1 /* 2 * linux/kernel/posix-timers.c 3 * 4 * 5 * 2002-10-15 Posix Clocks & timers 6 * by George Anzinger george@mvista.com 7 * 8 * Copyright (C) 2002 2003 by MontaVista Software. 9 * 10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 11 * Copyright (C) 2004 Boris Hu 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA 28 */ 29 30 /* These are all the functions necessary to implement 31 * POSIX clocks & timers 32 */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/slab.h> 36 #include <linux/time.h> 37 #include <linux/mutex.h> 38 #include <linux/sched/task.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/list.h> 42 #include <linux/init.h> 43 #include <linux/compiler.h> 44 #include <linux/hash.h> 45 #include <linux/posix-clock.h> 46 #include <linux/posix-timers.h> 47 #include <linux/syscalls.h> 48 #include <linux/wait.h> 49 #include <linux/workqueue.h> 50 #include <linux/export.h> 51 #include <linux/hashtable.h> 52 #include <linux/compat.h> 53 #include <linux/nospec.h> 54 55 #include "timekeeping.h" 56 #include "posix-timers.h" 57 58 /* 59 * Management arrays for POSIX timers. Timers are now kept in static hash table 60 * with 512 entries. 61 * Timer ids are allocated by local routine, which selects proper hash head by 62 * key, constructed from current->signal address and per signal struct counter. 63 * This keeps timer ids unique per process, but now they can intersect between 64 * processes. 65 */ 66 67 /* 68 * Lets keep our timers in a slab cache :-) 69 */ 70 static struct kmem_cache *posix_timers_cache; 71 72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 73 static DEFINE_SPINLOCK(hash_lock); 74 75 static const struct k_clock * const posix_clocks[]; 76 static const struct k_clock *clockid_to_kclock(const clockid_t id); 77 static const struct k_clock clock_realtime, clock_monotonic; 78 79 /* 80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other 81 * SIGEV values. Here we put out an error if this assumption fails. 82 */ 83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 86 #endif 87 88 /* 89 * The timer ID is turned into a timer address by idr_find(). 90 * Verifying a valid ID consists of: 91 * 92 * a) checking that idr_find() returns other than -1. 93 * b) checking that the timer id matches the one in the timer itself. 94 * c) that the timer owner is in the callers thread group. 95 */ 96 97 /* 98 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us 99 * to implement others. This structure defines the various 100 * clocks. 101 * 102 * RESOLUTION: Clock resolution is used to round up timer and interval 103 * times, NOT to report clock times, which are reported with as 104 * much resolution as the system can muster. In some cases this 105 * resolution may depend on the underlying clock hardware and 106 * may not be quantifiable until run time, and only then is the 107 * necessary code is written. The standard says we should say 108 * something about this issue in the documentation... 109 * 110 * FUNCTIONS: The CLOCKs structure defines possible functions to 111 * handle various clock functions. 112 * 113 * The standard POSIX timer management code assumes the 114 * following: 1.) The k_itimer struct (sched.h) is used for 115 * the timer. 2.) The list, it_lock, it_clock, it_id and 116 * it_pid fields are not modified by timer code. 117 * 118 * Permissions: It is assumed that the clock_settime() function defined 119 * for each clock will take care of permission checks. Some 120 * clocks may be set able by any user (i.e. local process 121 * clocks) others not. Currently the only set able clock we 122 * have is CLOCK_REALTIME and its high res counter part, both of 123 * which we beg off on and pass to do_sys_settimeofday(). 124 */ 125 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 126 127 #define lock_timer(tid, flags) \ 128 ({ struct k_itimer *__timr; \ 129 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 130 __timr; \ 131 }) 132 133 static int hash(struct signal_struct *sig, unsigned int nr) 134 { 135 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 136 } 137 138 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 139 struct signal_struct *sig, 140 timer_t id) 141 { 142 struct k_itimer *timer; 143 144 hlist_for_each_entry_rcu(timer, head, t_hash) { 145 if ((timer->it_signal == sig) && (timer->it_id == id)) 146 return timer; 147 } 148 return NULL; 149 } 150 151 static struct k_itimer *posix_timer_by_id(timer_t id) 152 { 153 struct signal_struct *sig = current->signal; 154 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 155 156 return __posix_timers_find(head, sig, id); 157 } 158 159 static int posix_timer_add(struct k_itimer *timer) 160 { 161 struct signal_struct *sig = current->signal; 162 int first_free_id = sig->posix_timer_id; 163 struct hlist_head *head; 164 int ret = -ENOENT; 165 166 do { 167 