xref: /linux/kernel/time/posix-cpu-timers.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 	cputime_t cputime = secs_to_cputime(rlim_new);
25 
26 	spin_lock_irq(&task->sighand->siglock);
27 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 	spin_unlock_irq(&task->sighand->siglock);
29 }
30 
31 static int check_clock(const clockid_t which_clock)
32 {
33 	int error = 0;
34 	struct task_struct *p;
35 	const pid_t pid = CPUCLOCK_PID(which_clock);
36 
37 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 		return -EINVAL;
39 
40 	if (pid == 0)
41 		return 0;
42 
43 	rcu_read_lock();
44 	p = find_task_by_vpid(pid);
45 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
47 		error = -EINVAL;
48 	}
49 	rcu_read_unlock();
50 
51 	return error;
52 }
53 
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 	unsigned long long ret;
58 
59 	ret = 0;		/* high half always zero when .cpu used */
60 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 	} else {
63 		ret = cputime_to_expires(timespec_to_cputime(tp));
64 	}
65 	return ret;
66 }
67 
68 static void sample_to_timespec(const clockid_t which_clock,
69 			       unsigned long long expires,
70 			       struct timespec *tp)
71 {
72 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 		*tp = ns_to_timespec(expires);
74 	else
75 		cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77 
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 			   unsigned long long now)
84 {
85 	int i;
86 	unsigned long long delta, incr;
87 
88 	if (timer->it.cpu.incr == 0)
89 		return;
90 
91 	if (now < timer->it.cpu.expires)
92 		return;
93 
94 	incr = timer->it.cpu.incr;
95 	delta = now + incr - timer->it.cpu.expires;
96 
97 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
98 	for (i = 0; incr < delta - incr; i++)
99 		incr = incr << 1;
100 
101 	for (; i >= 0; incr >>= 1, i--) {
102 		if (delta < incr)
103 			continue;
104 
105 		timer->it.cpu.expires += incr;
106 		timer->it_overrun += 1 << i;
107 		delta -= incr;
108 	}
109 }
110 
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:	The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 		return 1;
123 	return 0;
124 }
125 
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 	cputime_t utime, stime;
129 
130 	task_cputime(p, &utime, &stime);
131 
132 	return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 	cputime_t utime;
137 
138 	task_cputime(p, &utime, NULL);
139 
140 	return cputime_to_expires(utime);
141 }
142 
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 	int error = check_clock(which_clock);
147 	if (!error) {
148 		tp->tv_sec = 0;
149 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 			/*
152 			 * If sched_clock is using a cycle counter, we
153 			 * don't have any idea of its true resolution
154 			 * exported, but it is much more than 1s/HZ.
155 			 */
156 			tp->tv_nsec = 1;
157 		}
158 	}
159 	return error;
160 }
161 
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 	/*
166 	 * You can never reset a CPU clock, but we check for other errors
167 	 * in the call before failing with EPERM.
168 	 */
169 	int error = check_clock(which_clock);
170 	if (error == 0) {
171 		error = -EPERM;
172 	}
173 	return error;
174 }
175 
176 
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 			    unsigned long long *sample)
182 {
183 	switch (CPUCLOCK_WHICH(which_clock)) {
184 	default:
185 		return -EINVAL;
186 	case CPUCLOCK_PROF:
187 		*sample = prof_ticks(p);
188 		break;
189 	case CPUCLOCK_VIRT:
190 		*sample = virt_ticks(p);
191 		break;
192 	case CPUCLOCK_SCHED:
193 		*sample = task_sched_runtime(p);
194 		break;
195 	}
196 	return 0;
197 }
198 
199 /*
200  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
201  * to avoid race conditions with concurrent updates to cputime.
202  */
203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
204 {
205 	u64 curr_cputime;
206 retry:
207 	curr_cputime = atomic64_read(cputime);
208 	if (sum_cputime > curr_cputime) {
209 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
210 			goto retry;
211 	}
212 }
213 
214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
215 {
216 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
217 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
218 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
219 }
220 
221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
222 static inline void sample_cputime_atomic(struct task_cputime *times,
223 					 struct task_cputime_atomic *atomic_times)
224 {
225 	times->utime = atomic64_read(&atomic_times->utime);
226 	times->stime = atomic64_read(&atomic_times->stime);
227 	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
228 }
229 
230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
231 {
232 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
233 	struct task_cputime sum;
234 
235 	/* Check if cputimer isn't running. This is accessed without locking. */
236 	if (!READ_ONCE(cputimer->running)) {
237 		/*
238 		 * The POSIX timer interface allows for absolute time expiry
239 		 * values through the TIMER_ABSTIME flag, therefore we have
240 		 * to synchronize the timer to the clock every time we start it.
241 		 */
242 		thread_group_cputime(tsk, &sum);
243 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
244 
245 		/*
246 		 * We're setting cputimer->running without a lock. Ensure
247 		 * this only gets written to in one operation. We set
248 		 * running after update_gt_cputime() as a small optimization,
249 		 * but barriers are not required because update_gt_cputime()
250 		 * can handle concurrent updates.
251 		 */
252 		WRITE_ONCE(cputimer->running, true);
253 	}
254 	sample_cputime_atomic(times, &cputimer->cputime_atomic);
255 }
256 
257 /*
258  * Sample a process (thread group) clock for the given group_leader task.
259  * Must be called with task sighand lock held for safe while_each_thread()
260  * traversal.
