exported for use by the signal deliver code.  It is
299  * called just prior to the info block being released and passes that
300  * block to us.  It's function is to update the overrun entry AND to
301  * restart the timer.  It should only be called if the timer is to be
302  * restarted (i.e. we have flagged this in the sys_private entry of the
303  * info block).
304  *
305  * To protect against the timer going away while the interrupt is queued,
306  * we require that the it_requeue_pending flag be set.
307  */
308 void posixtimer_rearm(struct kernel_siginfo *info)
309 {
310 	struct k_itimer *timr;
311 	unsigned long flags;
312 
313 	timr = lock_timer(info->si_tid, &flags);
314 	if (!timr)
315 		return;
316 
317 	if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
318 		timr->kclock->timer_rearm(timr);
319 
320 		timr->it_active = 1;
321 		timr->it_overrun_last = timr->it_overrun;
322 		timr->it_overrun = -1LL;
323 		++timr->it_requeue_pending;
324 
325 		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
326 	}
327 
328 	unlock_timer(timr, flags);
329 }
330 
331 int posix_timer_event(struct k_itimer *timr, int si_private)
332 {
333 	enum pid_type type;
334 	int ret = -1;
335 	/*
336 	 * FIXME: if ->sigq is queued we can race with
337 	 * dequeue_signal()->posixtimer_rearm().
338 	 *
339 	 * If dequeue_signal() sees the "right" value of
340 	 * si_sys_private it calls posixtimer_rearm().
341 	 * We re-queue ->sigq and drop ->it_lock().
342 	 * posixtimer_rearm() locks the timer
343 	 * and re-schedules it while ->sigq is pending.
344 	 * Not really bad, but not that we want.
345 	 */
346 	timr->sigq->info.si_sys_private = si_private;
347 
348 	type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
349 	ret = send_sigqueue(timr->sigq, timr->it_pid, type);
350 	/* If we failed to send the signal the timer stops. */
351 	return ret > 0;
352 }
353 
354 /*
355  * This function gets called when a POSIX.1b interval timer expires.  It
356  * is used as a callback from the kernel internal timer.  The
357  * run_timer_list code ALWAYS calls with interrupts on.
358 
359  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
360  */
361 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
362 {
363 	struct k_itimer *timr;
364 	unsigned long flags;
365 	int si_private = 0;
366 	enum hrtimer_restart ret = HRTIMER_NORESTART;
367 
368 	timr = container_of(timer, struct k_itimer, it.real.timer);
369 	spin_lock_irqsave(&timr->it_lock, flags);
370 
371 	timr->it_active = 0;
372 	if (timr->it_interval != 0)
373 		si_private = ++timr->it_requeue_pending;
374 
375 	if (posix_timer_event(timr, si_private)) {
376 		/*
377 		 * signal was not sent because of sig_ignor
378 		 * we will not get a call back to restart it AND
379 		 * it should be restarted.
380 		 */
381 		if (timr->it_interval != 0) {
382 			ktime_t now = hrtimer_cb_get_time(timer);
383 
384 			/*
385 			 * FIXME: What we really want, is to stop this
386 			 * timer completely and restart it in case the
387 			 * SIG_IGN is removed. This is a non trivial
388 			 * change which involves sighand locking
389 			 * (sigh !), which we don't want to do late in
390 			 * the release cycle.
391 			 *
392 			 * For now we just let timers with an interval
393 			 * less than a jiffie expire every jiffie to
394 			 * avoid softirq starvation in case of SIG_IGN
395 			 * and a very small interval, which would put
396 			 * the timer right back on the softirq pending
397 			 * list. By moving now ahead of time we trick
398 			 * hrtimer_forward() to expire the timer
399 			 * later, while we still maintain the overrun
400 			 * accuracy, but have some inconsistency in
401 			 * the timer_gettime() case. This is at least
402 			 * better than a starved softirq. A more
403 			 * complex fix which solves also another related
404 			 * inconsistency is already in the pipeline.