spin_lock(&hash_lock); 168 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; 169 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { 170 hlist_add_head_rcu(&timer->t_hash, head); 171 ret = sig->posix_timer_id; 172 } 173 if (++sig->posix_timer_id < 0) 174 sig->posix_timer_id = 0; 175 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) 176 /* Loop over all possible ids completed */ 177 ret = -EAGAIN; 178 spin_unlock(&hash_lock); 179 } while (ret == -ENOENT); 180 return ret; 181 } 182 183 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 184 { 185 spin_unlock_irqrestore(&timr->it_lock, flags); 186 } 187 188 /* Get clock_realtime */ 189 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp) 190 { 191 ktime_get_real_ts64(tp); 192 return 0; 193 } 194 195 /* Set clock_realtime */ 196 static int posix_clock_realtime_set(const clockid_t which_clock, 197 const struct timespec64 *tp) 198 { 199 return do_sys_settimeofday64(tp, NULL); 200 } 201 202 static int posix_clock_realtime_adj(const clockid_t which_clock, 203 struct timex *t) 204 { 205 return do_adjtimex(t); 206 } 207 208 /* 209 * Get monotonic time for posix timers 210 */ 211 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp) 212 { 213 ktime_get_ts64(tp); 214 return 0; 215 } 216 217 /* 218 * Get monotonic-raw time for posix timers 219 */ 220 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 221 { 222 ktime_get_raw_ts64(tp); 223 return 0; 224 } 225 226 227 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 228 { 229 ktime_get_coarse_real_ts64(tp); 230 return 0; 231 } 232 233 static int posix_get_monotonic_coarse(clockid_t which_clock, 234 struct timespec64 *tp) 235 { 236 ktime_get_coarse_ts64(tp); 237 return 0; 238 } 239 240 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 241 { 242 *tp = ktime_to_timespec64(KTIME_LOW_RES); 243 return 0; 244 } 245 246 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp) 247 { 248 ktime_get_boottime_ts64(tp); 249 return 0; 250 } 251 252 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp) 253 { 254 ktime_get_clocktai_ts64(tp); 255 return 0; 256 } 257 258 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 259 { 260 tp->tv_sec = 0; 261 tp->tv_nsec = hrtimer_resolution; 262 return 0; 263 } 264 265 /* 266 * Initialize everything, well, just everything in Posix clocks/timers ;) 267 */ 268 static __init int init_posix_timers(void) 269 { 270 posix_timers_cache = kmem_cache_create("posix_timers_cache", 271 sizeof (struct k_itimer), 0, SLAB_PANIC, 272 NULL); 273 return 0; 274 } 275 __initcall(init_posix_timers); 276 277 /* 278 * The siginfo si_overrun field and the return value of timer_getoverrun(2) 279 * are of type int. Clamp the overrun value to INT_MAX 280 */ 281 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) 282 { 283 s64 sum = timr->it_overrun_last + (s64)baseval; 284 285 return sum > (s64)INT_MAX ? INT_MAX : (int)sum; 286 } 287 288 static void common_hrtimer_rearm(struct k_itimer *timr) 289 { 290 struct hrtimer *timer = &timr->it.real.timer; 291 292 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), 293 timr->it_interval); 294 hrtimer_restart(timer); 295 } 296 297 /* 298 * This function is exported for use by the signal deliver code. It is 299 * called just prior to the info block being released and passes that 300 * block to us. It's function is to update the overrun entry AND to 301 * restart the timer. It should only be called if the timer is to be 302 * restarted (i.e. we have flagged this in the sys_private entry of the 303 * info block). 304 * 305 * To protect against the timer going away while the interrupt is queued, 306 * we require that the it_requeue_pending flag be set. 307 */ 308 void posixtimer_rearm(struct kernel_siginfo *info) 309 { 310 struct k_itimer *timr; 311 unsigned long flags; 312 313 timr = lock_timer(info->si_tid, &flags); 314 if (!timr) 315 return; 316 317 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) { 318 timr->kclock->timer_rearm(timr); 319 320 timr->it_active = 1; 321 timr->it_overrun_last = timr->it_overrun; 322 timr->it_overrun = -1LL; 323 ++timr->it_requeue_pending; 324 325 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); 326 } 327 328 unlock_timer(timr, flags); 329 } 330 331 int posix_timer_event(struct k_itimer *timr, int si_private) 332 { 333 enum pid_type type; 334 int ret = -1; 335 /* 336 * FIXME: if ->sigq is queued we can race with 337 * dequeue_signal()->posixtimer_rearm(). 338 * 339 * If dequeue_signal() sees the "right" value of 340 * si_sys_private it calls posixtimer_rearm(). 341 * We re-queue ->sigq and drop ->it_lock(). 342 * posixtimer_rearm() locks the timer 343 * and re-schedules it while ->sigq is pending. 