261  */
262 static int cpu_clock_sample_group(const clockid_t which_clock,
263 				  struct task_struct *p,
264 				  unsigned long long *sample)
265 {
266 	struct task_cputime cputime;
267 
268 	switch (CPUCLOCK_WHICH(which_clock)) {
269 	default:
270 		return -EINVAL;
271 	case CPUCLOCK_PROF:
272 		thread_group_cputime(p, &cputime);
273 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
274 		break;
275 	case CPUCLOCK_VIRT:
276 		thread_group_cputime(p, &cputime);
277 		*sample = cputime_to_expires(cputime.utime);
278 		break;
279 	case CPUCLOCK_SCHED:
280 		thread_group_cputime(p, &cputime);
281 		*sample = cputime.sum_exec_runtime;
282 		break;
283 	}
284 	return 0;
285 }
286 
287 static int posix_cpu_clock_get_task(struct task_struct *tsk,
288 				    const clockid_t which_clock,
289 				    struct timespec *tp)
290 {
291 	int err = -EINVAL;
292 	unsigned long long rtn;
293 
294 	if (CPUCLOCK_PERTHREAD(which_clock)) {
295 		if (same_thread_group(tsk, current))
296 			err = cpu_clock_sample(which_clock, tsk, &rtn);
297 	} else {
298 		if (tsk == current || thread_group_leader(tsk))
299 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
300 	}
301 
302 	if (!err)
303 		sample_to_timespec(which_clock, rtn, tp);
304 
305 	return err;
306 }
307 
308 
309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
310 {
311 	const pid_t pid = CPUCLOCK_PID(which_clock);
312 	int err = -EINVAL;
313 
314 	if (pid == 0) {
315 		/*
316 		 * Special case constant value for our own clocks.
317 		 * We don't have to do any lookup to find ourselves.
318 		 */
319 		err = posix_cpu_clock_get_task(current, which_clock, tp);
320 	} else {
321 		/*
322 		 * Find the given PID, and validate that the caller
323 		 * should be able to see it.
324 		 */
325 		struct task_struct *p;
326 		rcu_read_lock();
327 		p = find_task_by_vpid(pid);
328 		if (p)
329 			err = posix_cpu_clock_get_task(p, which_clock, tp);
330 		rcu_read_unlock();
331 	}
332 
333 	return err;
334 }
335 
336 /*
337  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
338  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
339  * new timer already all-zeros initialized.
340  */
341 static int posix_cpu_timer_create(struct k_itimer *new_timer)
342 {
343 	int ret = 0;
344 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
345 	struct task_struct *p;
346 
347 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
348 		return -EINVAL;
349 
350 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
351 
352 	rcu_read_lock();
353 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
354 		if (pid == 0) {
355 			p = current;
356 		} else {
357 			p = find_task_by_vpid(pid);
358 			if (p && !same_thread_group(p, current))
359 				p = NULL;
360 		}
361 	} else {
362 		if (pid == 0) {
363 			p = current->group_leader;
364 		} else {
365 			p = find_task_by_vpid(pid);
366 			if (p && !has_group_leader_pid(p))
367 				p = NULL;
368 		}
369 	}
370 	new_timer->it.cpu.task = p;
371 	if (p) {
372 		get_task_struct(p);
373 	} else {
374 		ret = -EINVAL;
375 	}
376 	rcu_read_unlock();
377 
378 	return ret;
379 }
380 
381 /*
382  * Clean up a CPU-clock timer that is about to be destroyed.
383  * This is called from timer deletion with the timer already locked.
384  * If we return TIMER_RETRY, it's necessary to release the timer's lock
385  * and try again.  (This happens when the timer is in the middle of firing.)
386  */
387 static int posix_cpu_timer_del(struct k_itimer *timer)
388 {
389 	int ret = 0;
390 	unsigned long flags;
391 	struct sighand_struct *sighand;
392 	struct task_struct *p = timer->it.cpu.task;
393 
394 	WARN_ON_ONCE(p == NULL);
395 
396 	/*
397 	 * Protect against sighand release/switch in exit/exec and process/
398 	 * thread timer list entry concurrent read/writes.
399 	 */
400 	sighand = lock_task_sighand(p, &flags);
401 	if (unlikely(sighand == NULL)) {
402 		/*
403 		 * We raced with the reaping of the task.
404 		 * The deletion should have cleared us off the list.
405 		 */
406 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
407 	} else {
408 		if (timer->it.cpu.firing)
409 			ret = TIMER_RETRY;
410 		else
411 			list_del(&timer->it.cpu.entry);
412 
413 		unlock_task_sighand(p, &flags);
414 	}
415 
416 	if (!ret)
417 		put_task_struct(p);
418 
419 	return ret;
420 }
421 
422 static void cleanup_timers_list(struct list_head *head)
423 {
424 	struct cpu_timer_list *timer, *next;
425 
426 	list_for_each_entry_safe(timer, next, head, entry)
427 		list_del_init(&timer->entry);
428 }
429 
430 /*
431  * Clean out CPU timers still ticking when a thread exited.  The task
432  * pointer is cleared, and the expiry time is replaced with the residual
433  * time for later timer_gettime calls to return.
434  * This must be called with the siglock held.
435  */
436 static void cleanup_timers(struct list_head *head)
437 {
438 	cleanup_timers_list(head);
439 	cleanup_timers_list(++head);
440 	cleanup_timers_list(++head);
441 }
442 
443 /*
444  * These are both called with the siglock held, when the current thread
445  * is being reaped.  When the final (leader) thread in the group is reaped,
446  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
447  */
448 void posix_cpu_timers_exit(struct task_struct *tsk)
449 {
450 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
451 						sizeof(unsigned long long));
452 	cleanup_timers(tsk->cpu_timers);
453 
454 }
455 void posix_cpu_timers_exit_group(struct task_struct *tsk)
456 {
457 	cleanup_timers(tsk->signal->cpu_timers);
458 }
459 
460 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
461 {
462 	return expires == 0 || expires > new_exp;
463 }
464 
465 /*
466  * Insert the timer on the appropriate list before any timers that
467  * expire later.  This must be called with the sighand lock held.
