1 /* 2 * linux/kernel/posix-timers.c 3 * 4 * 5 * 2002-10-15 Posix Clocks & timers 6 * by George Anzinger george@mvista.com 7 * 8 * Copyright (C) 2002 2003 by MontaVista Software. 9 * 10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 11 * Copyright (C) 2004 Boris Hu 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA 28 */ 29 30 /* These are all the functions necessary to implement 31 * POSIX clocks & timers 32 */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/slab.h> 36 #include <linux/time.h> 37 #include <linux/mutex.h> 38 #include <linux/sched/task.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/list.h> 42 #include <linux/init.h> 43 #include <linux/compiler.h> 44 #include <linux/hash.h> 45 #include <linux/posix-clock.h> 46 #include <linux/posix-timers.h> 47 #include <linux/syscalls.h> 48 #include <linux/wait.h> 49 #include <linux/workqueue.h> 50 #include <linux/export.h> 51 #include <linux/hashtable.h> 52 #include <linux/compat.h> 53 #include <linux/nospec.h> 54 55 #include "timekeeping.h" 56 #include "posix-timers.h" 57 58 /* 59 * Management arrays for POSIX timers. Timers are now kept in static hash table 60 * with 512 entries. 61 * Timer ids are allocated by local routine, which selects proper hash head by 62 * key, constructed from current->signal address and per signal struct counter. 63 * This keeps timer ids unique per process, but now they can intersect between 64 * processes. 65 */ 66 67 /* 68 * Lets keep our timers in a slab cache :-) 69 */ 70 static struct kmem_cache *posix_timers_cache; 71 72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 73 static DEFINE_SPINLOCK(hash_lock); 74 75 static const struct k_clock * const posix_clocks[]; 76 static const struct k_clock *clockid_to_kclock(const clockid_t id); 77 static const struct k_clock clock_realtime, clock_monotonic; 78 79 /* 80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other 81 * SIGEV values. Here we put out an error if this assumption fails. 82 */ 83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 86 #endif 87 88 /* 89 * parisc wants ENOTSUP instead of EOPNOTSUPP 90 */ 91 #ifndef ENOTSUP 92 # define ENANOSLEEP_NOTSUP EOPNOTSUPP 93 #else 94 # define ENANOSLEEP_NOTSUP ENOTSUP 95 #endif 96 97 /* 98 * The timer ID is turned into a timer address by idr_find(). 99 * Verifying a valid ID consists of: 100 * 101 * a) checking that idr_find() returns other than -1. 102 * b) checking that the timer id matches the one in the timer itself. 103 * c) that the timer owner is in the callers thread group. 104 */ 105 106 /* 107 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us 108 * to implement others. This structure defines the various 109 * clocks. 110 * 111 * RESOLUTION: Clock resolution is used to round up timer and interval 112 * times, NOT to report clock times, which are reported with as 113 * much resolution as the system can muster. In some cases this 114 * resolution may depend on the underlying clock hardware and 115 * may not be quantifiable until run time, and only then is the 116 * necessary code is written. The standard says we should say 117 * something about this issue in the documentation... 118 * 119 * FUNCTIONS: The CLOCKs structure defines possible functions to 120 * handle various clock functions. 121 * 122 * The standard POSIX timer management code assumes the 123 * following: 1.) The k_itimer struct (sched.h) is used for 124 * the timer. 2.) The list, it_lock, it_clock, it_id and 125 * it_pid fields are not modified by timer code. 126 * 127 * Permissions: It is assumed that the clock_settime() function defined 128 * for each clock will take care of permission checks. Some 129 * clocks may be set able by any user (i.e. local process 130 * clocks) others not. Currently the only set able clock we 131 * have is CLOCK_REALTIME and its high res counter part, both of 132 * which we beg off on and pass to do_sys_settimeofday(). 133 */ 134 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 135 136 #define lock_timer(tid, flags) \ 137 ({ struct k_itimer *__timr; \ 138 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 139 __timr; \ 140 }) 141 142 static int hash(struct signal_struct *sig, unsigned int nr) 143 { 144 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 145 } 146 147 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 148 struct signal_struct *sig, 149 timer_t id) 150 { 151 struct k_itimer *timer; 152 153 hlist_for_each_entry_rcu(timer, head, t_hash) { 154 if ((timer->it_signal == sig) && (timer->it_id == id)) 155 return timer; 156 } 157 return NULL; 158 } 159 160 static struct k_itimer *posix_timer_by_id(timer_t id) 161 { 162 struct signal_struct *sig = current->signal; 163 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 164 165 return __posix_timers_find(head, sig, id); 166 } 167 168 static int posix_timer_add(struct k_itimer *timer) 169 { 170 struct signal_struct *sig = current->signal; 171 int first_free_id = sig->posix_timer_id; 172 struct hlist_head *head; 173 int ret = -ENOENT; 174 175 do { 176 spin_lock(&hash_lock); 177 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; 178 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { 179 hlist_add_head_rcu(&timer->t_hash, head); 180 ret = sig->posix_timer_id; 181 } 182 if (++sig->posix_timer_id < 0) 183 sig->posix_timer_id = 0; 184 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) 185 /* Loop over all possible ids completed */ 186 ret = -EAGAIN; 187 spin_unlock(&hash_lock); 188 } while (ret == -ENOENT); 189 return ret; 190 } 191 192 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 193 { 194 spin_unlock_irqrestore(&timr->it_lock, flags); 195 } 196 197 /* Get clock_realtime */ 198 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp) 199 { 200 ktime_get_real_ts64(tp); 201 return 0; 202 } 203 204 /* Set clock_realtime */ 205 static int posix_clock_realtime_set(const clockid_t which_clock, 206 const struct timespec64 *tp) 207 { 208 return do_sys_settimeofday64(tp, NULL); 209 } 210 211 static int posix_clock_realtime_adj(const clockid_t which_clock, 212 struct timex *t) 213 { 214 return do_adjtimex(t); 215 } 216 217 /* 218 * Get monotonic time for posix timers 219 */ 220 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp) 221 { 222 ktime_get_ts64(tp); 223 return 0; 224 } 225 226 /* 227 * Get monotonic-raw time for posix timers 228 */ 229 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 230 { 231 ktime_get_raw_ts64(tp); 232 return 0; 233 } 234 235 236 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 237 { 238 ktime_get_coarse_real_ts64(tp); 239 return 0; 240 } 241 242 static int posix_get_monotonic_coarse(clockid_t which_clock, 243 struct timespec64 *tp) 244 { 245 ktime_get_coarse_ts64(tp); 246 return 0; 247 } 248 249 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 250 { 251 *tp = ktime_to_timespec64(KTIME_LOW_RES); 252 return 0; 253 } 254 255 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp) 256 { 257 ktime_get_boottime_ts64(tp); 258 return 0; 259 } 260 261 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp) 262 { 263 ktime_get_clocktai_ts64(tp); 264 return 0; 265 } 266 267 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 268 { 269 tp->tv_sec = 0; 270 tp->tv_nsec = hrtimer_resolution; 271 return 0; 272 } 273 274 /* 275 * Initialize everything, well, just everything in Posix clocks/timers ;) 276 */ 277 static __init int init_posix_timers(void) 278 { 279 posix_timers_cache = kmem_cache_create("posix_timers_cache", 280 sizeof (struct k_itimer), 0, SLAB_PANIC, 281 NULL); 282 return 0; 283 } 284 __initcall(init_posix_timers); 285 286 /* 287 * The siginfo si_overrun field and the return value of timer_getoverrun(2) 288 * are of type int. Clamp the overrun value to INT_MAX 289 */ 290 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) 291 { 292 s64 sum = timr->it_overrun_last + (s64)baseval; 293 294 return sum > (s64)INT_MAX ? INT_MAX : (int)sum; 295 } 296 297 static void common_hrtimer_rearm(struct k_itimer *timr) 298 { 299 struct hrtimer *timer = &timr->it.real.timer; 300 301 if (!timr->it_interval) 302 return; 303 304 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), 305 timr->it_interval); 306 hrtimer_restart(timer); 307 } 308 309 /* 310 * This function is exported for use by the signal deliver code. It is 311 * called just prior to the info block being released and passes that 312 * block to us. It's function is to update the overrun entry AND to 313 * restart the timer. It should only be called if the timer is to be 314 * restarted (i.e. we have flagged this in the sys_private entry of the 315 * info block). 316 * 317 * To protect against the timer going away while the interrupt is queued, 318 * we require that the it_requeue_pending flag be set. 319 */ 320 void posixtimer_rearm(struct siginfo *info) 321 { 322 struct k_itimer *timr; 323 unsigned long flags; 324 325 timr = lock_timer(info->si_tid, &flags); 326 if (!timr) 327 return; 328 329 if (timr->it_requeue_pending == info->si_sys_private) { 330 timr->kclock->timer_rearm(timr); 331 332 timr->it_active = 1; 333 timr->it_overrun_last = timr->it_overrun; 334 timr->it_overrun = -1LL; 335 ++timr->it_requeue_pending; 336 337 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); 338 } 339 340 unlock_timer(timr, flags); 341 } 342 343 int posix_timer_event(struct k_itimer *timr, int si_private) 344 { 345 struct task_struct *task; 346 int shared, ret = -1; 347 /* 348 * FIXME: if ->sigq is queued we can race with 349 * dequeue_signal()->posixtimer_rearm(). 350 * 351 * If dequeue_signal() sees the "right" value of 352 * si_sys_private it calls posixtimer_rearm(). 353 * We re-queue ->sigq and drop ->it_lock(). 354 * posixtimer_rearm() locks the timer 355 * and re-schedules it while ->sigq is pending. 