344 * Not really bad, but not that we want. 345 */ 346 timr->sigq->info.si_sys_private = si_private; 347 348 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID; 349 ret = send_sigqueue(timr->sigq, timr->it_pid, type); 350 /* If we failed to send the signal the timer stops. */ 351 return ret > 0; 352 } 353 354 /* 355 * This function gets called when a POSIX.1b interval timer expires. It 356 * is used as a callback from the kernel internal timer. The 357 * run_timer_list code ALWAYS calls with interrupts on. 358 359 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. 360 */ 361 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 362 { 363 struct k_itimer *timr; 364 unsigned long flags; 365 int si_private = 0; 366 enum hrtimer_restart ret = HRTIMER_NORESTART; 367 368 timr = container_of(timer, struct k_itimer, it.real.timer); 369 spin_lock_irqsave(&timr->it_lock, flags); 370 371 timr->it_active = 0; 372 if (timr->it_interval != 0) 373 si_private = ++timr->it_requeue_pending; 374 375 if (posix_timer_event(timr, si_private)) { 376 /* 377 * signal was not sent because of sig_ignor 378 * we will not get a call back to restart it AND 379 * it should be restarted. 380 */ 381 if (timr->it_interval != 0) { 382 ktime_t now = hrtimer_cb_get_time(timer); 383 384 /* 385 * FIXME: What we really want, is to stop this 386 * timer completely and restart it in case the 387 * SIG_IGN is removed. This is a non trivial 388 * change which involves sighand locking 389 * (sigh !), which we don't want to do late in 390 * the release cycle. 391 * 392 * For now we just let timers with an interval 393 * less than a jiffie expire every jiffie to 394 * avoid softirq starvation in case of SIG_IGN 395 * and a very small interval, which would put 396 * the timer right back on the softirq pending 397 * list. By moving now ahead of time we trick 398 * hrtimer_forward() to expire the timer 399 * later, while we still maintain the overrun 400 * accuracy, but have some inconsistency in 401 * the timer_gettime() case. This is at least 402 * better than a starved softirq. A more 403 * complex fix which solves also another related 404 * inconsistency is already in the pipeline. 405 */ 406 #ifdef CONFIG_HIGH_RES_TIMERS 407 { 408 ktime_t kj = NSEC_PER_SEC / HZ; 409 410 if (timr->it_interval < kj) 411 now = ktime_add(now, kj); 412 } 413 #endif 414 timr->it_overrun += hrtimer_forward(timer, now, 415 timr->it_interval); 416 ret = HRTIMER_RESTART; 417 ++timr->it_requeue_pending; 418 timr->it_active = 1; 419 } 420 } 421 422 unlock_timer(timr, flags); 423 return ret; 424 } 425 426 static struct pid *good_sigevent(sigevent_t * event) 427 { 428 struct pid *pid = task_tgid(current); 429 struct task_struct *rtn; 430 431 switch (event->sigev_notify) { 432 case SIGEV_SIGNAL | SIGEV_THREAD_ID: 433 pid = find_vpid(event->sigev_notify_thread_id); 434 rtn = pid_task(pid, PIDTYPE_PID); 435 if (!rtn || !same_thread_group(rtn, current)) 436 return NULL; 437 /* FALLTHRU */ 438 case SIGEV_SIGNAL: 439 case SIGEV_THREAD: 440 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) 441 return NULL; 442 /* FALLTHRU */ 443 case SIGEV_NONE: 444 return pid; 445 default: 446 return NULL; 447 } 448 } 449 450 static struct k_itimer * alloc_posix_timer(void) 451 { 452 struct k_itimer *tmr; 453 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 454 if (!tmr) 455 return tmr; 456 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 457 kmem_cache_free(posix_timers_cache, tmr); 458 return NULL; 459 } 460 clear_siginfo(&tmr->sigq->info); 461 return tmr; 462 } 463 464 static void k_itimer_rcu_free(struct rcu_head *head) 465 { 466 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); 467 468 kmem_cache_free(posix_timers_cache, tmr); 469 } 470 471 #define IT_ID_SET 1 472 #define IT_ID_NOT_SET 0 473 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) 474 { 475 if (it_id_set) { 476 unsigned long flags; 477 spin_lock_irqsave(&hash_lock, flags); 478 hlist_del_rcu(&tmr->t_hash); 479 spin_unlock_irqrestore(&hash_lock, flags); 480 } 481 put_pid(tmr->it_pid); 482 sigqueue_free(tmr->sigq); 483 call_rcu(&tmr->it.rcu, k_itimer_rcu_free); 484 } 485 486 static int common_timer_create(struct k_itimer *new_timer) 487 { 488 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 489 return 0; 490 } 491 492 /* Create a POSIX.1b interval timer. */ 493 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 494 timer_t __user *created_timer_id) 495 { 496 const struct k_clock *kc = clockid_to_kclock(which_clock); 497 struct k_itimer *new_timer; 498 int error, new_timer_id; 499 int it_id_set = IT_ID_NOT_SET; 500 501 if (!kc) 502 return -EINVAL; 503 if (!kc->timer_create) 504 return -EOPNOTSUPP; 505 506 new_timer = alloc_posix_timer(); 507 if (unlikely(!new_timer)) 508 return -EAGAIN; 509 510 spin_lock_init(&new_timer->it_lock); 511 new_timer_id = posix_timer_add(new_timer); 512 if (new_timer_id < 0) { 513 error = new_timer_id; 514 goto out; 515 } 516 517 it_id_set = IT_ID_SET; 518 new_timer->it_id = (timer_t) new_timer_id; 519 new_timer->it_clock = which_clock; 520 new_timer->kclock = kc; 521 new_timer->it_overrun = -1LL; 522 523 if (event) { 524 rcu_read_lock(); 525 new_timer->it_pid = get_pid(good_sigevent(event)); 526 rcu_read_unlock(); 527 if (!new_timer->it_pid) { 528 error = -EINVAL; 529 goto out; 530 } 531 new_timer->it_sigev_notify = event->sigev_notify; 532 new_timer->sigq->info.si_signo = event->sigev_signo; 533 new_timer->sigq->info.si_value = event->sigev_value; 534 } else { 535 new_timer->it_sigev_notify = SIGEV_SIGNAL; 536 new_timer->sigq->info.si_signo = SIGALRM; 537 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); 538 new_timer->sigq->info.si_value.sival_int = new_timer->it_id; 539 new_timer->it_pid = get_pid(task_tgid(current)); 540 } 541 542 new_timer->sigq->info.si_tid = new_timer->it_id; 543 new_timer->sigq->info.si_code = SI_TIMER; 544 545 if (copy_to_user(created_timer_id, 546 &new_timer_id, sizeof (new_timer_id))) { 547 error = -EFAULT; 548 goto out; 549 } 550 551 error = kc->timer_create(new_timer); 552 if (error) 553 goto out; 554 555 spin_lock_irq(¤t->sighand->siglock); 556 new_timer->it_signal = current->signal; 557 list_add(&new_timer->list, ¤t->signal->posix_timers); 558 spin_unlock_irq(¤t->sighand->siglock); 559 560 return 0; 561 /* 562 * In the case of the timer belonging to another task, after 563 * the task is unlocked, the timer is owned by the other task 564 * and may cease to exist at any time. Don't use or modify 565 * new_timer after the unlock call. 566 */ 567 out: 568 release_posix_timer(new_timer, it_id_set); 569 return error; 570 } 571 572 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 573 struct sigevent __user *, timer_event_spec, 574 timer_t __user *, created_timer_id) 575 { 576 if (timer_event_spec) { 577 sigevent_t event; 578 579 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 580 return -EFAULT; 581 return do_timer_create(which_clock, &event, created_timer_id); 582 } 583 return do_timer_create(which_clock, NULL, created_timer_id); 584 } 585 586 #ifdef CONFIG_COMPAT 587 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 588 struct compat_sigevent __user *, timer_event_spec, 589 timer_t __user *, created_timer_id) 590 { 591 if (timer_event_spec) { 592 sigevent_t event; 593 594 if (get_compat_sigevent(&event, timer_event_spec)) 595 return -EFAULT; 596 return do_timer_create(which_clock, &event, created_timer_id); 597 } 598 return do_timer_create(which_clock, NULL, created_timer_id); 599 } 600 #endif 601 602 /* 603 * Locking issues: We need to protect the result of the id look up until 604 * we get the timer locked down so it is not deleted under us. The 605 * removal is done under the idr spinlock so we use that here to bridge 606 * the find to the timer lock. To avoid a dead lock, the timer id MUST 607 * be release with out holding the timer lock. 608 */ 609 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 610 { 611 struct k_itimer *timr; 612 613 /* 614 * timer_t could be any type >= int and we want to make sure any 615 * @timer_id outside positive int range fails lookup. 616 */ 617 if ((unsigned long long)timer_id > INT_MAX) 618 return NULL; 619 620 rcu_read_lock(); 621 timr = posix_timer_by_id(timer_id); 622 if (timr) { 623 spin_lock_irqsave(&timr->it_lock, *flags); 624 if (timr->it_signal == current->signal) { 625 rcu_read_unlock(); 626 return timr; 627 } 628 spin_unlock_irqrestore(&timr->it_lock, *flags); 629 } 630 rcu_read_unlock(); 631 632 return NULL; 633 } 634 635 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 636 { 637 struct hrtimer *timer = &timr->it.real.timer; 638 639 return __hrtimer_expires_remaining_adjusted(timer, now); 640 } 641 642 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 643 { 644 struct hrtimer *timer = &timr->it.real.timer; 645 646 return hrtimer_forward(timer, now, timr->it_interval); 647 } 648 649 /* 650 * Get the time remaining on a POSIX.1b interval timer. This function 651 * is ALWAYS called with spin_lock_irq on the timer, thus it must not 652 * mess with irq. 653 * 654 * We have a couple of messes to clean up here. First there is the case 655 * of a timer that has a requeue pending. These timers should appear to 656 * be in the timer list with an expiry as if we were to requeue them 657 * now. 658 * 659 * The second issue is the SIGEV_NONE timer which may be active but is 660 * not really ever put in the timer list (to save system resources). 661 * This timer may be expired, and if so, we will do it here. Otherwise 662 * it is the same as a requeue pending timer WRT to what we should 663 * report. 