405 			 */
406 #ifdef CONFIG_HIGH_RES_TIMERS
407 			{
408 				ktime_t kj = NSEC_PER_SEC / HZ;
409 
410 				if (timr->it_interval < kj)
411 					now = ktime_add(now, kj);
412 			}
413 #endif
414 			timr->it_overrun += hrtimer_forward(timer, now,
415 							    timr->it_interval);
416 			ret = HRTIMER_RESTART;
417 			++timr->it_requeue_pending;
418 			timr->it_active = 1;
419 		}
420 	}
421 
422 	unlock_timer(timr, flags);
423 	return ret;
424 }
425 
426 static struct pid *good_sigevent(sigevent_t * event)
427 {
428 	struct pid *pid = task_tgid(current);
429 	struct task_struct *rtn;
430 
431 	switch (event->sigev_notify) {
432 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
433 		pid = find_vpid(event->sigev_notify_thread_id);
434 		rtn = pid_task(pid, PIDTYPE_PID);
435 		if (!rtn || !same_thread_group(rtn, current))
436 			return NULL;
437 		/* FALLTHRU */
438 	case SIGEV_SIGNAL:
439 	case SIGEV_THREAD:
440 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
441 			return NULL;
442 		/* FALLTHRU */
443 	case SIGEV_NONE:
444 		return pid;
445 	default:
446 		return NULL;
447 	}
448 }
449 
450 static struct k_itimer * alloc_posix_timer(void)
451 {
452 	struct k_itimer *tmr;
453 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
454 	if (!tmr)
455 		return tmr;
456 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
457 		kmem_cache_free(posix_timers_cache, tmr);
458 		return NULL;
459 	}
460 	clear_siginfo(&tmr->sigq->info);
461 	return tmr;
462 }
463 
464 static void k_itimer_rcu_free(struct rcu_head *head)
465 {
466 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
467 
468 	kmem_cache_free(posix_timers_cache, tmr);
469 }
470 
471 #define IT_ID_SET	1
472 #define IT_ID_NOT_SET	0
473 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
474 {
475 	if (it_id_set) {
476 		unsigned long flags;
477 		spin_lock_irqsave(&hash_lock, flags);
478 		hlist_del_rcu(&tmr->t_hash);
479 		spin_unlock_irqrestore(&hash_lock, flags);
480 	}
481 	put_pid(tmr->it_pid);
482 	sigqueue_free(tmr->sigq);
483 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
484 }
485 
486 static int common_timer_create(struct k_itimer *new_timer)
487 {
488 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
489 	return 0;
490 }
491 
492 /* Create a POSIX.1b interval timer. */
493 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
494 			   timer_t __user *created_timer_id)
495 {
496 	const struct k_clock *kc = clockid_to_kclock(which_clock);
497 	struct k_itimer *new_timer;
498 	int error, new_timer_id;
499 	int it_id_set = IT_ID_NOT_SET;
500 
501 	if (!kc)
502 		return -EINVAL;
503 	if (!kc->timer_create)
504 		return -EOPNOTSUPP;
505 
506 	new_timer = alloc_posix_timer();
507 	if (unlikely(!new_timer))
508 		return -EAGAIN;
509 
510 	spin_lock_init(&new_timer->it_lock);
511 	new_timer_id = posix_timer_add(new_timer);
512 	if (new_timer_id < 0) {
513 		error = new_timer_id;
514 		goto out;
515 	}
516 
517 	it_id_set = IT_ID_SET;
518 	new_timer->it_id = (timer_t) new_timer_id;
519 	new_timer->it_clock = which_clock;
520 	new_timer->kclock = kc;
521 	new_timer->it_overrun = -1LL;
522 
523 	if (event) {
524 		rcu_read_lock();
525 		new_timer->it_pid = get_pid(good_sigevent(event));
526 		rcu_read_unlock();
527 		if (!new_timer->it_pid) {
528 			error = -EINVAL;
529 			goto out;
530 		}
531 		new_timer->it_sigev_notify     = event->sigev_notify;
532 		new_timer->sigq->info.si_signo = event->sigev_signo;
533 		new_timer->sigq->info.si_value = event->sigev_value;
534 	} else {
535 		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
536 		new_timer->sigq->info.si_signo = SIGALRM;
537 		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
538 		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
539 		new_timer->it_pid = get_pid(task_tgid(current));
540 	}
541 
542 	new_timer->sigq->info.si_tid   = new_timer->it_id;
543 	new_timer->sigq->info.si_code  = SI_TIMER;
544 
545 	if (copy_to_user(created_timer_id,
546 			 &new_timer_id, sizeof (new_timer_id))) {
547 		error = -EFAULT;
548 		goto out;
549 	}
550 
551 	error = kc->timer_create(new_timer);
552 	if (error)
553 		goto out;
554 
555 	spin_lock_irq(&current->sighand->siglock);
556 	new_timer->it_signal = current->signal;
557 	list_add(&new_timer->list, &current->signal->posix_timers);
558 	spin_unlock_irq(&current->sighand->siglock);
559 
560 	return 0;
561 	/*
562 	 * In the case of the timer belonging to another task, after
563 	 * the task is unlocked, the timer is owned by the other task
564 	 * and may cease to exist at any time.  Don't use or modify
565 	 * new_timer after the unlock call.