356 * Not really bad, but not that we want. 357 */ 358 timr->sigq->info.si_sys_private = si_private; 359 360 rcu_read_lock(); 361 task = pid_task(timr->it_pid, PIDTYPE_PID); 362 if (task) { 363 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); 364 ret = send_sigqueue(timr->sigq, task, shared); 365 } 366 rcu_read_unlock(); 367 /* If we failed to send the signal the timer stops. */ 368 return ret > 0; 369 } 370 371 /* 372 * This function gets called when a POSIX.1b interval timer expires. It 373 * is used as a callback from the kernel internal timer. The 374 * run_timer_list code ALWAYS calls with interrupts on. 375 376 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. 377 */ 378 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 379 { 380 struct k_itimer *timr; 381 unsigned long flags; 382 int si_private = 0; 383 enum hrtimer_restart ret = HRTIMER_NORESTART; 384 385 timr = container_of(timer, struct k_itimer, it.real.timer); 386 spin_lock_irqsave(&timr->it_lock, flags); 387 388 timr->it_active = 0; 389 if (timr->it_interval != 0) 390 si_private = ++timr->it_requeue_pending; 391 392 if (posix_timer_event(timr, si_private)) { 393 /* 394 * signal was not sent because of sig_ignor 395 * we will not get a call back to restart it AND 396 * it should be restarted. 397 */ 398 if (timr->it_interval != 0) { 399 ktime_t now = hrtimer_cb_get_time(timer); 400 401 /* 402 * FIXME: What we really want, is to stop this 403 * timer completely and restart it in case the 404 * SIG_IGN is removed. This is a non trivial 405 * change which involves sighand locking 406 * (sigh !), which we don't want to do late in 407 * the release cycle. 408 * 409 * For now we just let timers with an interval 410 * less than a jiffie expire every jiffie to 411 * avoid softirq starvation in case of SIG_IGN 412 * and a very small interval, which would put 413 * the timer right back on the softirq pending 414 * list. By moving now ahead of time we trick 415 * hrtimer_forward() to expire the timer 416 * later, while we still maintain the overrun 417 * accuracy, but have some inconsistency in 418 * the timer_gettime() case. This is at least 419 * better than a starved softirq. A more 420 * complex fix which solves also another related 421 * inconsistency is already in the pipeline. 422 */ 423 #ifdef CONFIG_HIGH_RES_TIMERS 424 { 425 ktime_t kj = NSEC_PER_SEC / HZ; 426 427 if (timr->it_interval < kj) 428 now = ktime_add(now, kj); 429 } 430 #endif 431 timr->it_overrun += hrtimer_forward(timer, now, 432 timr->it_interval); 433 ret = HRTIMER_RESTART; 434 ++timr->it_requeue_pending; 435 timr->it_active = 1; 436 } 437 } 438 439 unlock_timer(timr, flags); 440 return ret; 441 } 442 443 static struct pid *good_sigevent(sigevent_t * event) 444 { 445 struct task_struct *rtn = current->group_leader; 446 447 switch (event->sigev_notify) { 448 case SIGEV_SIGNAL | SIGEV_THREAD_ID: 449 rtn = find_task_by_vpid(event->sigev_notify_thread_id); 450 if (!rtn || !same_thread_group(rtn, current)) 451 return NULL; 452 /* FALLTHRU */ 453 case SIGEV_SIGNAL: 454 case SIGEV_THREAD: 455 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) 456 return NULL; 457 /* FALLTHRU */ 458 case SIGEV_NONE: 459 return task_pid(rtn); 460 default: 461 return NULL; 462 } 463 } 464 465 static struct k_itimer * alloc_posix_timer(void) 466 { 467 struct k_itimer *tmr; 468 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 469 if (!tmr) 470 return tmr; 471 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 472 kmem_cache_free(posix_timers_cache, tmr); 473 return NULL; 474 } 475 clear_siginfo(&tmr->sigq->info); 476 return tmr; 477 } 478 479 static void k_itimer_rcu_free(struct rcu_head *head) 480 { 481 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); 482 483 kmem_cache_free(posix_timers_cache, tmr); 484 } 485 486 #define IT_ID_SET 1 487 #define IT_ID_NOT_SET 0 488 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) 489 { 490 if (it_id_set) { 491 unsigned long flags; 492 spin_lock_irqsave(&hash_lock, flags); 493 hlist_del_rcu(&tmr->t_hash); 494 spin_unlock_irqrestore(&hash_lock, flags); 495 } 496 put_pid(tmr->it_pid); 497 sigqueue_free(tmr->sigq); 498 call_rcu(&tmr->it.rcu, k_itimer_rcu_free); 499 } 500 501 static int common_timer_create(struct k_itimer *new_timer) 502 { 503 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 504 return 0; 505 } 506 507 /* Create a POSIX.1b interval timer. */ 508 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 509 timer_t __user *created_timer_id) 510 { 511 const struct k_clock *kc = clockid_to_kclock(which_clock); 512 struct k_itimer *new_timer; 513 int error, new_timer_id; 514 int it_id_set = IT_ID_NOT_SET; 515 516 if (!kc) 517 return -EINVAL; 518 if (!kc->timer_create) 519 return -EOPNOTSUPP; 520 521 new_timer = alloc_posix_timer(); 522 if (unlikely(!new_timer)) 523 return -EAGAIN; 524 525 spin_lock_init(&new_timer->it_lock); 526 