664 */ 665 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 666 { 667 const struct k_clock *kc = timr->kclock; 668 ktime_t now, remaining, iv; 669 struct timespec64 ts64; 670 bool sig_none; 671 672 sig_none = timr->it_sigev_notify == SIGEV_NONE; 673 iv = timr->it_interval; 674 675 /* interval timer ? */ 676 if (iv) { 677 cur_setting->it_interval = ktime_to_timespec64(iv); 678 } else if (!timr->it_active) { 679 /* 680 * SIGEV_NONE oneshot timers are never queued. Check them 681 * below. 682 */ 683 if (!sig_none) 684 return; 685 } 686 687 /* 688 * The timespec64 based conversion is suboptimal, but it's not 689 * worth to implement yet another callback. 690 */ 691 kc->clock_get(timr->it_clock, &ts64); 692 now = timespec64_to_ktime(ts64); 693 694 /* 695 * When a requeue is pending or this is a SIGEV_NONE timer move the 696 * expiry time forward by intervals, so expiry is > now. 697 */ 698 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) 699 timr->it_overrun += kc->timer_forward(timr, now); 700 701 remaining = kc->timer_remaining(timr, now); 702 /* Return 0 only, when the timer is expired and not pending */ 703 if (remaining <= 0) { 704 /* 705 * A single shot SIGEV_NONE timer must return 0, when 706 * it is expired ! 707 */ 708 if (!sig_none) 709 cur_setting->it_value.tv_nsec = 1; 710 } else { 711 cur_setting->it_value = ktime_to_timespec64(remaining); 712 } 713 } 714 715 /* Get the time remaining on a POSIX.1b interval timer. */ 716 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 717 { 718 struct k_itimer *timr; 719 const struct k_clock *kc; 720 unsigned long flags; 721 int ret = 0; 722 723 timr = lock_timer(timer_id, &flags); 724 if (!timr) 725 return -EINVAL; 726 727 memset(setting, 0, sizeof(*setting)); 728 kc = timr->kclock; 729 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 730 ret = -EINVAL; 731 else 732 kc->timer_get(timr, setting); 733 734 unlock_timer(timr, flags); 735 return ret; 736 } 737 738 /* Get the time remaining on a POSIX.1b interval timer. */ 739 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 740 struct __kernel_itimerspec __user *, setting) 741 { 742 struct itimerspec64 cur_setting; 743 744 int ret = do_timer_gettime(timer_id, &cur_setting); 745 if (!ret) { 746 if (put_itimerspec64(&cur_setting, setting)) 747 ret = -EFAULT; 748 } 749 return ret; 750 } 751 752 #ifdef CONFIG_COMPAT_32BIT_TIME 753 754 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 755 struct old_itimerspec32 __user *, setting) 756 { 757 struct itimerspec64 cur_setting; 758 759 int ret = do_timer_gettime(timer_id, &cur_setting); 760 if (!ret) { 761 if (put_old_itimerspec32(&cur_setting, setting)) 762 ret = -EFAULT; 763 } 764 return ret; 765 } 766 767 #endif 768 769 /* 770 * Get the number of overruns of a POSIX.1b interval timer. This is to 771 * be the overrun of the timer last delivered. At the same time we are 772 * accumulating overruns on the next timer. The overrun is frozen when 773 * the signal is delivered, either at the notify time (if the info block 774 * is not queued) or at the actual delivery time (as we are informed by 775 * the call back to posixtimer_rearm(). So all we need to do is 776 * to pick up the frozen overrun. 777 */ 778 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 779 { 780 struct k_itimer *timr; 781 int overrun; 782 unsigned long flags; 783 784 timr = lock_timer(timer_id, &flags); 785 if (!timr) 786 return -EINVAL; 787 788 overrun = timer_overrun_to_int(timr, 0); 789 unlock_timer(timr, flags); 790 791 return overrun; 792 } 793 794 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 795 bool absolute, bool sigev_none) 796 { 797 struct hrtimer *timer = &timr->it.real.timer; 798 enum hrtimer_mode mode; 799 800 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 801 /* 802 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 803 * clock modifications, so they become CLOCK_MONOTONIC based under the 804 * hood. See hrtimer_init(). Update timr->kclock, so the generic 805 * functions which use timr->kclock->clock_get() work. 806 * 807 * Note: it_clock stays unmodified, because the next timer_set() might 808 * use ABSTIME, so it needs to switch back. 809 */ 810 if (timr->it_clock == CLOCK_REALTIME) 811 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 812 813 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 814 timr->it.real.timer.function = posix_timer_fn; 815 816 if (!absolute) 817 expires = ktime_add_safe(expires, timer->base->get_time()); 818 hrtimer_set_expires(timer, expires); 819 820 if (!sigev_none) 821 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 822 } 823 824 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 825 { 826 return hrtimer_try_to_cancel(&timr->it.real.timer); 827 } 828 829 /* Set a POSIX.1b interval timer. */ 830 int common_timer_set(struct k_itimer *timr, int flags, 831 struct itimerspec64 *new_setting, 832 struct itimerspec64 *old_setting) 833 { 834 const struct k_clock *kc = timr->kclock; 835 bool sigev_none; 836 ktime_t expires; 837 838 if (old_setting) 839 common_timer_get(timr, old_setting); 840 