566 	 */
567 out:
568 	release_posix_timer(new_timer, it_id_set);
569 	return error;
570 }
571 
572 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
573 		struct sigevent __user *, timer_event_spec,
574 		timer_t __user *, created_timer_id)
575 {
576 	if (timer_event_spec) {
577 		sigevent_t event;
578 
579 		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
580 			return -EFAULT;
581 		return do_timer_create(which_clock, &event, created_timer_id);
582 	}
583 	return do_timer_create(which_clock, NULL, created_timer_id);
584 }
585 
586 #ifdef CONFIG_COMPAT
587 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
588 		       struct compat_sigevent __user *, timer_event_spec,
589 		       timer_t __user *, created_timer_id)
590 {
591 	if (timer_event_spec) {
592 		sigevent_t event;
593 
594 		if (get_compat_sigevent(&event, timer_event_spec))
595 			return -EFAULT;
596 		return do_timer_create(which_clock, &event, created_timer_id);
597 	}
598 	return do_timer_create(which_clock, NULL, created_timer_id);
599 }
600 #endif
601 
602 /*
603  * Locking issues: We need to protect the result of the id look up until
604  * we get the timer locked down so it is not deleted under us.  The
605  * removal is done under the idr spinlock so we use that here to bridge
606  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
607  * be release with out holding the timer lock.
608  */
609 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
610 {
611 	struct k_itimer *timr;
612 
613 	/*
614 	 * timer_t could be any type >= int and we want to make sure any
615 	 * @timer_id outside positive int range fails lookup.
616 	 */
617 	if ((unsigned long long)timer_id > INT_MAX)
618 		return NULL;
619 
620 	rcu_read_lock();
621 	timr = posix_timer_by_id(timer_id);
622 	if (timr) {
623 		spin_lock_irqsave(&timr->it_lock, *flags);
624 		if (timr->it_signal == current->signal) {
625 			rcu_read_unlock();
626 			return timr;
627 		}
628 		spin_unlock_irqrestore(&timr->it_lock, *flags);
629 	}
630 	rcu_read_unlock();
631 
632 	return NULL;
633 }
634 
635 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
636 {
637 	struct hrtimer *timer = &timr->it.real.timer;
638 
639 	return __hrtimer_expires_remaining_adjusted(timer, now);
640 }
641 
642 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
643 {
644 	struct hrtimer *timer = &timr->it.real.timer;
645 
646 	return hrtimer_forward(timer, now, timr->it_interval);
647 }
648 
649 /*
650  * Get the time remaining on a POSIX.1b interval timer.  This function
651  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
652  * mess with irq.
653  *
654  * We have a couple of messes to clean up here.  First there is the case
655  * of a timer that has a requeue pending.  These timers should appear to
656  * be in the timer list with an expiry as if we were to requeue them
657  * now.
658  *
659  * The second issue is the SIGEV_NONE timer which may be active but is
660  * not really ever put in the timer list (to save system resources).
661  * This timer may be expired, and if so, we will do it here.  Otherwise
662  * it is the same as a requeue pending timer WRT to what we should
663  * report.
664  */
665 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
666 {
667 	const struct k_clock *kc = timr->kclock;
668 	ktime_t now, remaining, iv;
669 	struct timespec64 ts64;
670 	bool sig_none;
671 
672 	sig_none = timr->it_sigev_notify == SIGEV_NONE;
673 	iv = timr->it_interval;
674 
675 	/* interval timer ? */
676 	if (iv) {
677 		cur_setting->it_interval = ktime_to_timespec64(iv);
678 	} else if (!timr->it_active) {
679 		/*
680 		 * SIGEV_NONE oneshot timers are never queued. Check them
681 		 * below.