468  */
469 static void arm_timer(struct k_itimer *timer)
470 {
471 	struct task_struct *p = timer->it.cpu.task;
472 	struct list_head *head, *listpos;
473 	struct task_cputime *cputime_expires;
474 	struct cpu_timer_list *const nt = &timer->it.cpu;
475 	struct cpu_timer_list *next;
476 
477 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
478 		head = p->cpu_timers;
479 		cputime_expires = &p->cputime_expires;
480 	} else {
481 		head = p->signal->cpu_timers;
482 		cputime_expires = &p->signal->cputime_expires;
483 	}
484 	head += CPUCLOCK_WHICH(timer->it_clock);
485 
486 	listpos = head;
487 	list_for_each_entry(next, head, entry) {
488 		if (nt->expires < next->expires)
489 			break;
490 		listpos = &next->entry;
491 	}
492 	list_add(&nt->entry, listpos);
493 
494 	if (listpos == head) {
495 		unsigned long long exp = nt->expires;
496 
497 		/*
498 		 * We are the new earliest-expiring POSIX 1.b timer, hence
499 		 * need to update expiration cache. Take into account that
500 		 * for process timers we share expiration cache with itimers
501 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
502 		 */
503 
504 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
505 		case CPUCLOCK_PROF:
506 			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
507 				cputime_expires->prof_exp = expires_to_cputime(exp);
508 			break;
509 		case CPUCLOCK_VIRT:
510 			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
511 				cputime_expires->virt_exp = expires_to_cputime(exp);
512 			break;
513 		case CPUCLOCK_SCHED:
514 			if (cputime_expires->sched_exp == 0 ||
515 			    cputime_expires->sched_exp > exp)
516 				cputime_expires->sched_exp = exp;
517 			break;
518 		}
519 		if (CPUCLOCK_PERTHREAD(timer->it_clock))
520 			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
521 		else
522 			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
523 	}
524 }
525 
526 /*
527  * The timer is locked, fire it and arrange for its reload.
528  */
529 static void cpu_timer_fire(struct k_itimer *timer)
530 {
531 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
532 		/*
533 		 * User don't want any signal.
534 		 */
535 		timer->it.cpu.expires = 0;
536 	} else if (unlikely(timer->sigq == NULL)) {
537 		/*
538 		 * This a special case for clock_nanosleep,
539 		 * not a normal timer from sys_timer_create.
540 		 */
541 		wake_up_process(timer->it_process);
542 		timer->it.cpu.expires = 0;
543 	} else if (timer->it.cpu.incr == 0) {
544 		/*
545 		 * One-shot timer.  Clear it as soon as it's fired.
546 		 */
547 		posix_timer_event(timer, 0);
548 		timer->it.cpu.expires = 0;
549 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
550 		/*
551 		 * The signal did not get queued because the signal
552 		 * was ignored, so we won't get any callback to
553 		 * reload the timer.  But we need to keep it
554 		 * ticking in case the signal is deliverable next time.
555 		 */
556 		posix_cpu_timer_schedule(timer);
557 	}
558 }
559 
560 /*
561  * Sample a process (thread group) timer for the given group_leader task.
562  * Must be called with task sighand lock held for safe while_each_thread()
563  * traversal.
564  */
565 static int cpu_timer_sample_group(const clockid_t which_clock,
566 				  struct task_struct *p,
567 				  unsigned long long *sample)
568 {
569 	struct task_cputime cputime;
570 
571 	thread_group_cputimer(p, &cputime);
572 	switch (CPUCLOCK_WHICH(which_clock)) {
573 	default:
574 		return -EINVAL;
575 	case CPUCLOCK_PROF:
576 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
577 		break;
578 	case CPUCLOCK_VIRT:
579 		*sample = cputime_to_expires(cputime.utime);
580 		break;
581 	case CPUCLOCK_SCHED:
582 		*sample = cputime.sum_exec_runtime;
583 		break;
584 	}
585 	return 0;
586 }
587 
588 /*
589  * Guts of sys_timer_settime for CPU timers.
590  * This is called with the timer locked and interrupts disabled.
591  * If we return TIMER_RETRY, it's necessary to release the timer's lock
592  * and try again.  (This happens when the timer is in the middle of firing.)
593  */
594 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
595 			       struct itimerspec *new, struct itimerspec *old)
596 {
597 	unsigned long flags;
598 	struct sighand_struct *sighand;
599 	struct task_struct *p = timer->it.cpu.task;
600 	unsigned long long old_expires, new_expires, old_incr, val;
601 	int ret;
602 
603 	WARN_ON_ONCE(p == NULL);
604 
605 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
606 
607 	/*
608 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
609 	 * and p->signal->cpu_timers read/write in arm_timer()
610 	 */
611 	sighand = lock_task_sighand(p, &flags);
612 	/*
613 	 * If p has just been reaped, we can no
614 	 * longer get any information about it at all.
615 	 */
616 	if (unlikely(sighand == NULL)) {
617 		return -ESRCH;
618 	}
619 
620 	/*
621 	 * Disarm any old timer after extracting its expiry time.