841 /* Prevent rearming by clearing the interval */ 842 timr->it_interval = 0; 843 /* 844 * Careful here. On SMP systems the timer expiry function could be 845 * active and spinning on timr->it_lock. 846 */ 847 if (kc->timer_try_to_cancel(timr) < 0) 848 return TIMER_RETRY; 849 850 timr->it_active = 0; 851 timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 852 ~REQUEUE_PENDING; 853 timr->it_overrun_last = 0; 854 855 /* Switch off the timer when it_value is zero */ 856 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 857 return 0; 858 859 timr->it_interval = timespec64_to_ktime(new_setting->it_interval); 860 expires = timespec64_to_ktime(new_setting->it_value); 861 sigev_none = timr->it_sigev_notify == SIGEV_NONE; 862 863 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 864 timr->it_active = !sigev_none; 865 return 0; 866 } 867 868 static int do_timer_settime(timer_t timer_id, int flags, 869 struct itimerspec64 *new_spec64, 870 struct itimerspec64 *old_spec64) 871 { 872 const struct k_clock *kc; 873 struct k_itimer *timr; 874 unsigned long flag; 875 int error = 0; 876 877 if (!timespec64_valid(&new_spec64->it_interval) || 878 !timespec64_valid(&new_spec64->it_value)) 879 return -EINVAL; 880 881 if (old_spec64) 882 memset(old_spec64, 0, sizeof(*old_spec64)); 883 retry: 884 timr = lock_timer(timer_id, &flag); 885 if (!timr) 886 return -EINVAL; 887 888 kc = timr->kclock; 889 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 890 error = -EINVAL; 891 else 892 error = kc->timer_set(timr, flags, new_spec64, old_spec64); 893 894 unlock_timer(timr, flag); 895 if (error == TIMER_RETRY) { 896 old_spec64 = NULL; // We already got the old time... 897 goto retry; 898 } 899 900 return error; 901 } 902 903 /* Set a POSIX.1b interval timer */ 904 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 905 const struct __kernel_itimerspec __user *, new_setting, 906 struct __kernel_itimerspec __user *, old_setting) 907 { 908 struct itimerspec64 new_spec, old_spec; 909 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; 910 int error = 0; 911 912 if (!new_setting) 913 return -EINVAL; 914 915 if (get_itimerspec64(&new_spec, new_setting)) 916 return -EFAULT; 917 918 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 919 if (!error && old_setting) { 920 if (put_itimerspec64(&old_spec, old_setting)) 921 error = -EFAULT; 922 } 923 return error; 924 } 925 926 #ifdef CONFIG_COMPAT_32BIT_TIME 927 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 928 struct old_itimerspec32 __user *, new, 929 struct old_itimerspec32 __user *, old) 930 { 931 struct itimerspec64 new_spec, old_spec; 932 struct itimerspec64 *rtn = old ? &old_spec : NULL; 933 int error = 0; 934 935 if (!new) 936 return -EINVAL; 937 if (get_old_itimerspec32(&new_spec, new)) 938 return -EFAULT; 939 940 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 941 if (!error && old) { 942 if (put_old_itimerspec32(&old_spec, old)) 943 error = -EFAULT; 944 } 945 return error; 946 } 947 #endif 948 949 int common_timer_del(struct k_itimer *timer) 950 { 951 const struct k_clock *kc = timer->kclock; 952 953 timer->it_interval = 0; 954 if (kc->timer_try_to_cancel(timer) < 0) 955 return TIMER_RETRY; 956 timer->it_active = 0; 957 return 0; 958 } 959 960 static inline int timer_delete_hook(struct k_itimer *timer) 961 { 962 const struct k_clock *kc = timer->kclock; 963 964 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 965 return -EINVAL; 966 return kc->timer_del(timer); 967 } 968 969 /* Delete a POSIX.1b interval timer. */ 970 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 971 { 972 struct k_itimer *timer; 973 unsigned long flags; 974 975 retry_delete: 976 timer = lock_timer(timer_id, &flags); 977 if (!timer) 978 return -EINVAL; 979 980 if (timer_delete_hook(timer) == TIMER_RETRY) { 981 unlock_timer(timer, flags); 982 goto retry_delete; 983 } 984 985 spin_lock(¤t->sighand->siglock); 986 list_del(&timer->list); 987 spin_unlock(¤t->sighand->siglock); 988 /* 989 * This keeps any tasks waiting on the spin lock from thinking 990 * they got something (see the lock code above). 991 */ 992 timer->it_signal = NULL; 993 994 unlock_timer(timer, flags); 995 release_posix_timer(timer, IT_ID_SET); 996 return 0; 997 } 998 999 /* 1000 * return timer owned by the process, used by exit_itimers 1001 */ 1002 static void itimer_delete(struct k_itimer *timer) 1003 { 1004 unsigned long flags; 1005 1006 retry_delete: 1007 spin_lock_irqsave(&timer->it_lock, flags); 1008 1009 if (timer_delete_hook(timer) == TIMER_RETRY) { 1010 unlock_timer(timer, flags); 1011 goto retry_delete; 1012 } 1013 list_del(&timer->list); 1014 /* 1015 * This keeps any tasks waiting on the spin lock from thinking 1016 * they got something (see the lock code above). 