new_timer_id = posix_timer_add(new_timer); 527 if (new_timer_id < 0) { 528 error = new_timer_id; 529 goto out; 530 } 531 532 it_id_set = IT_ID_SET; 533 new_timer->it_id = (timer_t) new_timer_id; 534 new_timer->it_clock = which_clock; 535 new_timer->kclock = kc; 536 new_timer->it_overrun = -1LL; 537 538 if (event) { 539 rcu_read_lock(); 540 new_timer->it_pid = get_pid(good_sigevent(event)); 541 rcu_read_unlock(); 542 if (!new_timer->it_pid) { 543 error = -EINVAL; 544 goto out; 545 } 546 new_timer->it_sigev_notify = event->sigev_notify; 547 new_timer->sigq->info.si_signo = event->sigev_signo; 548 new_timer->sigq->info.si_value = event->sigev_value; 549 } else { 550 new_timer->it_sigev_notify = SIGEV_SIGNAL; 551 new_timer->sigq->info.si_signo = SIGALRM; 552 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); 553 new_timer->sigq->info.si_value.sival_int = new_timer->it_id; 554 new_timer->it_pid = get_pid(task_tgid(current)); 555 } 556 557 new_timer->sigq->info.si_tid = new_timer->it_id; 558 new_timer->sigq->info.si_code = SI_TIMER; 559 560 if (copy_to_user(created_timer_id, 561 &new_timer_id, sizeof (new_timer_id))) { 562 error = -EFAULT; 563 goto out; 564 } 565 566 error = kc->timer_create(new_timer); 567 if (error) 568 goto out; 569 570 spin_lock_irq(¤t->sighand->siglock); 571 new_timer->it_signal = current->signal; 572 list_add(&new_timer->list, ¤t->signal->posix_timers); 573 spin_unlock_irq(¤t->sighand->siglock); 574 575 return 0; 576 /* 577 * In the case of the timer belonging to another task, after 578 * the task is unlocked, the timer is owned by the other task 579 * and may cease to exist at any time. Don't use or modify 580 * new_timer after the unlock call. 581 */ 582 out: 583 release_posix_timer(new_timer, it_id_set); 584 return error; 585 } 586 587 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 588 struct sigevent __user *, timer_event_spec, 589 timer_t __user *, created_timer_id) 590 { 591 if (timer_event_spec) { 592 sigevent_t event; 593 594 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 595 return -EFAULT; 596 return do_timer_create(which_clock, &event, created_timer_id); 597 } 598 return do_timer_create(which_clock, NULL, created_timer_id); 599 } 600 601 #ifdef CONFIG_COMPAT 602 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 603 struct compat_sigevent __user *, timer_event_spec, 604 timer_t __user *, created_timer_id) 605 { 606 if (timer_event_spec) { 607 sigevent_t event; 608 609 if (get_compat_sigevent(&event, timer_event_spec)) 610 return -EFAULT; 611 return do_timer_create(which_clock, &event, created_timer_id); 612 } 613 return do_timer_create(which_clock, NULL, created_timer_id); 614 } 615 #endif 616 617 /* 618 * Locking issues: We need to protect the result of the id look up until 619 * we get the timer locked down so it is not deleted under us. The 620 * removal is done under the idr spinlock so we use that here to bridge 621 * the find to the timer lock. To avoid a dead lock, the timer id MUST 622 * be release with out holding the timer lock. 623 */ 624 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 625 { 626 struct k_itimer *timr; 627 628 /* 629 * timer_t could be any type >= int and we want to make sure any 630 * @timer_id outside positive int range fails lookup. 631 */ 632 if ((unsigned long long)timer_id > INT_MAX) 633 return NULL; 634 635 rcu_read_lock(); 636 timr = posix_timer_by_id(timer_id); 637 if (timr) { 638 spin_lock_irqsave(&timr->it_lock, *flags); 639 if (timr->it_signal == current->signal) { 640 rcu_read_unlock(); 641 return timr; 642 } 643 spin_unlock_irqrestore(&timr->it_lock, *flags); 644 } 645 rcu_read_unlock(); 646 647 return NULL; 648 } 649 650 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 651 { 652 struct hrtimer *timer = &timr->it.real.timer; 653 654 return __hrtimer_expires_remaining_adjusted(timer, now); 655 } 656 657 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 658 { 659 struct hrtimer *timer = &timr->it.real.timer; 660 661 return hrtimer_forward(timer, now, timr->it_interval); 662 } 663 664 /* 665 * Get the time remaining on a POSIX.1b interval timer. This function 666 * is ALWAYS called with spin_lock_irq on the timer, thus it must not 667 * mess with irq. 668 * 669 * We have a couple of messes to clean up here. First there is the case 670 * of a timer that has a requeue pending. These timers should appear to 671 * be in the timer list with an expiry as if we were to requeue them 672 * now. 673 * 674 * The second issue is the SIGEV_NONE timer which may be active but is 675 * not really ever put in the timer list (to save system resources). 676 * This timer may be expired, and if so, we will do it here. Otherwise 677 * it is the same as a requeue pending timer WRT to what we should 678 * report. 