622 	 */
623 	WARN_ON_ONCE(!irqs_disabled());
624 
625 	ret = 0;
626 	old_incr = timer->it.cpu.incr;
627 	old_expires = timer->it.cpu.expires;
628 	if (unlikely(timer->it.cpu.firing)) {
629 		timer->it.cpu.firing = -1;
630 		ret = TIMER_RETRY;
631 	} else
632 		list_del_init(&timer->it.cpu.entry);
633 
634 	/*
635 	 * We need to sample the current value to convert the new
636 	 * value from to relative and absolute, and to convert the
637 	 * old value from absolute to relative.  To set a process
638 	 * timer, we need a sample to balance the thread expiry
639 	 * times (in arm_timer).  With an absolute time, we must
640 	 * check if it's already passed.  In short, we need a sample.
641 	 */
642 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
643 		cpu_clock_sample(timer->it_clock, p, &val);
644 	} else {
645 		cpu_timer_sample_group(timer->it_clock, p, &val);
646 	}
647 
648 	if (old) {
649 		if (old_expires == 0) {
650 			old->it_value.tv_sec = 0;
651 			old->it_value.tv_nsec = 0;
652 		} else {
653 			/*
654 			 * Update the timer in case it has
655 			 * overrun already.  If it has,
656 			 * we'll report it as having overrun
657 			 * and with the next reloaded timer
658 			 * already ticking, though we are
659 			 * swallowing that pending
660 			 * notification here to install the
661 			 * new setting.
662 			 */
663 			bump_cpu_timer(timer, val);
664 			if (val < timer->it.cpu.expires) {
665 				old_expires = timer->it.cpu.expires - val;
666 				sample_to_timespec(timer->it_clock,
667 						   old_expires,
668 						   &old->it_value);
669 			} else {
670 				old->it_value.tv_nsec = 1;
671 				old->it_value.tv_sec = 0;
672 			}
673 		}
674 	}
675 
676 	if (unlikely(ret)) {
677 		/*
678 		 * We are colliding with the timer actually firing.
679 		 * Punt after filling in the timer's old value, and
680 		 * disable this firing since we are already reporting
681 		 * it as an overrun (thanks to bump_cpu_timer above).
682 		 */
683 		unlock_task_sighand(p, &flags);
684 		goto out;
685 	}
686 
687 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
688 		new_expires += val;
689 	}
690 
691 	/*
692 	 * Install the new expiry time (or zero).
693 	 * For a timer with no notification action, we don't actually
694 	 * arm the timer (we'll just fake it for timer_gettime).
695 	 */
696 	timer->it.cpu.expires = new_expires;
697 	if (new_expires != 0 && val < new_expires) {
698 		arm_timer(timer);
699 	}
700 
701 	unlock_task_sighand(p, &flags);
702 	/*
703 	 * Install the new reload setting, and
704 	 * set up the signal and overrun bookkeeping.
705 	 */
706 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
707 						&new->it_interval);
708 
709 	/*
710 	 * This acts as a modification timestamp for the timer,
711 	 * so any automatic reload attempt will punt on seeing
712 	 * that we have reset the timer manually.
713 	 */
714 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
715 		~REQUEUE_PENDING;
716 	timer->it_overrun_last = 0;
717 	timer->it_overrun = -1;
718 
719 	if (new_expires != 0 && !(val < new_expires)) {
720 		/*
721 		 * The designated time already passed, so we notify
722 		 * immediately, even if the thread never runs to
723 		 * accumulate more time on this clock.
724 		 */
725 		cpu_timer_fire(timer);
726 	}
727 
728 	ret = 0;
729  out:
730 	if (old) {
731 		sample_to_timespec(timer->it_clock,
732 				   old_incr, &old->it_interval);
733 	}
734 
735 	return ret;
736 }
737 
738 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
739 {
740 	unsigned long long now;
741 	struct task_struct *p = timer->it.cpu.task;
742 
743 	WARN_ON_ONCE(p == NULL);
744 
745 	/*
746 	 * Easy part: convert the reload time.
747 	 */
748 	sample_to_timespec(timer->it_clock,
749 			   timer->it.cpu.incr, &itp->it_interval);
750 
751 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
752 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
753 		return;
754 	}
755 
756 	/*
757 	 * Sample the clock to take the difference with the expiry time.
758 	 */
759 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
760 		cpu_clock_sample(timer->it_clock, p, &now);
761 	} else {
762 		struct sighand_struct *sighand;
763 		unsigned long flags;
764 
765 		/*
766 		 * Protect against sighand release/switch in exit/exec and
767 		 * also make timer sampling safe if it ends up calling
768 		 * thread_group_cputime().
769 		 */
770 		sighand = lock_task_sighand(p, &flags);
771 		if (unlikely(sighand == NULL)) {
772 			/*
773 			 * The process has been reaped.
774 			 * We can't even collect a sample any more.
775 			 * Call the timer disarmed, nothing else to do.
776 			 */
777 			timer->it.cpu.expires = 0;
778 			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
779 					   &itp->it_value);
780 			return;
781 		} else {
782 			cpu_timer_sample_group(timer->it_clock, p, &now);
783 			unlock_task_sighand(p, &flags);
784 		}
785 	}
786 
787 	if (now < timer->it.cpu.expires) {
788 		sample_to_timespec(timer->it_clock,
789 				   timer->it.cpu.expires - now,
790 				   &itp->it_value);
791 	} else {
792 		/*
793 		 * The timer should have expired already, but the firing
794 		 * hasn't taken place yet.  Say it's just about to expire.
