xref: /linux/kernel/time/posix-timers.c (revision 403f833d15a33bfd8e50dd79fa8e25fb4aa132f6)
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53 #include <linux/nospec.h>
54 
55 #include "timekeeping.h"
56 #include "posix-timers.h"
57 
58 /*
59  * Management arrays for POSIX timers. Timers are now kept in static hash table
60  * with 512 entries.
61  * Timer ids are allocated by local routine, which selects proper hash head by
62  * key, constructed from current->signal address and per signal struct counter.
63  * This keeps timer ids unique per process, but now they can intersect between
64  * processes.
65  */
66 
67 /*
68  * Lets keep our timers in a slab cache :-)
69  */
70 static struct kmem_cache *posix_timers_cache;
71 
72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73 static DEFINE_SPINLOCK(hash_lock);
74 
75 static const struct k_clock * const posix_clocks[];
76 static const struct k_clock *clockid_to_kclock(const clockid_t id);
77 static const struct k_clock clock_realtime, clock_monotonic;
78 
79 /*
80  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81  * SIGEV values.  Here we put out an error if this assumption fails.
82  */
83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86 #endif
87 
88 /*
89  * parisc wants ENOTSUP instead of EOPNOTSUPP
90  */
91 #ifndef ENOTSUP
92 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
93 #else
94 # define ENANOSLEEP_NOTSUP ENOTSUP
95 #endif
96 
97 /*
98  * The timer ID is turned into a timer address by idr_find().
99  * Verifying a valid ID consists of:
100  *
101  * a) checking that idr_find() returns other than -1.
102  * b) checking that the timer id matches the one in the timer itself.
103  * c) that the timer owner is in the callers thread group.
104  */
105 
106 /*
107  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
108  *	    to implement others.  This structure defines the various
109  *	    clocks.
110  *
111  * RESOLUTION: Clock resolution is used to round up timer and interval
112  *	    times, NOT to report clock times, which are reported with as
113  *	    much resolution as the system can muster.  In some cases this
114  *	    resolution may depend on the underlying clock hardware and
115  *	    may not be quantifiable until run time, and only then is the
116  *	    necessary code is written.	The standard says we should say
117  *	    something about this issue in the documentation...
118  *
119  * FUNCTIONS: The CLOCKs structure defines possible functions to
120  *	    handle various clock functions.
121  *
122  *	    The standard POSIX timer management code assumes the
123  *	    following: 1.) The k_itimer struct (sched.h) is used for
124  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
125  *	    it_pid fields are not modified by timer code.
126  *
127  * Permissions: It is assumed that the clock_settime() function defined
128  *	    for each clock will take care of permission checks.	 Some
129  *	    clocks may be set able by any user (i.e. local process
130  *	    clocks) others not.	 Currently the only set able clock we
131  *	    have is CLOCK_REALTIME and its high res counter part, both of
132  *	    which we beg off on and pass to do_sys_settimeofday().
133  */
134 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
135 
136 #define lock_timer(tid, flags)						   \
137 ({	struct k_itimer *__timr;					   \
138 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
139 	__timr;								   \
140 })
141 
142 static int hash(struct signal_struct *sig, unsigned int nr)
143 {
144 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
145 }
146 
147 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
148 					    struct signal_struct *sig,
149 					    timer_t id)
150 {
151 	struct k_itimer *timer;
152 
153 	hlist_for_each_entry_rcu(timer, head, t_hash) {
154 		if ((timer->it_signal == sig) && (timer->it_id == id))
155 			return timer;
156 	}
157 	return NULL;
158 }
159 
160 static struct k_itimer *posix_timer_by_id(timer_t id)
161 {
162 	struct signal_struct *sig = current->signal;
163 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
164 
165 	return __posix_timers_find(head, sig, id);
166 }
167 
168 static int posix_timer_add(struct k_itimer *timer)
169 {
170 	struct signal_struct *sig = current->signal;
171 	int first_free_id = sig->posix_timer_id;
172 	struct hlist_head *head;
173 	int ret = -ENOENT;
174 
175 	do {
176 		spin_lock(&hash_lock);
177 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
178 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
179 			hlist_add_head_rcu(&timer->t_hash, head);
180 			ret = sig->posix_timer_id;
181 		}
182 		if (++sig->posix_timer_id < 0)
183 			sig->posix_timer_id = 0;
184 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
185 			/* Loop over all possible ids completed */
186 			ret = -EAGAIN;
187 		spin_unlock(&hash_lock);
188 	} while (ret == -ENOENT);
189 	return ret;
190 }
191 
192 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
193 {
194 	spin_unlock_irqrestore(&timr->it_lock, flags);
195 }
196 
197 /* Get clock_realtime */
198 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
199 {
200 	ktime_get_real_ts64(tp);
201 	return 0;
202 }
203 
204 /* Set clock_realtime */
205 static int posix_clock_realtime_set(const clockid_t which_clock,