682 		 */
683 		if (!sig_none)
684 			return;
685 	}
686 
687 	/*
688 	 * The timespec64 based conversion is suboptimal, but it's not
689 	 * worth to implement yet another callback.
690 	 */
691 	kc->clock_get(timr->it_clock, &ts64);
692 	now = timespec64_to_ktime(ts64);
693 
694 	/*
695 	 * When a requeue is pending or this is a SIGEV_NONE timer move the
696 	 * expiry time forward by intervals, so expiry is > now.
697 	 */
698 	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
699 		timr->it_overrun += kc->timer_forward(timr, now);
700 
701 	remaining = kc->timer_remaining(timr, now);
702 	/* Return 0 only, when the timer is expired and not pending */
703 	if (remaining <= 0) {
704 		/*
705 		 * A single shot SIGEV_NONE timer must return 0, when
706 		 * it is expired !
707 		 */
708 		if (!sig_none)
709 			cur_setting->it_value.tv_nsec = 1;
710 	} else {
711 		cur_setting->it_value = ktime_to_timespec64(remaining);
712 	}
713 }
714 
715 /* Get the time remaining on a POSIX.1b interval timer. */
716 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
717 {
718 	struct k_itimer *timr;
719 	const struct k_clock *kc;
720 	unsigned long flags;
721 	int ret = 0;
722 
723 	timr = lock_timer(timer_id, &flags);
724 	if (!timr)
725 		return -EINVAL;
726 
727 	memset(setting, 0, sizeof(*setting));
728 	kc = timr->kclock;
729 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
730 		ret = -EINVAL;
731 	else
732 		kc->timer_get(timr, setting);
733 
734 	unlock_timer(timr, flags);
735 	return ret;
736 }
737 
738 /* Get the time remaining on a POSIX.1b interval timer. */
739 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
740 		struct __kernel_itimerspec __user *, setting)
741 {
742 	struct itimerspec64 cur_setting;
743 
744 	int ret = do_timer_gettime(timer_id, &cur_setting);
745 	if (!ret) {
746 		if (put_itimerspec64(&cur_setting, setting))
747 			ret = -EFAULT;
748 	}
749 	return ret;
750 }
751 
752 #ifdef CONFIG_COMPAT_32BIT_TIME
753 
754 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
755 		       struct old_itimerspec32 __user *, setting)
756 {
757 	struct itimerspec64 cur_setting;
758 
759 	int ret = do_timer_gettime(timer_id, &cur_setting);
760 	if (!ret) {
761 		if (put_old_itimerspec32(&cur_setting, setting))
762 			ret = -EFAULT;
763 	}
764 	return ret;
765 }
766 
767 #endif
768 
769 /*
770  * Get the number of overruns of a POSIX.1b interval timer.  This is to
771  * be the overrun of the timer last delivered.  At the same time we are
772  * accumulating overruns on the next timer.  The overrun is frozen when
773  * the signal is delivered, either at the notify time (if the info block
774  * is not queued) or at the actual delivery time (as we are informed by
775  * the call back to posixtimer_rearm().  So all we need to do is
776  * to pick up the frozen overrun.
777  */
778 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
779 {
780 	struct k_itimer *timr;
781 	int overrun;
782 	unsigned long flags;
783 
784 	timr = lock_timer(timer_id, &flags);
785 	if (!timr)
786 		return -EINVAL;
787 
788 	overrun = timer_overrun_to_int(timr, 0);
789 	unlock_timer(timr, flags);
790 
791 	return overrun;
792 }
793 
794 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
795 			       bool absolute, bool sigev_none)
796 {
797 	struct hrtimer *timer = &timr->it.real.timer;
798 	enum hrtimer_mode mode;
799 
800 	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
801 	/*
802 	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
803 	 * clock modifications, so they become CLOCK_MONOTONIC based under the
804 	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
805 	 * functions which use timr->kclock->clock_get() work.
806 	 *
807 	 * Note: it_clock stays unmodified, because the next timer_set() might
808 	 * use ABSTIME, so it needs to switch back.