1017 */ 1018 timer->it_signal = NULL; 1019 1020 unlock_timer(timer, flags); 1021 release_posix_timer(timer, IT_ID_SET); 1022 } 1023 1024 /* 1025 * This is called by do_exit or de_thread, only when there are no more 1026 * references to the shared signal_struct. 1027 */ 1028 void exit_itimers(struct signal_struct *sig) 1029 { 1030 struct k_itimer *tmr; 1031 1032 while (!list_empty(&sig->posix_timers)) { 1033 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); 1034 itimer_delete(tmr); 1035 } 1036 } 1037 1038 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1039 const struct __kernel_timespec __user *, tp) 1040 { 1041 const struct k_clock *kc = clockid_to_kclock(which_clock); 1042 struct timespec64 new_tp; 1043 1044 if (!kc || !kc->clock_set) 1045 return -EINVAL; 1046 1047 if (get_timespec64(&new_tp, tp)) 1048 return -EFAULT; 1049 1050 return kc->clock_set(which_clock, &new_tp); 1051 } 1052 1053 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1054 struct __kernel_timespec __user *, tp) 1055 { 1056 const struct k_clock *kc = clockid_to_kclock(which_clock); 1057 struct timespec64 kernel_tp; 1058 int error; 1059 1060 if (!kc) 1061 return -EINVAL; 1062 1063 error = kc->clock_get(which_clock, &kernel_tp); 1064 1065 if (!error && put_timespec64(&kernel_tp, tp)) 1066 error = -EFAULT; 1067 1068 return error; 1069 } 1070 1071 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1072 struct timex __user *, utx) 1073 { 1074 const struct k_clock *kc = clockid_to_kclock(which_clock); 1075 struct timex ktx; 1076 int err; 1077 1078 if (!kc) 1079 return -EINVAL; 1080 if (!kc->clock_adj) 1081 return -EOPNOTSUPP; 1082 1083 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1084 return -EFAULT; 1085 1086 err = kc->clock_adj(which_clock, &ktx); 1087 1088 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1089 return -EFAULT; 1090 1091 return err; 1092 } 1093 1094 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1095 struct __kernel_timespec __user *, tp) 1096 { 1097 const struct k_clock *kc = clockid_to_kclock(which_clock); 1098 struct timespec64 rtn_tp; 1099 int error; 1100 1101 if (!kc) 1102 return -EINVAL; 1103 1104 error = kc->clock_getres(which_clock, &rtn_tp); 1105 1106 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1107 error = -EFAULT; 1108 1109 return error; 1110 } 1111 1112 #ifdef CONFIG_COMPAT_32BIT_TIME 1113 1114 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock, 1115 struct old_timespec32 __user *, tp) 1116 { 1117 const struct k_clock *kc = clockid_to_kclock(which_clock); 1118 struct timespec64 ts; 1119 1120 if (!kc || !kc->clock_set) 1121 return -EINVAL; 1122 1123 if (get_old_timespec32(&ts, tp)) 1124 return -EFAULT; 1125 1126 return kc->clock_set(which_clock, &ts); 1127 } 1128 1129 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock, 1130 struct old_timespec32 __user *, tp) 1131 { 1132 const struct k_clock *kc = clockid_to_kclock(which_clock); 1133 struct timespec64 ts; 1134 int err; 1135 1136 if (!kc) 1137 return -EINVAL; 1138 1139 err = kc->clock_get(which_clock, &ts); 1140 1141 if (!err && put_old_timespec32(&ts, tp)) 1142 err = -EFAULT; 1143 1144 return err; 1145 } 1146 1147 #endif 1148 1149 #ifdef CONFIG_COMPAT 1150 1151 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock, 1152 struct compat_timex __user *, utp) 1153 { 1154 const struct k_clock *kc = clockid_to_kclock(which_clock); 1155 struct timex ktx; 1156 int err; 1157 1158 if (!kc) 1159 return -EINVAL; 1160 if (!kc->clock_adj) 1161 return -EOPNOTSUPP; 1162 1163 err = compat_get_timex(&ktx, utp); 1164 if (err) 1165 return err; 1166 1167 err = kc->clock_adj(which_clock, &ktx); 1168 1169 if (err >= 0) 1170 err = compat_put_timex(utp, &ktx); 1171 1172 return err; 1173 } 1174 1175 #endif 1176 1177 #ifdef CONFIG_COMPAT_32BIT_TIME 1178 1179 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock, 1180 struct old_timespec32 __user *, tp) 1181 { 1182 const struct k_clock *kc = clockid_to_kclock(which_clock); 1183 struct timespec64 ts; 1184 int err; 1185 1186 if (!kc) 1187 return -EINVAL; 1188 1189 err = kc->clock_getres(which_clock, &ts); 1190 if (!err && tp && put_old_timespec32(&ts, tp)) 1191 return -EFAULT; 1192 1193 return err; 1194 } 1195 1196 #endif 1197 1198 /* 1199 * nanosleep for monotonic and realtime clocks 1200 */ 1201 static int common_nsleep(const clockid_t which_clock, int flags, 1202 const struct timespec64 *rqtp) 1203 { 1204 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? 