679 */ 680 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 681 { 682 const struct k_clock *kc = timr->kclock; 683 ktime_t now, remaining, iv; 684 struct timespec64 ts64; 685 bool sig_none; 686 687 sig_none = timr->it_sigev_notify == SIGEV_NONE; 688 iv = timr->it_interval; 689 690 /* interval timer ? */ 691 if (iv) { 692 cur_setting->it_interval = ktime_to_timespec64(iv); 693 } else if (!timr->it_active) { 694 /* 695 * SIGEV_NONE oneshot timers are never queued. Check them 696 * below. 697 */ 698 if (!sig_none) 699 return; 700 } 701 702 /* 703 * The timespec64 based conversion is suboptimal, but it's not 704 * worth to implement yet another callback. 705 */ 706 kc->clock_get(timr->it_clock, &ts64); 707 now = timespec64_to_ktime(ts64); 708 709 /* 710 * When a requeue is pending or this is a SIGEV_NONE timer move the 711 * expiry time forward by intervals, so expiry is > now. 712 */ 713 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) 714 timr->it_overrun += kc->timer_forward(timr, now); 715 716 remaining = kc->timer_remaining(timr, now); 717 /* Return 0 only, when the timer is expired and not pending */ 718 if (remaining <= 0) { 719 /* 720 * A single shot SIGEV_NONE timer must return 0, when 721 * it is expired ! 722 */ 723 if (!sig_none) 724 cur_setting->it_value.tv_nsec = 1; 725 } else { 726 cur_setting->it_value = ktime_to_timespec64(remaining); 727 } 728 } 729 730 /* Get the time remaining on a POSIX.1b interval timer. */ 731 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 732 { 733 struct k_itimer *timr; 734 const struct k_clock *kc; 735 unsigned long flags; 736 int ret = 0; 737 738 timr = lock_timer(timer_id, &flags); 739 if (!timr) 740 return -EINVAL; 741 742 memset(setting, 0, sizeof(*setting)); 743 kc = timr->kclock; 744 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 745 ret = -EINVAL; 746 else 747 kc->timer_get(timr, setting); 748 749 unlock_timer(timr, flags); 750 return ret; 751 } 752 753 /* Get the time remaining on a POSIX.1b interval timer. */ 754 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 755 struct __kernel_itimerspec __user *, setting) 756 { 757 struct itimerspec64 cur_setting; 758 759 int ret = do_timer_gettime(timer_id, &cur_setting); 760 if (!ret) { 761 if (put_itimerspec64(&cur_setting, setting)) 762 ret = -EFAULT; 763 } 764 return ret; 765 } 766 767 #ifdef CONFIG_COMPAT_32BIT_TIME 768 769 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 770 struct compat_itimerspec __user *, setting) 771 { 772 struct itimerspec64 cur_setting; 773 774 int ret = do_timer_gettime(timer_id, &cur_setting); 775 if (!ret) { 776 if (put_compat_itimerspec64(&cur_setting, setting)) 777 ret = -EFAULT; 778 } 779 return ret; 780 } 781 782 #endif 783 784 /* 785 * Get the number of overruns of a POSIX.1b interval timer. This is to 786 * be the overrun of the timer last delivered. At the same time we are 787 * accumulating overruns on the next timer. The overrun is frozen when 788 * the signal is delivered, either at the notify time (if the info block 789 * is not queued) or at the actual delivery time (as we are informed by 790 * the call back to posixtimer_rearm(). So all we need to do is 791 * to pick up the frozen overrun. 792 */ 793 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 794 { 795 struct k_itimer *timr; 796 int overrun; 797 unsigned long flags; 798 799 timr = lock_timer(timer_id, &flags); 800 if (!timr) 801 return -EINVAL; 802 803 overrun = timer_overrun_to_int(timr, 0); 804 unlock_timer(timr, flags); 805 806 return overrun; 807 } 808 809 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 810 bool absolute, bool sigev_none) 811 { 812 struct hrtimer *timer = &timr->it.real.timer; 813 enum hrtimer_mode mode; 814 815 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 816 /* 817 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 818 * clock modifications, so they become CLOCK_MONOTONIC based under the 819 * hood. See hrtimer_init(). Update timr->kclock, so the generic 820 * functions which use timr->kclock->clock_get() work. 821 * 822 * Note: it_clock stays unmodified, because the next timer_set() might 823 * use ABSTIME, so it needs to switch back. 824 */ 825 if (timr->it_clock == CLOCK_REALTIME) 826 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 827 828 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 829 timr->it.real.timer.function = posix_timer_fn; 830 831 if (!absolute) 832 expires = ktime_add_safe(expires, timer->base->get_time()); 833 hrtimer_set_expires(timer, expires); 834 835 if (!sigev_none) 836 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 837 } 838 839 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 840 { 841 return hrtimer_try_to_cancel(&timr->it.real.timer); 842 } 843 844 /* Set a POSIX.1b interval timer. */ 845 int common_timer_set(struct k_itimer *timr, int flags, 846 struct itimerspec64 *new_setting, 847 struct itimerspec64 *old_setting) 848 { 849 const struct k_clock *kc = timr->kclock; 850 bool sigev_none; 851 