795 		 */
796 		itp->it_value.tv_nsec = 1;
797 		itp->it_value.tv_sec = 0;
798 	}
799 }
800 
801 static unsigned long long
802 check_timers_list(struct list_head *timers,
803 		  struct list_head *firing,
804 		  unsigned long long curr)
805 {
806 	int maxfire = 20;
807 
808 	while (!list_empty(timers)) {
809 		struct cpu_timer_list *t;
810 
811 		t = list_first_entry(timers, struct cpu_timer_list, entry);
812 
813 		if (!--maxfire || curr < t->expires)
814 			return t->expires;
815 
816 		t->firing = 1;
817 		list_move_tail(&t->entry, firing);
818 	}
819 
820 	return 0;
821 }
822 
823 /*
824  * Check for any per-thread CPU timers that have fired and move them off
825  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
826  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
827  */
828 static void check_thread_timers(struct task_struct *tsk,
829 				struct list_head *firing)
830 {
831 	struct list_head *timers = tsk->cpu_timers;
832 	struct signal_struct *const sig = tsk->signal;
833 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
834 	unsigned long long expires;
835 	unsigned long soft;
836 
837 	/*
838 	 * If cputime_expires is zero, then there are no active
839 	 * per thread CPU timers.
840 	 */
841 	if (task_cputime_zero(&tsk->cputime_expires))
842 		return;
843 
844 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
845 	tsk_expires->prof_exp = expires_to_cputime(expires);
846 
847 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
848 	tsk_expires->virt_exp = expires_to_cputime(expires);
849 
850 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
851 						   tsk->se.sum_exec_runtime);
852 
853 	/*
854 	 * Check for the special case thread timers.
855 	 */
856 	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
857 	if (soft != RLIM_INFINITY) {
858 		unsigned long hard =
859 			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
860 
861 		if (hard != RLIM_INFINITY &&
862 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
863 			/*
864 			 * At the hard limit, we just die.
865 			 * No need to calculate anything else now.
866 			 */
867 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
868 			return;
869 		}
870 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
871 			/*
872 			 * At the soft limit, send a SIGXCPU every second.
873 			 */
874 			if (soft < hard) {
875 				soft += USEC_PER_SEC;
876 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
877 			}
878 			printk(KERN_INFO
879 				"RT Watchdog Timeout: %s[%d]\n",
880 				tsk->comm, task_pid_nr(tsk));
881 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
882 		}
883 	}
884 	if (task_cputime_zero(tsk_expires))
885 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
886 }
887 
888 static inline void stop_process_timers(struct signal_struct *sig)
889 {
890 	struct thread_group_cputimer *cputimer = &sig->cputimer;
891 
892 	/* Turn off cputimer->running. This is done without locking. */
893 	WRITE_ONCE(cputimer->running, false);
894 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
895 }
896 
897 static u32 onecputick;
898 
899 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
900 			     unsigned long long *expires,
901 			     unsigned long long cur_time, int signo)
902 {
903 	if (!it->expires)
904 		return;
905 
906 	if (cur_time >= it->expires) {
907 		if (it->incr) {
908 			it->expires += it->incr;
909 			it->error += it->incr_error;
910 			if (it->error >= onecputick) {
911 				it->expires -= cputime_one_jiffy;
912 				it->error -= onecputick;
913 			}
914 		} else {
915 			it->expires = 0;
916 		}
917 
918 		trace_itimer_expire(signo == SIGPROF ?
919 				    ITIMER_PROF : ITIMER_VIRTUAL,
920 				    tsk->signal->leader_pid, cur_time);
921 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
922 	}
923 
924 	if (it->expires && (!*expires || it->expires < *expires)) {
925 		*expires = it->expires;
926 	}
927 }
928 
929 /*
930  * Check for any per-thread CPU timers that have fired and move them
931  * off the tsk->*_timers list onto the firing list.  Per-thread timers
932  * have already been taken off.
933  */
934 static void check_process_timers(struct task_struct *tsk,
935 				 struct list_head *firing)
936 {
937 	struct signal_struct *const sig = tsk->signal;
938 	unsigned long long utime, ptime, virt_expires, prof_expires;
939 	unsigned long long sum_sched_runtime, sched_expires;
940 	struct list_head *timers = sig->cpu_timers;
941 	struct task_cputime cputime;
942 	unsigned long soft;
943 
944 	/*
945 	 * If cputimer is not running, then there are no active
946 	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
947 	 */
948 	if (!READ_ONCE(tsk->signal->cputimer.running))
949 		return;
950 
951         /*
952 	 * Signify that a thread is checking for process timers.
953 	 * Write access to this field is protected by the sighand lock.
954 	 */
955 	sig->cputimer.checking_timer = true;
956 
957 	/*
958 	 * Collect the current process totals.
959 	 */
960 	thread_group_cputimer(tsk, &cputime);
961 	utime = cputime_to_expires(cputime.utime);
962 	ptime = utime + cputime_to_expires(cputime.stime);
963 	sum_sched_runtime = cputime.sum_exec_runtime;
964 
965 	prof_expires = check_timers_list(timers, firing, ptime);
966 	virt_expires = check_timers_list(++timers, firing, utime);
967 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
968 
969 	/*
970 	 * Check for the special case process timers.
971 	 */
972 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
973 			 SIGPROF);
974 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
975 			 SIGVTALRM);
976 	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
977 	if (soft != RLIM_INFINITY) {
978 		unsigned long psecs = cputime_to_secs(ptime);
979 		unsigned long hard =
980 			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
981 		cputime_t x;
982 		if (psecs >= hard) {
983 			/*
984 			 * At the hard limit, we just die.
985 			 * No need to calculate anything else now.