809 	 */
810 	if (timr->it_clock == CLOCK_REALTIME)
811 		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
812 
813 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
814 	timr->it.real.timer.function = posix_timer_fn;
815 
816 	if (!absolute)
817 		expires = ktime_add_safe(expires, timer->base->get_time());
818 	hrtimer_set_expires(timer, expires);
819 
820 	if (!sigev_none)
821 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
822 }
823 
824 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
825 {
826 	return hrtimer_try_to_cancel(&timr->it.real.timer);
827 }
828 
829 /* Set a POSIX.1b interval timer. */
830 int common_timer_set(struct k_itimer *timr, int flags,
831 		     struct itimerspec64 *new_setting,
832 		     struct itimerspec64 *old_setting)
833 {
834 	const struct k_clock *kc = timr->kclock;
835 	bool sigev_none;
836 	ktime_t expires;
837 
838 	if (old_setting)
839 		common_timer_get(timr, old_setting);
840 
841 	/* Prevent rearming by clearing the interval */
842 	timr->it_interval = 0;
843 	/*
844 	 * Careful here. On SMP systems the timer expiry function could be
845 	 * active and spinning on timr->it_lock.
846 	 */
847 	if (kc->timer_try_to_cancel(timr) < 0)
848 		return TIMER_RETRY;
849 
850 	timr->it_active = 0;
851 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
852 		~REQUEUE_PENDING;
853 	timr->it_overrun_last = 0;
854 
855 	/* Switch off the timer when it_value is zero */
856 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
857 		return 0;
858 
859 	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
860 	expires = timespec64_to_ktime(new_setting->it_value);
861 	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
862 
863 	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
864 	timr->it_active = !sigev_none;
865 	return 0;
866 }
867 
868 static int do_timer_settime(timer_t timer_id, int flags,
869 			    struct itimerspec64 *new_spec64,
870 			    struct itimerspec64 *old_spec64)
871 {
872 	const struct k_clock *kc;
873 	struct k_itimer *timr;
874 	unsigned long flag;
875 	int error = 0;
876 
877 	if (!timespec64_valid(&new_spec64->it_interval) ||
878 	    !timespec64_valid(&new_spec64->it_value))
879 		return -EINVAL;
880 
881 	if (old_spec64)
882 		memset(old_spec64, 0, sizeof(*old_spec64));
883 retry:
884 	timr = lock_timer(timer_id, &flag);
885 	if (!timr)
886 		return -EINVAL;
887 
888 	kc = timr->kclock;
889 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
890 		error = -EINVAL;
891 	else
892 		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
893 
894 	unlock_timer(timr, flag);
895 	if (error == TIMER_RETRY) {
896 		old_spec64 = NULL;	// We already got the old time...
897 		goto retry;
898 	}
899 
900 	return error;
901 }
902 
903 /* Set a POSIX.1b interval timer */
904 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
905 		const struct __kernel_itimerspec __user *, new_setting,
906 		struct __kernel_itimerspec __user *, old_setting)
907 {
908 	struct itimerspec64 new_spec, old_spec;
909 	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
910 	int error = 0;
911 
912 	if (!new_setting)
913 		return -EINVAL;
914 
915 	if (get_itimerspec64(&new_spec, new_setting))
916 		return -EFAULT;
917 
918 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
919 	if (!error && old_setting) {
920 		if (put_itimerspec64(&old_spec, old_setting))
921 			error = -EFAULT;
922 	}
923 	return error;
924 }
925 
926 #ifdef CONFIG_COMPAT_32BIT_TIME
927 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
928 		       struct old_itimerspec32 __user *, new,
929 		       struct old_itimerspec32 __user *, old)
930 {
931 	struct itimerspec64 new_spec, old_spec;
932 	struct itimerspec64 *rtn = old ? &old_spec : NULL;
933 	int error = 0;
934 
935 	if (!new)
936 		return -EINVAL;
937 	if (get_old_itimerspec32(&new_spec, new))
938 		return -EFAULT;
939 
940 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
941 	if (!error && old) {
942 		if (put_old_itimerspec32(&old_spec, old))
943 			error = -EFAULT;
944 	}
945 	return error;
946 }
947 #endif
948 
949 int common_timer_del(struct k_itimer *timer)
950 {
951 	const struct k_clock *kc = timer->kclock;
952 
953 	timer->it_interval = 0;
954 	if (kc->timer_try_to_cancel(timer) < 0)
955 		return TIMER_RETRY;
956 	timer->it_active = 0;
957 	return 0;
958 }
959 
960 static inline int timer_delete_hook(struct k_itimer *timer)
961 {
962 	const struct k_clock *kc = timer->kclock;
963 
964 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
965 		return -EINVAL;
966 	return kc->timer_del(timer);
967 }
968 
969 /* Delete a POSIX.1b interval timer. */
970 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
971 {
972 	struct k_itimer *timer;
973 	unsigned long flags;
974 
975 retry_delete:
976 	timer = lock_timer(timer_id, &flags);
977 	if (!timer)
978 		return -EINVAL;
979 
980 	if (timer_delete_hook(timer) == TIMER_RETRY) {
981 		unlock_timer(timer, flags);
982 		goto retry_delete;
983 	}
984 
985 	spin_lock(&current->sighand->siglock);
986 	list_del(&timer->list);
987 	spin_unlock(&current->sighand->siglock);
988 	/*
989 	 * This keeps any tasks waiting on the spin lock from thinking
990 	 * they got something (see the lock code above).