ktime_t expires; 852 853 if (old_setting) 854 common_timer_get(timr, old_setting); 855 856 /* Prevent rearming by clearing the interval */ 857 timr->it_interval = 0; 858 /* 859 * Careful here. On SMP systems the timer expiry function could be 860 * active and spinning on timr->it_lock. 861 */ 862 if (kc->timer_try_to_cancel(timr) < 0) 863 return TIMER_RETRY; 864 865 timr->it_active = 0; 866 timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 867 ~REQUEUE_PENDING; 868 timr->it_overrun_last = 0; 869 870 /* Switch off the timer when it_value is zero */ 871 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 872 return 0; 873 874 timr->it_interval = timespec64_to_ktime(new_setting->it_interval); 875 expires = timespec64_to_ktime(new_setting->it_value); 876 sigev_none = timr->it_sigev_notify == SIGEV_NONE; 877 878 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 879 timr->it_active = !sigev_none; 880 return 0; 881 } 882 883 static int do_timer_settime(timer_t timer_id, int flags, 884 struct itimerspec64 *new_spec64, 885 struct itimerspec64 *old_spec64) 886 { 887 const struct k_clock *kc; 888 struct k_itimer *timr; 889 unsigned long flag; 890 int error = 0; 891 892 if (!timespec64_valid(&new_spec64->it_interval) || 893 !timespec64_valid(&new_spec64->it_value)) 894 return -EINVAL; 895 896 if (old_spec64) 897 memset(old_spec64, 0, sizeof(*old_spec64)); 898 retry: 899 timr = lock_timer(timer_id, &flag); 900 if (!timr) 901 return -EINVAL; 902 903 kc = timr->kclock; 904 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 905 error = -EINVAL; 906 else 907 error = kc->timer_set(timr, flags, new_spec64, old_spec64); 908 909 unlock_timer(timr, flag); 910 if (error == TIMER_RETRY) { 911 old_spec64 = NULL; // We already got the old time... 912 goto retry; 913 } 914 915 return error; 916 } 917 918 /* Set a POSIX.1b interval timer */ 919 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 920 const struct __kernel_itimerspec __user *, new_setting, 921 struct __kernel_itimerspec __user *, old_setting) 922 { 923 struct itimerspec64 new_spec, old_spec; 924 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; 925 int error = 0; 926 927 if (!new_setting) 928 return -EINVAL; 929 930 if (get_itimerspec64(&new_spec, new_setting)) 931 return -EFAULT; 932 933 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 934 if (!error && old_setting) { 935 if (put_itimerspec64(&old_spec, old_setting)) 936 error = -EFAULT; 937 } 938 return error; 939 } 940 941 #ifdef CONFIG_COMPAT_32BIT_TIME 942 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 943 struct compat_itimerspec __user *, new, 944 struct compat_itimerspec __user *, old) 945 { 946 struct itimerspec64 new_spec, old_spec; 947 struct itimerspec64 *rtn = old ? &old_spec : NULL; 948 int error = 0; 949 950 if (!new) 951 return -EINVAL; 952 if (get_compat_itimerspec64(&new_spec, new)) 953 return -EFAULT; 954 955 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 956 if (!error && old) { 957 if (put_compat_itimerspec64(&old_spec, old)) 958 error = -EFAULT; 959 } 960 return error; 961 } 962 #endif 963 964 int common_timer_del(struct k_itimer *timer) 965 { 966 const struct k_clock *kc = timer->kclock; 967 968 timer->it_interval = 0; 969 if (kc->timer_try_to_cancel(timer) < 0) 970 return TIMER_RETRY; 971 timer->it_active = 0; 972 return 0; 973 } 974 975 static inline int timer_delete_hook(struct k_itimer *timer) 976 { 977 const struct k_clock *kc = timer->kclock; 978 979 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 980 return -EINVAL; 981 return kc->timer_del(timer); 982 } 983 984 /* Delete a POSIX.1b interval timer. */ 985 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 986 { 987 struct k_itimer *timer; 988 unsigned long flags; 989 990 retry_delete: 991 timer = lock_timer(timer_id, &flags); 992 if (!timer) 993 return -EINVAL; 994 995 if (timer_delete_hook(timer) == TIMER_RETRY) { 996 unlock_timer(timer, flags); 997 goto retry_delete; 998 } 999 1000 spin_lock(¤t->sighand->siglock); 1001 list_del(&timer->list); 1002 spin_unlock(¤t->sighand->siglock); 1003 /* 1004 * This keeps any tasks waiting on the spin lock from thinking 1005 * they got something (see the lock code above). 1006 */ 1007 timer->it_signal = NULL; 1008 1009 unlock_timer(timer, flags); 1010 release_posix_timer(timer, IT_ID_SET); 1011 return 0; 1012 } 1013 1014 /* 1015 * return timer owned by the process, used by exit_itimers 1016 */ 1017 static void itimer_delete(struct k_itimer *timer) 1018 { 1019 unsigned long flags; 1020 1021 retry_delete: 1022 spin_lock_irqsave(&timer->it_lock, flags); 1023 1024 if (timer_delete_hook(timer) == TIMER_RETRY) { 1025 unlock_timer(timer, flags); 1026 goto retry_delete; 1027 } 1028 list_del(&timer->list); 1029 /* 1030 * This keeps any tasks waiting on the spin lock from thinking 1031 * they got something (see the lock code above). 