986 			 */
987 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
988 			return;
989 		}
990 		if (psecs >= soft) {
991 			/*
992 			 * At the soft limit, send a SIGXCPU every second.
993 			 */
994 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
995 			if (soft < hard) {
996 				soft++;
997 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
998 			}
999 		}
1000 		x = secs_to_cputime(soft);
1001 		if (!prof_expires || x < prof_expires) {
1002 			prof_expires = x;
1003 		}
1004 	}
1005 
1006 	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1007 	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1008 	sig->cputime_expires.sched_exp = sched_expires;
1009 	if (task_cputime_zero(&sig->cputime_expires))
1010 		stop_process_timers(sig);
1011 
1012 	sig->cputimer.checking_timer = false;
1013 }
1014 
1015 /*
1016  * This is called from the signal code (via do_schedule_next_timer)
1017  * when the last timer signal was delivered and we have to reload the timer.
1018  */
1019 void posix_cpu_timer_schedule(struct k_itimer *timer)
1020 {
1021 	struct sighand_struct *sighand;
1022 	unsigned long flags;
1023 	struct task_struct *p = timer->it.cpu.task;
1024 	unsigned long long now;
1025 
1026 	WARN_ON_ONCE(p == NULL);
1027 
1028 	/*
1029 	 * Fetch the current sample and update the timer's expiry time.
1030 	 */
1031 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1032 		cpu_clock_sample(timer->it_clock, p, &now);
1033 		bump_cpu_timer(timer, now);
1034 		if (unlikely(p->exit_state))
1035 			goto out;
1036 
1037 		/* Protect timer list r/w in arm_timer() */
1038 		sighand = lock_task_sighand(p, &flags);
1039 		if (!sighand)
1040 			goto out;
1041 	} else {
1042 		/*
1043 		 * Protect arm_timer() and timer sampling in case of call to
1044 		 * thread_group_cputime().
1045 		 */
1046 		sighand = lock_task_sighand(p, &flags);
1047 		if (unlikely(sighand == NULL)) {
1048 			/*
1049 			 * The process has been reaped.
1050 			 * We can't even collect a sample any more.
1051 			 */
1052 			timer->it.cpu.expires = 0;
1053 			goto out;
1054 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1055 			unlock_task_sighand(p, &flags);
1056 			/* Optimizations: if the process is dying, no need to rearm */
1057 			goto out;
1058 		}
1059 		cpu_timer_sample_group(timer->it_clock, p, &now);
1060 		bump_cpu_timer(timer, now);
1061 		/* Leave the sighand locked for the call below.  */
1062 	}
1063 
1064 	/*
1065 	 * Now re-arm for the new expiry time.
1066 	 */
1067 	WARN_ON_ONCE(!irqs_disabled());
1068 	arm_timer(timer);
1069 	unlock_task_sighand(p, &flags);
1070 
1071 out:
1072 	timer->it_overrun_last = timer->it_overrun;
1073 	timer->it_overrun = -1;
1074 	++timer->it_requeue_pending;
1075 }
1076 
1077 /**
1078  * task_cputime_expired - Compare two task_cputime entities.
1079  *
1080  * @sample:	The task_cputime structure to be checked for expiration.
1081  * @expires:	Expiration times, against which @sample will be checked.
1082  *
1083  * Checks @sample against @expires to see if any field of @sample has expired.
1084  * Returns true if any field of the former is greater than the corresponding
1085  * field of the latter if the latter field is set.  Otherwise returns false.
1086  */
1087 static inline int task_cputime_expired(const struct task_cputime *sample,
1088 					const struct task_cputime *expires)
1089 {
1090 	if (expires->utime && sample->utime >= expires->utime)
1091 		return 1;
1092 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1093 		return 1;
1094 	if (expires->sum_exec_runtime != 0 &&
1095 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1096 		return 1;
1097 	return 0;
1098 }
1099 
1100 /**
1101  * fastpath_timer_check - POSIX CPU timers fast path.
1102  *
1103  * @tsk:	The task (thread) being checked.
1104  *
1105  * Check the task and thread group timers.  If both are zero (there are no
1106  * timers set) return false.  Otherwise snapshot the task and thread group
1107  * timers and compare them with the corresponding expiration times.  Return
1108  * true if a timer has expired, else return false.
1109  */
1110 static inline int fastpath_timer_check(struct task_struct *tsk)
1111 {
1112 	struct signal_struct *sig;
1113 
1114 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1115 		struct task_cputime task_sample;
1116 
1117 		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1118 		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1119 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1120 			return 1;
1121 	}
1122 
1123 	sig = tsk->signal;
1124 	/*
1125 	 * Check if thread group timers expired when the cputimer is
1126 	 * running and no other thread in the group is already checking
1127 	 * for thread group cputimers. These fields are read without the
1128 	 * sighand lock. However, this is fine because this is meant to
1129 	 * be a fastpath heuristic to determine whether we should try to
1130 	 * acquire the sighand lock to check/handle timers.
1131 	 *
1132 	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1133 	 * set but the current thread doesn't see the change yet, we'll wait
1134 	 * until the next thread in the group gets a scheduler interrupt to
1135 	 * handle the timer. This isn't an issue in practice because these
1136 	 * types of delays with signals actually getting sent are expected.
1137 	 */
1138 	if (READ_ONCE(sig->cputimer.running) &&
1139 	    !READ_ONCE(sig->cputimer.checking_timer)) {
1140 		struct task_cputime group_sample;
1141 
1142 		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1143 
1144 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1145 			return 1;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * This is called from the timer interrupt handler.  The irq handler has
1153  * already updated our counts.  We need to check if any timers fire now.