206 				    const struct timespec64 *tp)
207 {
208 	return do_sys_settimeofday64(tp, NULL);
209 }
210 
211 static int posix_clock_realtime_adj(const clockid_t which_clock,
212 				    struct timex *t)
213 {
214 	return do_adjtimex(t);
215 }
216 
217 /*
218  * Get monotonic time for posix timers
219  */
220 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
221 {
222 	ktime_get_ts64(tp);
223 	return 0;
224 }
225 
226 /*
227  * Get monotonic-raw time for posix timers
228  */
229 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230 {
231 	ktime_get_raw_ts64(tp);
232 	return 0;
233 }
234 
235 
236 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237 {
238 	ktime_get_coarse_real_ts64(tp);
239 	return 0;
240 }
241 
242 static int posix_get_monotonic_coarse(clockid_t which_clock,
243 						struct timespec64 *tp)
244 {
245 	ktime_get_coarse_ts64(tp);
246 	return 0;
247 }
248 
249 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
250 {
251 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
252 	return 0;
253 }
254 
255 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
256 {
257 	ktime_get_boottime_ts64(tp);
258 	return 0;
259 }
260 
261 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
262 {
263 	ktime_get_clocktai_ts64(tp);
264 	return 0;
265 }
266 
267 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
268 {
269 	tp->tv_sec = 0;
270 	tp->tv_nsec = hrtimer_resolution;
271 	return 0;
272 }
273 
274 /*
275  * Initialize everything, well, just everything in Posix clocks/timers ;)
276  */
277 static __init int init_posix_timers(void)
278 {
279 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
280 					sizeof (struct k_itimer), 0, SLAB_PANIC,
281 					NULL);
282 	return 0;
283 }
284 __initcall(init_posix_timers);
285 
286 /*
287  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
288  * are of type int. Clamp the overrun value to INT_MAX
289  */
290 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
291 {
292 	s64 sum = timr->it_overrun_last + (s64)baseval;
293 
294 	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
295 }
296 
297 static void common_hrtimer_rearm(struct k_itimer *timr)
298 {
299 	struct hrtimer *timer = &timr->it.real.timer;
300 
301 	if (!timr->it_interval)
302 		return;
303 
304 	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
305 					    timr->it_interval);
306 	hrtimer_restart(timer);
307 }
308 
309 /*
310  * This function is exported for use by the signal deliver code.  It is
311  * called just prior to the info block being released and passes that
312  * block to us.  It's function is to update the overrun entry AND to
313  * restart the timer.  It should only be called if the timer is to be
314  * restarted (i.e. we have flagged this in the sys_private entry of the
315  * info block).
316  *
317  * To protect against the timer going away while the interrupt is queued,
318  * we require that the it_requeue_pending flag be set.
319  */
320 void posixtimer_rearm(struct siginfo *info)
321 {
322 	struct k_itimer *timr;
323 	unsigned long flags;
324 
325 	timr = lock_timer(info->si_tid, &flags);
326 	if (!timr)
327 		return;
328 
329 	if (timr->it_requeue_pending == info->si_sys_private) {
330 		timr->kclock->timer_rearm(timr);
331 
332 		timr->it_active = 1;
333 		timr->it_overrun_last = timr->it_overrun;
334 		timr->it_overrun = -1LL;
335 		++timr->it_requeue_pending;
336 
337 		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
338 	}
339 
340 	unlock_timer(timr, flags);
341 }
342 
343 int posix_timer_event(struct k_itimer *timr, int si_private)
344 {
345 	struct task_struct *task;
346 	int shared, ret = -1;
347 	/*
348 	 * FIXME: if ->sigq is queued we can race with
349 	 * dequeue_signal()->posixtimer_rearm().
350 	 *
351 	 * If dequeue_signal() sees the "right" value of
352 	 * si_sys_private it calls posixtimer_rearm().
353 	 * We re-queue ->sigq and drop ->it_lock().
354 	 * posixtimer_rearm() locks the timer
355 	 * and re-schedules it while ->sigq is pending.
356 	 * Not really bad, but not that we want.
357 	 */
358 	timr->sigq->info.si_sys_private = si_private;
359 
360 	rcu_read_lock();
361 	task = pid_task(timr->it_pid, PIDTYPE_PID);
362 	if (task) {
363 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
364 		ret = send_sigqueue(timr->sigq, task, shared);
365 	}
366 	rcu_read_unlock();
367 	/* If we failed to send the signal the timer stops. */
368 	return ret > 0;
369 }
370 
371 /*
372  * This function gets called when a POSIX.1b interval timer expires.  It
373  * is used as a callback from the kernel internal timer.  The
374  * run_timer_list code ALWAYS calls with interrupts on.
375 
376  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
377  */
378 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
379 {
380 	struct k_itimer *timr;
381 	unsigned long flags;
382 	int si_private = 0;
383 	enum hrtimer_restart ret = HRTIMER_NORESTART;
384 
385 	timr = container_of(timer, struct k_itimer, it.real.timer);
386 	spin_lock_irqsave(&timr->it_lock, flags);
387 
388 	timr->it_active = 0;
389 	if (timr->it_interval != 0)
390 		si_private = ++timr->it_requeue_pending;
391 
392 	if (posix_timer_event(timr, si_private)) {
393 		/*
394 		 * signal was not sent because of sig_ignor
395 		 * we will not get a call back to restart it AND
396 		 * it should be restarted.