991 	 */
992 	timer->it_signal = NULL;
993 
994 	unlock_timer(timer, flags);
995 	release_posix_timer(timer, IT_ID_SET);
996 	return 0;
997 }
998 
999 /*
1000  * return timer owned by the process, used by exit_itimers
1001  */
1002 static void itimer_delete(struct k_itimer *timer)
1003 {
1004 	unsigned long flags;
1005 
1006 retry_delete:
1007 	spin_lock_irqsave(&timer->it_lock, flags);
1008 
1009 	if (timer_delete_hook(timer) == TIMER_RETRY) {
1010 		unlock_timer(timer, flags);
1011 		goto retry_delete;
1012 	}
1013 	list_del(&timer->list);
1014 	/*
1015 	 * This keeps any tasks waiting on the spin lock from thinking
1016 	 * they got something (see the lock code above).
1017 	 */
1018 	timer->it_signal = NULL;
1019 
1020 	unlock_timer(timer, flags);
1021 	release_posix_timer(timer, IT_ID_SET);
1022 }
1023 
1024 /*
1025  * This is called by do_exit or de_thread, only when there are no more
1026  * references to the shared signal_struct.
1027  */
1028 void exit_itimers(struct signal_struct *sig)
1029 {
1030 	struct k_itimer *tmr;
1031 
1032 	while (!list_empty(&sig->posix_timers)) {
1033 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1034 		itimer_delete(tmr);
1035 	}
1036 }
1037 
1038 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1039 		const struct __kernel_timespec __user *, tp)
1040 {
1041 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1042 	struct timespec64 new_tp;
1043 
1044 	if (!kc || !kc->clock_set)
1045 		return -EINVAL;
1046 
1047 	if (get_timespec64(&new_tp, tp))
1048 		return -EFAULT;
1049 
1050 	return kc->clock_set(which_clock, &new_tp);
1051 }
1052 
1053 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1054 		struct __kernel_timespec __user *, tp)
1055 {
1056 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1057 	struct timespec64 kernel_tp;
1058 	int error;
1059 
1060 	if (!kc)
1061 		return -EINVAL;
1062 
1063 	error = kc->clock_get(which_clock, &kernel_tp);
1064 
1065 	if (!error && put_timespec64(&kernel_tp, tp))
1066 		error = -EFAULT;
1067 
1068 	return error;
1069 }
1070 
1071 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1072 		struct timex __user *, utx)
1073 {
1074 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1075 	struct timex ktx;
1076 	int err;
1077 
1078 	if (!kc)
1079 		return -EINVAL;
1080 	if (!kc->clock_adj)
1081 		return -EOPNOTSUPP;
1082 
1083 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1084 		return -EFAULT;
1085 
1086 	err = kc->clock_adj(which_clock, &ktx);
1087 
1088 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1089 		return -EFAULT;
1090 
1091 	return err;
1092 }
1093 
1094 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1095 		struct __kernel_timespec __user *, tp)
1096 {
1097 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1098 	struct timespec64 rtn_tp;
1099 	int error;
1100 
1101 	if (!kc)
1102 		return -EINVAL;
1103 
1104 	error = kc->clock_getres(which_clock, &rtn_tp);
1105 
1106 	if (!error && tp && put_timespec64(&rtn_tp, tp))
1107 		error = -EFAULT;
1108 
1109 	return error;
1110 }
1111 
1112 #ifdef CONFIG_COMPAT_32BIT_TIME
1113 
1114 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1115 		       struct old_timespec32 __user *, tp)
1116 {
1117 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1118 	struct timespec64 ts;
1119 
1120 	if (!kc || !kc->clock_set)
1121 		return -EINVAL;
1122 
1123 	if (get_old_timespec32(&ts, tp))
1124 		return -EFAULT;
1125 
1126 	return kc->clock_set(which_clock, &ts);
1127 }
1128 
1129 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1130 		       struct old_timespec32 __user *, tp)