1032 */ 1033 timer->it_signal = NULL; 1034 1035 unlock_timer(timer, flags); 1036 release_posix_timer(timer, IT_ID_SET); 1037 } 1038 1039 /* 1040 * This is called by do_exit or de_thread, only when there are no more 1041 * references to the shared signal_struct. 1042 */ 1043 void exit_itimers(struct signal_struct *sig) 1044 { 1045 struct k_itimer *tmr; 1046 1047 while (!list_empty(&sig->posix_timers)) { 1048 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); 1049 itimer_delete(tmr); 1050 } 1051 } 1052 1053 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1054 const struct __kernel_timespec __user *, tp) 1055 { 1056 const struct k_clock *kc = clockid_to_kclock(which_clock); 1057 struct timespec64 new_tp; 1058 1059 if (!kc || !kc->clock_set) 1060 return -EINVAL; 1061 1062 if (get_timespec64(&new_tp, tp)) 1063 return -EFAULT; 1064 1065 return kc->clock_set(which_clock, &new_tp); 1066 } 1067 1068 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1069 struct __kernel_timespec __user *, tp) 1070 { 1071 const struct k_clock *kc = clockid_to_kclock(which_clock); 1072 struct timespec64 kernel_tp; 1073 int error; 1074 1075 if (!kc) 1076 return -EINVAL; 1077 1078 error = kc->clock_get(which_clock, &kernel_tp); 1079 1080 if (!error && put_timespec64(&kernel_tp, tp)) 1081 error = -EFAULT; 1082 1083 return error; 1084 } 1085 1086 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1087 struct timex __user *, utx) 1088 { 1089 const struct k_clock *kc = clockid_to_kclock(which_clock); 1090 struct timex ktx; 1091 int err; 1092 1093 if (!kc) 1094 return -EINVAL; 1095 if (!kc->clock_adj) 1096 return -EOPNOTSUPP; 1097 1098 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1099 return -EFAULT; 1100 1101 err = kc->clock_adj(which_clock, &ktx); 1102 1103 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1104 return -EFAULT; 1105 1106 return err; 1107 } 1108 1109 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1110 struct __kernel_timespec __user *, tp) 1111 { 1112 const struct k_clock *kc = clockid_to_kclock(which_clock); 1113 struct timespec64 rtn_tp; 1114 int error; 1115 1116 if (!kc) 1117 return -EINVAL; 1118 1119 error = kc->clock_getres(which_clock, &rtn_tp); 1120 1121 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1122 error = -EFAULT; 1123 1124 return error; 1125 } 1126 1127 #ifdef CONFIG_COMPAT_32BIT_TIME 1128 1129 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock, 1130 struct compat_timespec __user *, tp) 1131 { 1132 const struct k_clock *kc = clockid_to_kclock(which_clock); 1133 struct timespec64 ts; 1134 1135 if (!kc || !kc->clock_set) 1136 return -EINVAL; 1137 1138 if (compat_get_timespec64(&ts, tp)) 1139 return -EFAULT; 1140 1141 return kc->clock_set(which_clock, &ts); 1142 } 1143 1144 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock, 1145 struct compat_timespec __user *, tp) 1146 { 1147 const struct k_clock *kc = clockid_to_kclock(which_clock); 1148 struct timespec64 ts; 1149 int err; 1150 1151 if (!kc) 1152 return -EINVAL; 1153 1154 err = kc->clock_get(which_clock, &ts); 1155 1156 if (!err && compat_put_timespec64(&ts, tp)) 1157 err = -EFAULT; 1158 1159 return err; 1160 } 1161 1162 #endif 1163 1164 #ifdef CONFIG_COMPAT 1165 1166 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock, 1167 struct compat_timex __user *, utp) 1168 { 1169 const struct k_clock *kc = clockid_to_kclock(which_clock); 1170 struct timex ktx; 1171 int err; 1172 1173 if (!kc) 1174 return -EINVAL; 1175 if (!kc->clock_adj) 1176 return -EOPNOTSUPP; 1177 1178 err = compat_get_timex(&ktx, utp); 1179 if (err) 1180 return err; 1181 1182 err = kc->clock_adj(which_clock, &ktx); 1183 1184 if (err >= 0) 1185 err = compat_put_timex(utp, &ktx); 1186 1187 return err; 1188 } 1189 1190 #endif 1191 1192 #ifdef CONFIG_COMPAT_32BIT_TIME 1193 1194 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock, 1195 struct compat_timespec __user *, tp) 1196 { 1197 const struct k_clock *kc = clockid_to_kclock(which_clock); 1198 struct timespec64 ts; 1199 int err; 1200 1201 if (!kc) 1202 return -EINVAL; 1203 1204 err = kc->clock_getres(which_clock, &ts); 1205 if (!err && tp && compat_put_timespec64(&ts, tp)) 1206 return -EFAULT; 1207 1208 return err; 1209 } 1210 1211 #endif 1212 1213 /* 1214 * nanosleep for monotonic and realtime clocks 1215 */ 1216 static int common_nsleep(const clockid_t which_clock, int flags, 1217 const struct timespec64 *rqtp) 1218 { 1219 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? 