397 		 */
398 		if (timr->it_interval != 0) {
399 			ktime_t now = hrtimer_cb_get_time(timer);
400 
401 			/*
402 			 * FIXME: What we really want, is to stop this
403 			 * timer completely and restart it in case the
404 			 * SIG_IGN is removed. This is a non trivial
405 			 * change which involves sighand locking
406 			 * (sigh !), which we don't want to do late in
407 			 * the release cycle.
408 			 *
409 			 * For now we just let timers with an interval
410 			 * less than a jiffie expire every jiffie to
411 			 * avoid softirq starvation in case of SIG_IGN
412 			 * and a very small interval, which would put
413 			 * the timer right back on the softirq pending
414 			 * list. By moving now ahead of time we trick
415 			 * hrtimer_forward() to expire the timer
416 			 * later, while we still maintain the overrun
417 			 * accuracy, but have some inconsistency in
418 			 * the timer_gettime() case. This is at least
419 			 * better than a starved softirq. A more
420 			 * complex fix which solves also another related
421 			 * inconsistency is already in the pipeline.
422 			 */
423 #ifdef CONFIG_HIGH_RES_TIMERS
424 			{
425 				ktime_t kj = NSEC_PER_SEC / HZ;
426 
427 				if (timr->it_interval < kj)
428 					now = ktime_add(now, kj);
429 			}
430 #endif
431 			timr->it_overrun += hrtimer_forward(timer, now,
432 							    timr->it_interval);
433 			ret = HRTIMER_RESTART;
434 			++timr->it_requeue_pending;
435 			timr->it_active = 1;
436 		}
437 	}
438 
439 	unlock_timer(timr, flags);
440 	return ret;
441 }
442 
443 static struct pid *good_sigevent(sigevent_t * event)
444 {
445 	struct task_struct *rtn = current->group_leader;
446 
447 	switch (event->sigev_notify) {
448 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
449 		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
450 		if (!rtn || !same_thread_group(rtn, current))
451 			return NULL;
452 		/* FALLTHRU */
453 	case SIGEV_SIGNAL:
454 	case SIGEV_THREAD:
455 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
456 			return NULL;
457 		/* FALLTHRU */
458 	case SIGEV_NONE:
459 		return task_pid(rtn);
460 	default:
461 		return NULL;
462 	}
463 }
464 
465 static struct k_itimer * alloc_posix_timer(void)
466 {
467 	struct k_itimer *tmr;
468 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
469 	if (!tmr)
470 		return tmr;
471 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
472 		kmem_cache_free(posix_timers_cache, tmr);
473 		return NULL;
474 	}
475 	clear_siginfo(&tmr->sigq->info);
476 	return tmr;
477 }
478 
479 static void k_itimer_rcu_free(struct rcu_head *head)
480 {
481 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
482 
483 	kmem_cache_free(posix_timers_cache, tmr);
484 }
485 
486 #define IT_ID_SET	1
487 #define IT_ID_NOT_SET	0
488 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
489 {
490 	if (it_id_set) {
491 		unsigned long flags;
492 		spin_lock_irqsave(&hash_lock, flags);
493 		hlist_del_rcu(&tmr->t_hash);
494 		spin_unlock_irqrestore(&hash_lock, flags);
495 	}
496 	put_pid(tmr->it_pid);
497 	sigqueue_free(tmr->sigq);
498 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
499 }
500 
501 static int common_timer_create(struct k_itimer *new_timer)
502 {
503 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
504 	return 0;
505 }
506 
507 /* Create a POSIX.1b interval timer. */
508 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
509 			   timer_t __user *created_timer_id)
510 {
511 	const struct k_clock *kc = clockid_to_kclock(which_clock);
512 	struct k_itimer *new_timer;
513 	int error, new_timer_id;
514 	int it_id_set = IT_ID_NOT_SET;
515 
516 	if (!kc)
517 		return -EINVAL;
518 	if (!kc->timer_create)
519 		return -EOPNOTSUPP;
520 
521 	new_timer = alloc_posix_timer();
522 	if (unlikely(!new_timer))
523 		return -EAGAIN;
524 
525 	spin_lock_init(&new_timer->it_lock);
526 	new_timer_id = posix_timer_add(new_timer);
527 	if (new_timer_id < 0) {
528 		error = new_timer_id;
529 		goto out;
530 	}
531 
532 	it_id_set = IT_ID_SET;
533 	new_timer->it_id = (timer_t) new_timer_id;
534 	new_timer->it_clock = which_clock;
535 	new_timer->kclock = kc;
536 	new_timer->it_overrun = -1LL;
537 
538 	if (event) {
539 		rcu_read_lock();
540 		new_timer->it_pid = get_pid(good_sigevent(event));
541 		rcu_read_unlock();
542 		if (!new_timer->it_pid) {
543 			error = -EINVAL;
544 			goto out;
545 		}
546 		new_timer->it_sigev_notify     = event->sigev_notify;
547 		new_timer->sigq->info.si_signo = event->sigev_signo;
548 		new_timer->sigq->info.si_value = event->sigev_value;
549 	} else {
550 		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
551 		new_timer->sigq->info.si_signo = SIGALRM;
552 		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
553 		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
554 		new_timer->it_pid = get_pid(task_tgid(current));
555 	}
556 
557 	new_timer->sigq->info.si_tid   = new_timer->it_id;
558 	new_timer->sigq->info.si_code  = SI_TIMER;
559 
560 	if (copy_to_user(created_timer_id,
561 			 &new_timer_id, sizeof (new_timer_id))) {
562 		error = -EFAULT;
563 		goto out;
564 	}
565 
566 	error = kc->timer_create(new_timer);
567 	if (error)
568 		goto out;
569 
570 	spin_lock_irq(&current->sighand->siglock);
571 	new_timer->it_signal = current->signal;
572 	list_add(&new_timer->list, &current->signal->posix_timers);
573 	spin_unlock_irq(&current->sighand->siglock);
574 
575 	return 0;
576 	/*
577 	 * In the case of the timer belonging to another task, after
578 	 * the task is unlocked, the timer is owned by the other task
579 	 * and may cease to exist at any time.  Don't use or modify
580 	 * new_timer after the unlock call.