1131 {
1132 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1133 	struct timespec64 ts;
1134 	int err;
1135 
1136 	if (!kc)
1137 		return -EINVAL;
1138 
1139 	err = kc->clock_get(which_clock, &ts);
1140 
1141 	if (!err && put_old_timespec32(&ts, tp))
1142 		err = -EFAULT;
1143 
1144 	return err;
1145 }
1146 
1147 #endif
1148 
1149 #ifdef CONFIG_COMPAT
1150 
1151 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1152 		       struct compat_timex __user *, utp)
1153 {
1154 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1155 	struct timex ktx;
1156 	int err;
1157 
1158 	if (!kc)
1159 		return -EINVAL;
1160 	if (!kc->clock_adj)
1161 		return -EOPNOTSUPP;
1162 
1163 	err = compat_get_timex(&ktx, utp);
1164 	if (err)
1165 		return err;
1166 
1167 	err = kc->clock_adj(which_clock, &ktx);
1168 
1169 	if (err >= 0)
1170 		err = compat_put_timex(utp, &ktx);
1171 
1172 	return err;
1173 }
1174 
1175 #endif
1176 
1177 #ifdef CONFIG_COMPAT_32BIT_TIME
1178 
1179 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1180 		       struct old_timespec32 __user *, tp)
1181 {
1182 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1183 	struct timespec64 ts;
1184 	int err;
1185 
1186 	if (!kc)
1187 		return -EINVAL;
1188 
1189 	err = kc->clock_getres(which_clock, &ts);
1190 	if (!err && tp && put_old_timespec32(&ts, tp))
1191 		return -EFAULT;
1192 
1193 	return err;
1194 }
1195 
1196 #endif
1197 
1198 /*
1199  * nanosleep for monotonic and realtime clocks
1200  */
1201 static int common_nsleep(const clockid_t which_clock, int flags,
1202 			 const struct timespec64 *rqtp)
1203 {
1204 	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1205 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1206 				 which_clock);
1207 }
1208 
1209 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1210 		const struct __kernel_timespec __user *, rqtp,
1211 		struct __kernel_timespec __user *, rmtp)
1212 {
1213 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1214 	struct timespec64 t;
1215 
1216 	if (!kc)
1217 		return -EINVAL;
1218 	if (!kc->nsleep)
1219 		return -EOPNOTSUPP;
1220 
1221 	if (get_timespec64(&t, rqtp))
1222 		return -EFAULT;
1223 
1224 	if (!timespec64_valid(&t))
1225 		return -EINVAL;
1226 	if (flags & TIMER_ABSTIME)
1227 		rmtp = NULL;
1228 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1229 	current->restart_block.nanosleep.rmtp = rmtp;
1230 
1231 	return kc->nsleep(which_clock, flags, &t);
1232 }
1233 
1234 #ifdef CONFIG_COMPAT_32BIT_TIME
1235 
1236 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1237 		       struct old_timespec32 __user *, rqtp,
1238 		       struct old_timespec32 __user *, rmtp)
1239 {
1240 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1241 	struct timespec64 t;
1242 
1243 	if (!kc)
1244 		return -EINVAL;
1245 	if (!kc->nsleep)
1246 		return -EOPNOTSUPP;
1247 
1248 	if (get_old_timespec32(&t, rqtp))
1249 		return -EFAULT;
1250 
1251 	if (!timespec64_valid(&t))
1252 		return -EINVAL;
1253 	if (flags & TIMER_ABSTIME)
1254 		rmtp = NULL;
1255 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1256 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1257 
1258 	return kc->nsleep(which_clock, flags, &t);
1259 }
1260 
1261 #endif
1262 
1263 static const struct k_clock clock_realtime = {
1264 	.clock_getres		= posix_get_hrtimer_res,
1265 	.clock_get		= posix_clock_realtime_get,
1266 	.clock_set		= posix_clock_realtime_set,
1267 	.clock_adj		= posix_clock_realtime_adj,
1268 	.nsleep			= common_nsleep,
1269 	.timer_create		= common_timer_create,
1270 	.timer_set		= common_timer_set,