1154  * Interrupts are disabled.
1155  */
1156 void run_posix_cpu_timers(struct task_struct *tsk)
1157 {
1158 	LIST_HEAD(firing);
1159 	struct k_itimer *timer, *next;
1160 	unsigned long flags;
1161 
1162 	WARN_ON_ONCE(!irqs_disabled());
1163 
1164 	/*
1165 	 * The fast path checks that there are no expired thread or thread
1166 	 * group timers.  If that's so, just return.
1167 	 */
1168 	if (!fastpath_timer_check(tsk))
1169 		return;
1170 
1171 	if (!lock_task_sighand(tsk, &flags))
1172 		return;
1173 	/*
1174 	 * Here we take off tsk->signal->cpu_timers[N] and
1175 	 * tsk->cpu_timers[N] all the timers that are firing, and
1176 	 * put them on the firing list.
1177 	 */
1178 	check_thread_timers(tsk, &firing);
1179 
1180 	check_process_timers(tsk, &firing);
1181 
1182 	/*
1183 	 * We must release these locks before taking any timer's lock.
1184 	 * There is a potential race with timer deletion here, as the
1185 	 * siglock now protects our private firing list.  We have set
1186 	 * the firing flag in each timer, so that a deletion attempt
1187 	 * that gets the timer lock before we do will give it up and
1188 	 * spin until we've taken care of that timer below.
1189 	 */
1190 	unlock_task_sighand(tsk, &flags);
1191 
1192 	/*
1193 	 * Now that all the timers on our list have the firing flag,
1194 	 * no one will touch their list entries but us.  We'll take
1195 	 * each timer's lock before clearing its firing flag, so no
1196 	 * timer call will interfere.
1197 	 */
1198 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1199 		int cpu_firing;
1200 
1201 		spin_lock(&timer->it_lock);
1202 		list_del_init(&timer->it.cpu.entry);
1203 		cpu_firing = timer->it.cpu.firing;
1204 		timer->it.cpu.firing = 0;
1205 		/*
1206 		 * The firing flag is -1 if we collided with a reset
1207 		 * of the timer, which already reported this
1208 		 * almost-firing as an overrun.  So don't generate an event.
1209 		 */
1210 		if (likely(cpu_firing >= 0))
1211 			cpu_timer_fire(timer);
1212 		spin_unlock(&timer->it_lock);
1213 	}
1214 }
1215 
1216 /*
1217  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1218  * The tsk->sighand->siglock must be held by the caller.
1219  */
1220 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1221 			   cputime_t *newval, cputime_t *oldval)
1222 {
1223 	unsigned long long now;
1224 
1225 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1226 	cpu_timer_sample_group(clock_idx, tsk, &now);
1227 
1228 	if (oldval) {
1229 		/*
1230 		 * We are setting itimer. The *oldval is absolute and we update
1231 		 * it to be relative, *newval argument is relative and we update
1232 		 * it to be absolute.
1233 		 */
1234 		if (*oldval) {
1235 			if (*oldval <= now) {
1236 				/* Just about to fire. */
1237 				*oldval = cputime_one_jiffy;
1238 			} else {
1239 				*oldval -= now;
1240 			}
1241 		}
1242 
1243 		if (!*newval)
1244 			return;
1245 		*newval += now;
1246 	}
1247 
1248 	/*
1249 	 * Update expiration cache if we are the earliest timer, or eventually
1250 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1251 	 */
1252 	switch (clock_idx) {
1253 	case CPUCLOCK_PROF:
1254 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1255 			tsk->signal->cputime_expires.prof_exp = *newval;
1256 		break;
1257 	case CPUCLOCK_VIRT:
1258 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1259 			tsk->signal->cputime_expires.virt_exp = *newval;
1260 		break;
1261 	}
1262 
1263 	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1264 }
1265 
1266 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1267 			    struct timespec *rqtp, struct itimerspec *it)
1268 {
1269 	struct k_itimer timer;
1270 	int error;
1271 
1272 	/*
1273 	 * Set up a temporary timer and then wait for it to go off.
1274 	 */
1275 	memset(&timer, 0, sizeof timer);
1276 	spin_lock_init(&timer.it_lock);
1277 	timer.it_clock = which_clock;
1278 	timer.it_overrun = -1;
1279 	error = posix_cpu_timer_create(&timer);
1280 	timer.it_process = current;
1281 	if (!error) {
1282 		static struct itimerspec zero_it;
1283 
1284 		memset(it, 0, sizeof *it);
1285 		it->it_value = *rqtp;
1286 
1287 		spin_lock_irq(&timer.it_lock);
1288 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1289 		if (error) {
1290 			spin_unlock_irq(&timer.it_lock);
1291 			return error;
1292 		}
1293 
1294 		while (!signal_pending(current)) {
1295 			if (timer.it.cpu.expires == 0) {
1296 				/*
1297 				 * Our timer fired and was reset, below
1298 				 * deletion can not fail.
1299 				 */
1300 				posix_cpu_timer_del(&timer);
1301 				spin_unlock_irq(&timer.it_lock);
1302 				return 0;
1303 			}
1304 
1305 			/*
1306 			 * Block until cpu_timer_fire (or a signal) wakes us.
1307 			 */
1308 			__set_current_state(TASK_INTERRUPTIBLE);
1309 			spin_unlock_irq(&timer.it_lock);
1310 			schedule();
1311 			spin_lock_irq(&timer.it_lock);
1312 		}
1313 
1314 		/*
1315 		 * We were interrupted by a signal.