581 	 */
582 out:
583 	release_posix_timer(new_timer, it_id_set);
584 	return error;
585 }
586 
587 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
588 		struct sigevent __user *, timer_event_spec,
589 		timer_t __user *, created_timer_id)
590 {
591 	if (timer_event_spec) {
592 		sigevent_t event;
593 
594 		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
595 			return -EFAULT;
596 		return do_timer_create(which_clock, &event, created_timer_id);
597 	}
598 	return do_timer_create(which_clock, NULL, created_timer_id);
599 }
600 
601 #ifdef CONFIG_COMPAT
602 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
603 		       struct compat_sigevent __user *, timer_event_spec,
604 		       timer_t __user *, created_timer_id)
605 {
606 	if (timer_event_spec) {
607 		sigevent_t event;
608 
609 		if (get_compat_sigevent(&event, timer_event_spec))
610 			return -EFAULT;
611 		return do_timer_create(which_clock, &event, created_timer_id);
612 	}
613 	return do_timer_create(which_clock, NULL, created_timer_id);
614 }
615 #endif
616 
617 /*
618  * Locking issues: We need to protect the result of the id look up until
619  * we get the timer locked down so it is not deleted under us.  The
620  * removal is done under the idr spinlock so we use that here to bridge
621  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
622  * be release with out holding the timer lock.
623  */
624 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
625 {
626 	struct k_itimer *timr;
627 
628 	/*
629 	 * timer_t could be any type >= int and we want to make sure any
630 	 * @timer_id outside positive int range fails lookup.
631 	 */
632 	if ((unsigned long long)timer_id > INT_MAX)
633 		return NULL;
634 
635 	rcu_read_lock();
636 	timr = posix_timer_by_id(timer_id);
637 	if (timr) {
638 		spin_lock_irqsave(&timr->it_lock, *flags);
639 		if (timr->it_signal == current->signal) {
640 			rcu_read_unlock();
641 			return timr;
642 		}
643 		spin_unlock_irqrestore(&timr->it_lock, *flags);
644 	}
645 	rcu_read_unlock();
646 
647 	return NULL;
648 }
649 
650 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
651 {
652 	struct hrtimer *timer = &timr->it.real.timer;
653 
654 	return __hrtimer_expires_remaining_adjusted(timer, now);
655 }
656 
657 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
658 {
659 	struct hrtimer *timer = &timr->it.real.timer;
660 
661 	return hrtimer_forward(timer, now, timr->it_interval);
662 }
663 
664 /*
665  * Get the time remaining on a POSIX.1b interval timer.  This function
666  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
667  * mess with irq.
668  *
669  * We have a couple of messes to clean up here.  First there is the case
670  * of a timer that has a requeue pending.  These timers should appear to
671  * be in the timer list with an expiry as if we were to requeue them
672  * now.
673  *
674  * The second issue is the SIGEV_NONE timer which may be active but is
675  * not really ever put in the timer list (to save system resources).
676  * This timer may be expired, and if so, we will do it here.  Otherwise
677  * it is the same as a requeue pending timer WRT to what we should
678  * report.
679  */
680 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
681 {
682 	const struct k_clock *kc = timr->kclock;
683 	ktime_t now, remaining, iv;
684 	struct timespec64 ts64;
685 	bool sig_none;
686 
687 	sig_none = timr->it_sigev_notify == SIGEV_NONE;
688 	iv = timr->it_interval;
689 
690 	/* interval timer ? */
691 	if (iv) {
692 		cur_setting->it_interval = ktime_to_timespec64(iv);
693 	} else if (!timr->it_active) {
694 		/*
695 		 * SIGEV_NONE oneshot timers are never queued. Check them
696 		 * below.
697 		 */
698 		if (!sig_none)
699 			return;
700 	}
701 
702 	/*
703 	 * The timespec64 based conversion is suboptimal, but it's not
704 	 * worth to implement yet another callback.
705 	 */
706 	kc->clock_get(timr->it_clock, &ts64);
707 	now = timespec64_to_ktime(ts64);
708 
709 	/*
710 	 * When a requeue is pending or this is a SIGEV_NONE timer move the
711 	 * expiry time forward by intervals, so expiry is > now.