1220 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1221 which_clock); 1222 } 1223 1224 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1225 const struct __kernel_timespec __user *, rqtp, 1226 struct __kernel_timespec __user *, rmtp) 1227 { 1228 const struct k_clock *kc = clockid_to_kclock(which_clock); 1229 struct timespec64 t; 1230 1231 if (!kc) 1232 return -EINVAL; 1233 if (!kc->nsleep) 1234 return -ENANOSLEEP_NOTSUP; 1235 1236 if (get_timespec64(&t, rqtp)) 1237 return -EFAULT; 1238 1239 if (!timespec64_valid(&t)) 1240 return -EINVAL; 1241 if (flags & TIMER_ABSTIME) 1242 rmtp = NULL; 1243 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1244 current->restart_block.nanosleep.rmtp = rmtp; 1245 1246 return kc->nsleep(which_clock, flags, &t); 1247 } 1248 1249 #ifdef CONFIG_COMPAT_32BIT_TIME 1250 1251 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags, 1252 struct compat_timespec __user *, rqtp, 1253 struct compat_timespec __user *, rmtp) 1254 { 1255 const struct k_clock *kc = clockid_to_kclock(which_clock); 1256 struct timespec64 t; 1257 1258 if (!kc) 1259 return -EINVAL; 1260 if (!kc->nsleep) 1261 return -ENANOSLEEP_NOTSUP; 1262 1263 if (compat_get_timespec64(&t, rqtp)) 1264 return -EFAULT; 1265 1266 if (!timespec64_valid(&t)) 1267 return -EINVAL; 1268 if (flags & TIMER_ABSTIME) 1269 rmtp = NULL; 1270 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1271 current->restart_block.nanosleep.compat_rmtp = rmtp; 1272 1273 return kc->nsleep(which_clock, flags, &t); 1274 } 1275 1276 #endif 1277 1278 static const struct k_clock clock_realtime = { 1279 .clock_getres = posix_get_hrtimer_res, 1280 .clock_get = posix_clock_realtime_get, 1281 .clock_set = posix_clock_realtime_set, 1282 .clock_adj = posix_clock_realtime_adj, 1283 .nsleep = common_nsleep, 1284 .timer_create = common_timer_create, 1285 .timer_set = common_timer_set, 1286 .timer_get = common_timer_get, 1287 .timer_del = common_timer_del, 1288 .timer_rearm = common_hrtimer_rearm, 1289 .timer_forward = common_hrtimer_forward, 1290 .timer_remaining = common_hrtimer_remaining, 1291 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1292 .timer_arm = common_hrtimer_arm, 1293 }; 1294 1295 static const struct k_clock clock_monotonic = { 1296 .clock_getres = posix_get_hrtimer_res, 1297 .clock_get = posix_ktime_get_ts, 1298 .nsleep = common_nsleep, 1299 .timer_create = common_timer_create, 1300 .timer_set = common_timer_set, 1301 .timer_get = common_timer_get, 1302 .timer_del = common_timer_del, 1303 .timer_rearm = common_hrtimer_rearm, 1304 .timer_forward = common_hrtimer_forward, 1305 .timer_remaining = common_hrtimer_remaining, 1306 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1307 .timer_arm = common_hrtimer_arm, 1308 }; 1309 1310 static const struct k_clock clock_monotonic_raw = { 1311 .clock_getres = posix_get_hrtimer_res, 1312 .clock_get = posix_get_monotonic_raw, 1313 }; 1314 1315 static const struct k_clock clock_realtime_coarse = { 1316 .clock_getres = posix_get_coarse_res, 1317 .clock_get = posix_get_realtime_coarse, 1318 }; 1319 1320 static const struct k_clock clock_monotonic_coarse = { 1321 .clock_getres = posix_get_coarse_res, 1322 .clock_get = posix_get_monotonic_coarse, 1323 }; 1324 1325 static const struct k_clock clock_tai = { 1326 .clock_getres = posix_get_hrtimer_res, 1327 .clock_get = posix_get_tai, 1328 .nsleep = common_nsleep, 1329 .timer_create = common_timer_create, 1330 .timer_set = common_timer_set, 1331 .timer_get = common_timer_get, 1332 .timer_del = common_timer_del, 1333 .timer_rearm = common_hrtimer_rearm, 1334 .timer_forward = common_hrtimer_forward, 1335 .timer_remaining = common_hrtimer_remaining, 1336 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1337 .timer_arm = common_hrtimer_arm, 1338 }; 1339 1340 static const struct k_clock clock_boottime = { 1341 .clock_getres = posix_get_hrtimer_res, 1342 .clock_get = posix_get_boottime, 1343 .nsleep = common_nsleep, 1344 .timer_create = common_timer_create, 1345 .timer_set = common_timer_set, 1346 .timer_get = common_timer_get, 1347 .timer_del = common_timer_del, 1348 .timer_rearm = common_hrtimer_rearm, 1349 .timer_forward = common_hrtimer_forward, 1350 .timer_remaining = common_hrtimer_remaining, 1351 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1352 .timer_arm = common_hrtimer_arm, 1353 }; 1354 1355 static const struct k_clock * const posix_clocks[] = { 1356 [CLOCK_REALTIME] = &clock_realtime, 1357 [CLOCK_MONOTONIC] = &clock_monotonic, 1358 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1359 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1360 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1361 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1362 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1363 [CLOCK_BOOTTIME] = &clock_boottime, 1364 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1365 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1366 [CLOCK_TAI] = &clock_tai, 1367 }; 1368 1369 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1370 { 1371 clockid_t idx = id; 1372 1373 if (id < 0) { 1374 return (id & CLOCKFD_MASK) == CLOCKFD ? 1375 &clock_posix_dynamic : &clock_posix_cpu; 1376 } 1377 1378 if (id >= ARRAY_SIZE(posix_clocks)) 1379 return NULL; 1380 1381 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; 1382 } 1383