1205 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1206 which_clock); 1207 } 1208 1209 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1210 const struct __kernel_timespec __user *, rqtp, 1211 struct __kernel_timespec __user *, rmtp) 1212 { 1213 const struct k_clock *kc = clockid_to_kclock(which_clock); 1214 struct timespec64 t; 1215 1216 if (!kc) 1217 return -EINVAL; 1218 if (!kc->nsleep) 1219 return -EOPNOTSUPP; 1220 1221 if (get_timespec64(&t, rqtp)) 1222 return -EFAULT; 1223 1224 if (!timespec64_valid(&t)) 1225 return -EINVAL; 1226 if (flags & TIMER_ABSTIME) 1227 rmtp = NULL; 1228 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1229 current->restart_block.nanosleep.rmtp = rmtp; 1230 1231 return kc->nsleep(which_clock, flags, &t); 1232 } 1233 1234 #ifdef CONFIG_COMPAT_32BIT_TIME 1235 1236 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags, 1237 struct old_timespec32 __user *, rqtp, 1238 struct old_timespec32 __user *, rmtp) 1239 { 1240 const struct k_clock *kc = clockid_to_kclock(which_clock); 1241 struct timespec64 t; 1242 1243 if (!kc) 1244 return -EINVAL; 1245 if (!kc->nsleep) 1246 return -EOPNOTSUPP; 1247 1248 if (get_old_timespec32(&t, rqtp)) 1249 return -EFAULT; 1250 1251 if (!timespec64_valid(&t)) 1252 return -EINVAL; 1253 if (flags & TIMER_ABSTIME) 1254 rmtp = NULL; 1255 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1256 current->restart_block.nanosleep.compat_rmtp = rmtp; 1257 1258 return kc->nsleep(which_clock, flags, &t); 1259 } 1260 1261 #endif 1262 1263 static const struct k_clock clock_realtime = { 1264 .clock_getres = posix_get_hrtimer_res, 1265 .clock_get = posix_clock_realtime_get, 1266 .clock_set = posix_clock_realtime_set, 1267 .clock_adj = posix_clock_realtime_adj, 1268 .nsleep = common_nsleep, 1269 .timer_create = common_timer_create, 1270 .timer_set = common_timer_set, 1271 .timer_get = common_timer_get, 1272 .timer_del = common_timer_del, 1273 .timer_rearm = common_hrtimer_rearm, 1274 .timer_forward = common_hrtimer_forward, 1275 .timer_remaining = common_hrtimer_remaining, 1276 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1277 .timer_arm = common_hrtimer_arm, 1278 }; 1279 1280 static const struct k_clock clock_monotonic = { 1281 .clock_getres = posix_get_hrtimer_res, 1282 .clock_get = posix_ktime_get_ts, 1283 .nsleep = common_nsleep, 1284 .timer_create = common_timer_create, 1285 .timer_set = common_timer_set, 1286 .timer_get = common_timer_get, 1287 .timer_del = common_timer_del, 1288 .timer_rearm = common_hrtimer_rearm, 1289 .timer_forward = common_hrtimer_forward, 1290 .timer_remaining = common_hrtimer_remaining, 1291 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1292 .timer_arm = common_hrtimer_arm, 1293 }; 1294 1295 static const struct k_clock clock_monotonic_raw = { 1296 .clock_getres = posix_get_hrtimer_res, 1297 .clock_get = posix_get_monotonic_raw, 1298 }; 1299 1300 static const struct k_clock clock_realtime_coarse = { 1301 .clock_getres = posix_get_coarse_res, 1302 .clock_get = posix_get_realtime_coarse, 1303 }; 1304 1305 static const struct k_clock clock_monotonic_coarse = { 1306 .clock_getres = posix_get_coarse_res, 1307 .clock_get = posix_get_monotonic_coarse, 1308 }; 1309 1310 static const struct k_clock clock_tai = { 1311 .clock_getres = posix_get_hrtimer_res, 1312 .clock_get = posix_get_tai, 1313 .nsleep = common_nsleep, 1314 .timer_create = common_timer_create, 1315 .timer_set = common_timer_set, 1316 .timer_get = common_timer_get, 1317 .timer_del = common_timer_del, 1318 .timer_rearm = common_hrtimer_rearm, 1319 .timer_forward = common_hrtimer_forward, 1320 .timer_remaining = common_hrtimer_remaining, 1321 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1322 .timer_arm = common_hrtimer_arm, 1323 }; 1324 1325 static const struct k_clock clock_boottime = { 1326 .clock_getres = posix_get_hrtimer_res, 1327 .clock_get = posix_get_boottime, 1328 .nsleep = common_nsleep, 1329 .timer_create = common_timer_create, 1330 .timer_set = common_timer_set, 1331 .timer_get = common_timer_get, 1332 .timer_del = common_timer_del, 1333 .timer_rearm = common_hrtimer_rearm, 1334 .timer_forward = common_hrtimer_forward, 1335 .timer_remaining = common_hrtimer_remaining, 1336 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1337 .timer_arm = common_hrtimer_arm, 1338 }; 1339 1340 static const struct k_clock * const posix_clocks[] = { 1341 [CLOCK_REALTIME] = &clock_realtime, 1342 [CLOCK_MONOTONIC] = &clock_monotonic, 1343 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1344 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1345 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1346 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1347 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1348 [CLOCK_BOOTTIME] = &clock_boottime, 1349 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1350 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1351 [CLOCK_TAI] = &clock_tai, 1352 }; 1353 1354 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1355 { 1356 clockid_t idx = id; 1357 1358 if (id < 0) { 1359 return (id & CLOCKFD_MASK) == CLOCKFD ? 1360 &clock_posix_dynamic : &clock_posix_cpu; 1361 } 1362 1363 if (id >= ARRAY_SIZE(posix_clocks)) 1364 return NULL; 1365 1366 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; 1367 } 1368