712 	 */
713 	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
714 		timr->it_overrun += kc->timer_forward(timr, now);
715 
716 	remaining = kc->timer_remaining(timr, now);
717 	/* Return 0 only, when the timer is expired and not pending */
718 	if (remaining <= 0) {
719 		/*
720 		 * A single shot SIGEV_NONE timer must return 0, when
721 		 * it is expired !
722 		 */
723 		if (!sig_none)
724 			cur_setting->it_value.tv_nsec = 1;
725 	} else {
726 		cur_setting->it_value = ktime_to_timespec64(remaining);
727 	}
728 }
729 
730 /* Get the time remaining on a POSIX.1b interval timer. */
731 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
732 {
733 	struct k_itimer *timr;
734 	const struct k_clock *kc;
735 	unsigned long flags;
736 	int ret = 0;
737 
738 	timr = lock_timer(timer_id, &flags);
739 	if (!timr)
740 		return -EINVAL;
741 
742 	memset(setting, 0, sizeof(*setting));
743 	kc = timr->kclock;
744 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
745 		ret = -EINVAL;
746 	else
747 		kc->timer_get(timr, setting);
748 
749 	unlock_timer(timr, flags);
750 	return ret;
751 }
752 
753 /* Get the time remaining on a POSIX.1b interval timer. */
754 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
755 		struct __kernel_itimerspec __user *, setting)
756 {
757 	struct itimerspec64 cur_setting;
758 
759 	int ret = do_timer_gettime(timer_id, &cur_setting);
760 	if (!ret) {
761 		if (put_itimerspec64(&cur_setting, setting))
762 			ret = -EFAULT;
763 	}
764 	return ret;
765 }
766 
767 #ifdef CONFIG_COMPAT_32BIT_TIME
768 
769 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
770 		       struct compat_itimerspec __user *, setting)
771 {
772 	struct itimerspec64 cur_setting;
773 
774 	int ret = do_timer_gettime(timer_id, &cur_setting);
775 	if (!ret) {
776 		if (put_compat_itimerspec64(&cur_setting, setting))
777 			ret = -EFAULT;
778 	}
779 	return ret;
780 }
781 
782 #endif
783 
784 /*
785  * Get the number of overruns of a POSIX.1b interval timer.  This is to
786  * be the overrun of the timer last delivered.  At the same time we are
787  * accumulating overruns on the next timer.  The overrun is frozen when
788  * the signal is delivered, either at the notify time (if the info block
789  * is not queued) or at the actual delivery time (as we are informed by
790  * the call back to posixtimer_rearm().  So all we need to do is
791  * to pick up the frozen overrun.
792  */
793 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
794 {
795 	struct k_itimer *timr;
796 	int overrun;
797 	unsigned long flags;
798 
799 	timr = lock_timer(timer_id, &flags);
800 	if (!timr)
801 		return -EINVAL;
802 
803 	overrun = timer_overrun_to_int(timr, 0);
804 	unlock_timer(timr, flags);
805 
806 	return overrun;
807 }
808 
809 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
810 			       bool absolute, bool sigev_none)
811 {
812 	struct hrtimer *timer = &timr->it.real.timer;
813 	enum hrtimer_mode mode;
814 
815 	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
816 	/*
817 	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
818 	 * clock modifications, so they become CLOCK_MONOTONIC based under the
819 	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
820 	 * functions which use timr->kclock->clock_get() work.
821 	 *
822 	 * Note: it_clock stays unmodified, because the next timer_set() might
823 	 * use ABSTIME, so it needs to switch back.
824 	 */
825 	if (timr->it_clock == CLOCK_REALTIME)
826 		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
827 
828 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
829 	timr->it.real.timer.function = posix_timer_fn;
830 
831 	if (!absolute)
832 		expires = ktime_add_safe(expires, timer->base->get_time());
833 	hrtimer_set_expires(timer, expires);
834 
835 	if (!sigev_none)
836 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
837 }
838 
839 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
840 {
841 	return hrtimer_try_to_cancel(&timr->it.real.timer);
842 }
843 
844 /* Set a POSIX.1b interval timer. */
845 int common_timer_set(struct k_itimer *timr, int flags,
846 		     struct itimerspec64 *new_setting,
847 		     struct itimerspec64 *old_setting)
848 {
849 	const struct k_clock *kc = timr->kclock;
850 	bool sigev_none;
851 	ktime_t expires;
852 
853 	if (old_setting)
854 		common_timer_get(timr, old_setting);
855 
856 	/* Prevent rearming by clearing the interval */
857 	timr->it_interval = 0;
858 	/*
859 	 * Careful here. On SMP systems the timer expiry function could be
860 	 * active and spinning on timr->it_lock.