1271 	.timer_get		= common_timer_get,
1272 	.timer_del		= common_timer_del,
1273 	.timer_rearm		= common_hrtimer_rearm,
1274 	.timer_forward		= common_hrtimer_forward,
1275 	.timer_remaining	= common_hrtimer_remaining,
1276 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1277 	.timer_arm		= common_hrtimer_arm,
1278 };
1279 
1280 static const struct k_clock clock_monotonic = {
1281 	.clock_getres		= posix_get_hrtimer_res,
1282 	.clock_get		= posix_ktime_get_ts,
1283 	.nsleep			= common_nsleep,
1284 	.timer_create		= common_timer_create,
1285 	.timer_set		= common_timer_set,
1286 	.timer_get		= common_timer_get,
1287 	.timer_del		= common_timer_del,
1288 	.timer_rearm		= common_hrtimer_rearm,
1289 	.timer_forward		= common_hrtimer_forward,
1290 	.timer_remaining	= common_hrtimer_remaining,
1291 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1292 	.timer_arm		= common_hrtimer_arm,
1293 };
1294 
1295 static const struct k_clock clock_monotonic_raw = {
1296 	.clock_getres		= posix_get_hrtimer_res,
1297 	.clock_get		= posix_get_monotonic_raw,
1298 };
1299 
1300 static const struct k_clock clock_realtime_coarse = {
1301 	.clock_getres		= posix_get_coarse_res,
1302 	.clock_get		= posix_get_realtime_coarse,
1303 };
1304 
1305 static const struct k_clock clock_monotonic_coarse = {
1306 	.clock_getres		= posix_get_coarse_res,
1307 	.clock_get		= posix_get_monotonic_coarse,
1308 };
1309 
1310 static const struct k_clock clock_tai = {
1311 	.clock_getres		= posix_get_hrtimer_res,
1312 	.clock_get		= posix_get_tai,
1313 	.nsleep			= common_nsleep,
1314 	.timer_create		= common_timer_create,
1315 	.timer_set		= common_timer_set,
1316 	.timer_get		= common_timer_get,
1317 	.timer_del		= common_timer_del,
1318 	.timer_rearm		= common_hrtimer_rearm,
1319 	.timer_forward		= common_hrtimer_forward,
1320 	.timer_remaining	= common_hrtimer_remaining,
1321 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1322 	.timer_arm		= common_hrtimer_arm,
1323 };
1324 
1325 static const struct k_clock clock_boottime = {
1326 	.clock_getres		= posix_get_hrtimer_res,
1327 	.clock_get		= posix_get_boottime,
1328 	.nsleep			= common_nsleep,
1329 	.timer_create		= common_timer_create,
1330 	.timer_set		= common_timer_set,
1331 	.timer_get		= common_timer_get,
1332 	.timer_del		= common_timer_del,
1333 	.timer_rearm		= common_hrtimer_rearm,
1334 	.timer_forward		= common_hrtimer_forward,
1335 	.timer_remaining	= common_hrtimer_remaining,
1336 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1337 	.timer_arm		= common_hrtimer_arm,
1338 };
1339 
1340 static const struct k_clock * const posix_clocks[] = {
1341 	[CLOCK_REALTIME]		= &clock_realtime,
1342 	[CLOCK_MONOTONIC]		= &clock_monotonic,
1343 	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1344 	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1345 	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1346 	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1347 	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1348 	[CLOCK_BOOTTIME]		= &clock_boottime,
1349 	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1350 	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1351 	[CLOCK_TAI]			= &clock_tai,
1352 };
1353 
1354 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1355 {
1356 	clockid_t idx = id;
1357 
1358 	if (id < 0) {
1359 		return (id & CLOCKFD_MASK) == CLOCKFD ?
1360 			&clock_posix_dynamic : &clock_posix_cpu;
1361 	}
1362 
1363 	if (id >= ARRAY_SIZE(posix_clocks))
1364 		return NULL;
1365 
1366 	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1367 }
1368