1316 		 */
1317 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1318 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1319 		if (!error) {
1320 			/*
1321 			 * Timer is now unarmed, deletion can not fail.
1322 			 */
1323 			posix_cpu_timer_del(&timer);
1324 		}
1325 		spin_unlock_irq(&timer.it_lock);
1326 
1327 		while (error == TIMER_RETRY) {
1328 			/*
1329 			 * We need to handle case when timer was or is in the
1330 			 * middle of firing. In other cases we already freed
1331 			 * resources.
1332 			 */
1333 			spin_lock_irq(&timer.it_lock);
1334 			error = posix_cpu_timer_del(&timer);
1335 			spin_unlock_irq(&timer.it_lock);
1336 		}
1337 
1338 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1339 			/*
1340 			 * It actually did fire already.
1341 			 */
1342 			return 0;
1343 		}
1344 
1345 		error = -ERESTART_RESTARTBLOCK;
1346 	}
1347 
1348 	return error;
1349 }
1350 
1351 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1352 
1353 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1354 			    struct timespec *rqtp, struct timespec __user *rmtp)
1355 {
1356 	struct restart_block *restart_block = &current->restart_block;
1357 	struct itimerspec it;
1358 	int error;
1359 
1360 	/*
1361 	 * Diagnose required errors first.
1362 	 */
1363 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1364 	    (CPUCLOCK_PID(which_clock) == 0 ||
1365 	     CPUCLOCK_PID(which_clock) == current->pid))
1366 		return -EINVAL;
1367 
1368 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1369 
1370 	if (error == -ERESTART_RESTARTBLOCK) {
1371 
1372 		if (flags & TIMER_ABSTIME)
1373 			return -ERESTARTNOHAND;
1374 		/*
1375 		 * Report back to the user the time still remaining.
1376 		 */
1377 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1378 			return -EFAULT;
1379 
1380 		restart_block->fn = posix_cpu_nsleep_restart;
1381 		restart_block->nanosleep.clockid = which_clock;
1382 		restart_block->nanosleep.rmtp = rmtp;
1383 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1384 	}
1385 	return error;
1386 }
1387 
1388 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1389 {
1390 	clockid_t which_clock = restart_block->nanosleep.clockid;
1391 	struct timespec t;
1392 	struct itimerspec it;
1393 	int error;
1394 
1395 	t = ns_to_timespec(restart_block->nanosleep.expires);
1396 
1397 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1398 
1399 	if (error == -ERESTART_RESTARTBLOCK) {
1400 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1401 		/*
1402 		 * Report back to the user the time still remaining.
1403 		 */
1404 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1405 			return -EFAULT;
1406 
1407 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1408 	}
1409 	return error;
1410 
1411 }
1412 
1413 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1414 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1415 
1416 static int process_cpu_clock_getres(const clockid_t which_clock,
1417 				    struct timespec *tp)
1418 {
1419 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1420 }
1421 static int process_cpu_clock_get(const clockid_t which_clock,
1422 				 struct timespec *tp)
1423 {
1424 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1425 }
1426 static int process_cpu_timer_create(struct k_itimer *timer)
1427 {
1428 	timer->it_clock = PROCESS_CLOCK;
1429 	return posix_cpu_timer_create(timer);
1430 }
1431 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1432 			      struct timespec *rqtp,
1433 			      struct timespec __user *rmtp)
1434 {
1435 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1436 }
1437 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1438 {
1439 	return -EINVAL;
1440 }
1441 static int thread_cpu_clock_getres(const clockid_t which_clock,
1442 				   struct timespec *tp)
1443 {
1444 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1445 }
1446 static int thread_cpu_clock_get(const clockid_t which_clock,
1447 				struct timespec *tp)
1448 {
1449 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1450 }
1451 static int thread_cpu_timer_create(struct k_itimer *timer)
1452 {
1453 	timer->it_clock = THREAD_CLOCK;
1454 	return posix_cpu_timer_create(timer);
1455 }
1456 
1457 struct k_clock clock_posix_cpu = {
1458 	.clock_getres	= posix_cpu_clock_getres,
1459 	.clock_set	= posix_cpu_clock_set,
1460 	.clock_get	= posix_cpu_clock_get,
1461 	.timer_create	= posix_cpu_timer_create,
1462 	.nsleep		= posix_cpu_nsleep,
1463 	.nsleep_restart	= posix_cpu_nsleep_restart,
1464 	.timer_set	= posix_cpu_timer_set,
1465 	.timer_del	= posix_cpu_timer_del,
1466 	.timer_get	= posix_cpu_timer_get,
1467 };
1468 
1469 static __init int init_posix_cpu_timers(void)
1470 {
1471 	struct k_clock process = {
1472 		.clock_getres	= process_cpu_clock_getres,
1473 		.clock_get	= process_cpu_clock_get,
1474 		.timer_create	= process_cpu_timer_create,
1475 		.nsleep		= process_cpu_nsleep,
1476 		.nsleep_restart	= process_cpu_nsleep_restart,
1477 	};
1478 	struct k_clock thread = {
1479 		.clock_getres	= thread_cpu_clock_getres,
1480 		.clock_get	= thread_cpu_clock_get,
1481 		.timer_create	= thread_cpu_timer_create,
1482 	};
1483 	struct timespec ts;
1484 
1485 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1486 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1487 
1488 	cputime_to_timespec(cputime_one_jiffy, &ts);
1489 	onecputick = ts.tv_nsec;
1490 	WARN_ON(ts.tv_sec != 0);
1491 
1492 	return 0;
1493 }
1494 __initcall(init_posix_cpu_timers);
1495