861 	 */
862 	if (kc->timer_try_to_cancel(timr) < 0)
863 		return TIMER_RETRY;
864 
865 	timr->it_active = 0;
866 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
867 		~REQUEUE_PENDING;
868 	timr->it_overrun_last = 0;
869 
870 	/* Switch off the timer when it_value is zero */
871 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
872 		return 0;
873 
874 	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
875 	expires = timespec64_to_ktime(new_setting->it_value);
876 	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
877 
878 	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
879 	timr->it_active = !sigev_none;
880 	return 0;
881 }
882 
883 static int do_timer_settime(timer_t timer_id, int flags,
884 			    struct itimerspec64 *new_spec64,
885 			    struct itimerspec64 *old_spec64)
886 {
887 	const struct k_clock *kc;
888 	struct k_itimer *timr;
889 	unsigned long flag;
890 	int error = 0;
891 
892 	if (!timespec64_valid(&new_spec64->it_interval) ||
893 	    !timespec64_valid(&new_spec64->it_value))
894 		return -EINVAL;
895 
896 	if (old_spec64)
897 		memset(old_spec64, 0, sizeof(*old_spec64));
898 retry:
899 	timr = lock_timer(timer_id, &flag);
900 	if (!timr)
901 		return -EINVAL;
902 
903 	kc = timr->kclock;
904 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
905 		error = -EINVAL;
906 	else
907 		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
908 
909 	unlock_timer(timr, flag);
910 	if (error == TIMER_RETRY) {
911 		old_spec64 = NULL;	// We already got the old time...
912 		goto retry;
913 	}
914 
915 	return error;
916 }
917 
918 /* Set a POSIX.1b interval timer */
919 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
920 		const struct __kernel_itimerspec __user *, new_setting,
921 		struct __kernel_itimerspec __user *, old_setting)
922 {
923 	struct itimerspec64 new_spec, old_spec;
924 	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
925 	int error = 0;
926 
927 	if (!new_setting)
928 		return -EINVAL;
929 
930 	if (get_itimerspec64(&new_spec, new_setting))
931 		return -EFAULT;
932 
933 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
934 	if (!error && old_setting) {
935 		if (put_itimerspec64(&old_spec, old_setting))
936 			error = -EFAULT;
937 	}
938 	return error;
939 }
940 
941 #ifdef CONFIG_COMPAT_32BIT_TIME
942 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
943 		       struct compat_itimerspec __user *, new,
944 		       struct compat_itimerspec __user *, old)
945 {
946 	struct itimerspec64 new_spec, old_spec;
947 	struct itimerspec64 *rtn = old ? &old_spec : NULL;
948 	int error = 0;
949 
950 	if (!new)
951 		return -EINVAL;
952 	if (get_compat_itimerspec64(&new_spec, new))
953 		return -EFAULT;
954 
955 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
956 	if (!error && old) {
957 		if (put_compat_itimerspec64(&old_spec, old))
958 			error = -EFAULT;
959 	}
960 	return error;
961 }
962 #endif
963 
964 int common_timer_del(struct k_itimer *timer)
965 {
966 	const struct k_clock *kc = timer->kclock;
967 
968 	timer->it_interval = 0;
969 	if (kc->timer_try_to_cancel(timer) < 0)
970 		return TIMER_RETRY;
971 	timer->it_active = 0;
972 	return 0;
973 }
974 
975 static inline int timer_delete_hook(struct k_itimer *timer)
976 {
977 	const struct k_clock *kc = timer->kclock;
978 
979 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
980 		return -EINVAL;
981 	return kc->timer_del(timer);
982 }
983 
984 /* Delete a POSIX.1b interval timer. */
985 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
986 {
987 	struct k_itimer *timer;
988 	unsigned long flags;
989 
990 retry_delete:
991 	timer = lock_timer(timer_id, &flags);
992 	if (!timer)
993 		return -EINVAL;
994 
995 	if (timer_delete_hook(timer) == TIMER_RETRY) {
996 		unlock_timer(timer, flags);
997 		goto retry_delete;
998 	}
999 
1000 	spin_lock(&current->sighand->siglock);
1001 	list_del(&timer->list);
1002 	spin_unlock(&current->sighand->siglock);
1003 	/*
1004 	 * This keeps any tasks waiting on the spin lock from thinking
1005 	 * they got something (see the lock code above).
1006 	 */
1007 	timer->it_signal = NULL;
1008 
1009 	unlock_timer(timer, flags);
1010 	release_posix_timer(timer, IT_ID_SET);
1011 	return 0;
1012 }
1013 
1014 /*
1015  * return timer owned by the process, used by exit_itimers
1016  */
1017 static void itimer_delete(struct k_itimer *timer)
1018 {
1019 	unsigned long flags;
1020 
1021 retry_delete:
1022 	spin_lock_irqsave(&timer->it_lock, flags);
1023 
1024 	if (timer_delete_hook(timer) == TIMER_RETRY) {
1025 		unlock_timer(timer, flags);
1026 		goto retry_delete;
1027 	}
1028 	list_del(&timer->list);
1029 	/*
1030 	 * This keeps any tasks waiting on the spin lock from thinking
1031 	 * they got something (see the lock code above).
1032 	 */
1033 	timer->it_signal = NULL;
1034 
1035 	unlock_timer(timer, flags);
1036 	release_posix_timer(timer, IT_ID_SET);
1037 }
1038 
1039 /*
1040  * This is called by do_exit or de_thread, only when there are no more
1041  * references to the shared signal_struct.
1042  */
1043 void exit_itimers(struct signal_struct *sig)
1044 {
1045 	struct k_itimer *tmr;
1046 
1047 	while (!list_empty(&sig->posix_timers)) {
1048 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1049 		itimer_delete(tmr);
1050 	}
1051 }
1052 
1053 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1054 		const struct __kernel_timespec __user *, tp)
1055 {
1056 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1057 	struct timespec64 new_tp;
1058 
1059 	if (!kc || !kc->clock_set)
1060 		return -EINVAL;
1061 
1062 	if (get_timespec64(&new_tp, tp))
1063 		return -EFAULT;
1064 
1065 	return kc->clock_set(which_clock, &new_tp);
1066 }
1067 
1068 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1069 		struct __kernel_timespec __user *, tp)
1070 {
1071 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1072 	struct timespec64 kernel_tp;
1073 	int error;
1074 
1075 	if (!kc)
1076 		return -EINVAL;
1077 
1078 	error = kc->clock_get(which_clock, &kernel_tp);
1079 
1080 	if (!error && put_timespec64(&kernel_tp, tp))
1081 		error = -EFAULT;
1082 
1083 	return error;
1084 }
1085 
1086 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1087 		struct timex __user *, utx)
1088 {
1089 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1090 	struct timex ktx;
1091 	int err;
1092 
1093 	if (!kc)
1094 		return -EINVAL;
1095 	if (!kc->clock_adj)
1096 		return -EOPNOTSUPP;
1097 
1098 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1099 		return -EFAULT;
1100 
1101 	err = kc->clock_adj(which_clock, &ktx);
1102 
1103 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1104 		return -EFAULT;
1105 
1106 	return err;
1107 }
1108 
1109 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1110 		struct __kernel_timespec __user *, tp)
1111 {
1112 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1113 	struct timespec64 rtn_tp;
1114 	int error;
1115 
1116 	if (!kc)
1117 		return -EINVAL;
1118 
1119 	error = kc->clock_getres(which_clock, &rtn_tp);
1120 
1121 	if (!error && tp && put_timespec64(&rtn_tp, tp))
1122 		error = -EFAULT;
1123 
1124 	return error;
1125 }
1126 
1127 #ifdef CONFIG_COMPAT_32BIT_TIME
1128 
1129 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1130 		       struct compat_timespec __user *, tp)
1131 {
1132 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1133 	struct timespec64 ts;
1134 
1135 	if (!kc || !kc->clock_set)
1136 		return -EINVAL;
1137 
1138 	if (compat_get_timespec64(&ts, tp))
1139 		return -EFAULT;
1140 
1141 	return kc->clock_set(which_clock, &ts);
1142 }
1143 
1144 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1145 		       struct compat_timespec __user *, tp)
1146 {
1147 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1148 	struct timespec64 ts;
1149 	int err;
1150 
1151 	if (!kc)
1152 		return -EINVAL;
1153 
1154 	err = kc->clock_get(which_clock, &ts);
1155 
1156 	if (!err && compat_put_timespec64(&ts, tp))
1157 		err = -EFAULT;
1158 
1159 	return err;
1160 }
1161 
1162 #endif
1163 
1164 #ifdef CONFIG_COMPAT
1165 
1166 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1167 		       struct compat_timex __user *, utp)
1168 {
1169 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1170 	struct timex ktx;
1171 	int err;
1172 
1173 	if (!kc)
1174 		return -EINVAL;
1175 	if (!kc->clock_adj)
1176 		return -EOPNOTSUPP;
1177 
1178 	err = compat_get_timex(&ktx, utp);
1179 	if (err)
1180 		return err;
1181 
1182 	err = kc->clock_adj(which_clock, &ktx);
1183 
1184 	if (err >= 0)
1185 		err = compat_put_timex(utp, &ktx);
1186 
1187 	return err;
1188 }
1189 
1190 #endif
1191 
1192 #ifdef CONFIG_COMPAT_32BIT_TIME
1193 
1194 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1195 		       struct compat_timespec __user *, tp)
1196 {
1197 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1198 	struct timespec64 ts;
1199 	int err;
1200 
1201 	if (!kc)
1202 		return -EINVAL;
1203 
1204 	err = kc->clock_getres(which_clock, &ts);
1205 	if (!err && tp && compat_put_timespec64(&ts, tp))
1206 		return -EFAULT;
1207 
1208 	return err;
1209 }
1210 
1211 #endif
1212 
1213 /*
1214  * nanosleep for monotonic and realtime clocks
1215  */
1216 static int common_nsleep(const clockid_t which_clock, int flags,
1217 			 const struct timespec64 *rqtp)
1218 {
1219 	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1220 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1221 				 which_clock);
1222 }
1223 
1224 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1225 		const struct __kernel_timespec __user *, rqtp,
1226 		struct __kernel_timespec __user *, rmtp)
1227 {
1228 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1229 	struct timespec64 t;
1230 
1231 	if (!kc)
1232 		return -EINVAL;
1233 	if (!kc->nsleep)
1234 		return -ENANOSLEEP_NOTSUP;
1235 
1236 	if (get_timespec64(&t, rqtp))
1237 		return -EFAULT;
1238 
1239 	if (!timespec64_valid(&t))
1240 		return -EINVAL;
1241 	if (flags & TIMER_ABSTIME)
1242 		rmtp = NULL;
1243 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1244 	current->restart_block.nanosleep.rmtp = rmtp;
1245 
1246 	return kc->nsleep(which_clock, flags, &t);
1247 }
1248 
1249 #ifdef CONFIG_COMPAT_32BIT_TIME
1250 
1251 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1252 		       struct compat_timespec __user *, rqtp,
1253 		       struct compat_timespec __user *, rmtp)
1254 {
1255 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1256 	struct timespec64 t;
1257 
1258 	if (!kc)
1259 		return -EINVAL;
1260 	if (!kc->nsleep)
1261 		return -ENANOSLEEP_NOTSUP;
1262 
1263 	if (compat_get_timespec64(&t, rqtp))
1264 		return -EFAULT;
1265 
1266 	if (!timespec64_valid(&t))
1267 		return -EINVAL;
1268 	if (flags & TIMER_ABSTIME)
1269 		rmtp = NULL;
1270 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1271 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1272 
1273 	return kc->nsleep(which_clock, flags, &t);
1274 }
1275 
1276 #endif
1277 
1278 static const struct k_clock clock_realtime = {
1279 	.clock_getres		= posix_get_hrtimer_res,
1280 	.clock_get		= posix_clock_realtime_get,
1281 	.clock_set		= posix_clock_realtime_set,
1282 	.clock_adj		= posix_clock_realtime_adj,
1283 	.nsleep			= common_nsleep,
1284 	.timer_create		= common_timer_create,
1285 	.timer_set		= common_timer_set,
1286 	.timer_get		= common_timer_get,
1287 	.timer_del		= common_timer_del,
1288 	.timer_rearm		= common_hrtimer_rearm,
1289 	.timer_forward		= common_hrtimer_forward,
1290 	.timer_remaining	= common_hrtimer_remaining,
1291 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1292 	.timer_arm		= common_hrtimer_arm,
1293 };
1294 
1295 static const struct k_clock clock_monotonic = {
1296 	.clock_getres		= posix_get_hrtimer_res,
1297 	.clock_get		= posix_ktime_get_ts,
1298 	.nsleep			= common_nsleep,
1299 	.timer_create		= common_timer_create,
1300 	.timer_set		= common_timer_set,
1301 	.timer_get		= common_timer_get,
1302 	.timer_del		= common_timer_del,
1303 	.timer_rearm		= common_hrtimer_rearm,
1304 	.timer_forward		= common_hrtimer_forward,
1305 	.timer_remaining	= common_hrtimer_remaining,
1306 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1307 	.timer_arm		= common_hrtimer_arm,
1308 };
1309 
1310 static const struct k_clock clock_monotonic_raw = {
1311 	.clock_getres		= posix_get_hrtimer_res,
1312 	.clock_get		= posix_get_monotonic_raw,
1313 };
1314 
1315 static const struct k_clock clock_realtime_coarse = {
1316 	.clock_getres		= posix_get_coarse_res,
1317 	.clock_get		= posix_get_realtime_coarse,
1318 };
1319 
1320 static const struct k_clock clock_monotonic_coarse = {
1321 	.clock_getres		= posix_get_coarse_res,
1322 	.clock_get		= posix_get_monotonic_coarse,
1323 };
1324 
1325 static const struct k_clock clock_tai = {
1326 	.clock_getres		= posix_get_hrtimer_res,
1327 	.clock_get		= posix_get_tai,
1328 	.nsleep			= common_nsleep,
1329 	.timer_create		= common_timer_create,
1330 	.timer_set		= common_timer_set,
1331 	.timer_get		= common_timer_get,
1332 	.timer_del		= common_timer_del,
1333 	.timer_rearm		= common_hrtimer_rearm,
1334 	.timer_forward		= common_hrtimer_forward,
1335 	.timer_remaining	= common_hrtimer_remaining,
1336 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1337 	.timer_arm		= common_hrtimer_arm,
1338 };
1339 
1340 static const struct k_clock clock_boottime = {
1341 	.clock_getres		= posix_get_hrtimer_res,
1342 	.clock_get		= posix_get_boottime,
1343 	.nsleep			= common_nsleep,
1344 	.timer_create		= common_timer_create,
1345 	.timer_set		= common_timer_set,
1346 	.timer_get		= common_timer_get,
1347 	.timer_del		= common_timer_del,
1348 	.timer_rearm		= common_hrtimer_rearm,
1349 	.timer_forward		= common_hrtimer_forward,
1350 	.timer_remaining	= common_hrtimer_remaining,
1351 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1352 	.timer_arm		= common_hrtimer_arm,
1353 };
1354 
1355 static const struct k_clock * const posix_clocks[] = {
1356 	[CLOCK_REALTIME]		= &clock_realtime,
1357 	[CLOCK_MONOTONIC]		= &clock_monotonic,
1358 	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1359 	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1360 	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1361 	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1362 	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1363 	[CLOCK_BOOTTIME]		= &clock_boottime,
1364 	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1365 	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1366 	[CLOCK_TAI]			= &clock_tai,
1367 };
1368 
1369 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1370 {
1371 	clockid_t idx = id;
1372 
1373 	if (id < 0) {
1374 		return (id & CLOCKFD_MASK) == CLOCKFD ?
1375 			&clock_posix_dynamic : &clock_posix_cpu;
1376 	}
1377 
1378 	if (id >= ARRAY_SIZE(posix_clocks))
1379 		return NULL;
1380 
1381 	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1382 }
1383