1 /* 2 * Implement CPU time clocks for the POSIX clock interface. 3 */ 4 5 #include <linux/sched.h> 6 #include <linux/posix-timers.h> 7 #include <linux/errno.h> 8 #include <linux/math64.h> 9 #include <asm/uaccess.h> 10 #include <linux/kernel_stat.h> 11 #include <trace/events/timer.h> 12 #include <linux/random.h> 13 #include <linux/tick.h> 14 #include <linux/workqueue.h> 15 16 /* 17 * Called after updating RLIMIT_CPU to run cpu timer and update 18 * tsk->signal->cputime_expires expiration cache if necessary. Needs 19 * siglock protection since other code may update expiration cache as 20 * well. 21 */ 22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 23 { 24 cputime_t cputime = secs_to_cputime(rlim_new); 25 26 spin_lock_irq(&task->sighand->siglock); 27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); 28 spin_unlock_irq(&task->sighand->siglock); 29 } 30 31 static int check_clock(const clockid_t which_clock) 32 { 33 int error = 0; 34 struct task_struct *p; 35 const pid_t pid = CPUCLOCK_PID(which_clock); 36 37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 38 return -EINVAL; 39 40 if (pid == 0) 41 return 0; 42 43 rcu_read_lock(); 44 p = find_task_by_vpid(pid); 45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 46 same_thread_group(p, current) : has_group_leader_pid(p))) { 47 error = -EINVAL; 48 } 49 rcu_read_unlock(); 50 51 return error; 52 } 53 54 static inline unsigned long long 55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) 56 { 57 unsigned long long ret; 58 59 ret = 0; /* high half always zero when .cpu used */ 60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; 62 } else { 63 ret = cputime_to_expires(timespec_to_cputime(tp)); 64 } 65 return ret; 66 } 67 68 static void sample_to_timespec(const clockid_t which_clock, 69 unsigned long long expires, 70 struct timespec *tp) 71 { 72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) 73 *tp = ns_to_timespec(expires); 74 else 75 cputime_to_timespec((__force cputime_t)expires, tp); 76 } 77 78 /* 79 * Update expiry time from increment, and increase overrun count, 80 * given the current clock sample. 81 */ 82 static void bump_cpu_timer(struct k_itimer *timer, 83 unsigned long long now) 84 { 85 int i; 86 unsigned long long delta, incr; 87 88 if (timer->it.cpu.incr == 0) 89 return; 90 91 if (now < timer->it.cpu.expires) 92 return; 93 94 incr = timer->it.cpu.incr; 95 delta = now + incr - timer->it.cpu.expires; 96 97 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 98 for (i = 0; incr < delta - incr; i++) 99 incr = incr << 1; 100 101 for (; i >= 0; incr >>= 1, i--) { 102 if (delta < incr) 103 continue; 104 105 timer->it.cpu.expires += incr; 106 timer->it_overrun += 1 << i; 107 delta -= incr; 108 } 109 } 110 111 /** 112 * task_cputime_zero - Check a task_cputime struct for all zero fields. 113 * 114 * @cputime: The struct to compare. 115 * 116 * Checks @cputime to see if all fields are zero. Returns true if all fields 117 * are zero, false if any field is nonzero. 118 */ 119 static inline int task_cputime_zero(const struct task_cputime *cputime) 120 { 121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 122 return 1; 123 return 0; 124 } 125 126 static inline unsigned long long prof_ticks(struct task_struct *p) 127 { 128 cputime_t utime, stime; 129 130 task_cputime(p, &utime, &stime); 131 132 return cputime_to_expires(utime + stime); 133 } 134 static inline unsigned long long virt_ticks(struct task_struct *p) 135 { 136 cputime_t utime; 137 138 task_cputime(p, &utime, NULL); 139 140 return cputime_to_expires(utime); 141 } 142 143 static int 144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) 145 { 146 int error = check_clock(which_clock); 147 if (!error) { 148 tp->tv_sec = 0; 149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 151 /* 152 * If sched_clock is using a cycle counter, we 153 * don't have any idea of its true resolution 154 * exported, but it is much more than 1s/HZ. 155 */ 156 tp->tv_nsec = 1; 157 } 158 } 159 return error; 160 } 161 162 static int 163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) 164 { 165 /* 166 * You can never reset a CPU clock, but we check for other errors 167 * in the call before failing with EPERM. 168 */ 169 int error = check_clock(which_clock); 170 if (error == 0) { 171 error = -EPERM; 172 } 173 return error; 174 } 175 176 177 /* 178 * Sample a per-thread clock for the given task. 179 */ 180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, 181 unsigned long long *sample) 182 { 183 switch (CPUCLOCK_WHICH(which_clock)) { 184 default: 185 return -EINVAL; 186 case CPUCLOCK_PROF: 187 *sample = prof_ticks(p); 188 break; 189 case CPUCLOCK_VIRT: 190 *sample = virt_ticks(p); 191 break; 192 case CPUCLOCK_SCHED: 193 *sample = task_sched_runtime(p); 194 break; 195 } 196 return 0; 197 } 198 199 /* 200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 201 * to avoid race conditions with concurrent updates to cputime. 202 */ 203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 204 { 205 u64 curr_cputime; 206 retry: 207 curr_cputime = atomic64_read(cputime); 208 if (sum_cputime > curr_cputime) { 209 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 210 goto retry; 211 } 212 } 213 214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 215 { 216 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 217 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 218 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 219 } 220 221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 222 static inline void sample_cputime_atomic(struct task_cputime *times, 223 struct task_cputime_atomic *atomic_times) 224 { 225 times->utime = atomic64_read(&atomic_times->utime); 226 times->stime = atomic64_read(&atomic_times->stime); 227 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 228 } 229 230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 231 { 232 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 233 struct task_cputime sum; 234 235 /* Check if cputimer isn't running. This is accessed without locking. */ 236 if (!READ_ONCE(cputimer->running)) { 237 /* 238 * The POSIX timer interface allows for absolute time expiry 239 * values through the TIMER_ABSTIME flag, therefore we have 240 * to synchronize the timer to the clock every time we start it. 241 */ 242 thread_group_cputime(tsk, &sum); 243 update_gt_cputime(&cputimer->cputime_atomic, &sum); 244 245 /* 246 * We're setting cputimer->running without a lock. Ensure 247 * this only gets written to in one operation. We set 248 * running after update_gt_cputime() as a small optimization, 249 * but barriers are not required because update_gt_cputime() 250 * can handle concurrent updates. 251 */ 252 WRITE_ONCE(cputimer->running, true); 253 } 254 sample_cputime_atomic(times, &cputimer->cputime_atomic); 255 } 256 257 /* 258 * Sample a process (thread group) clock for the given group_leader task. 259 * Must be called with task sighand lock held for safe while_each_thread() 260 * traversal. 261 */ 262 static int cpu_clock_sample_group(const clockid_t which_clock, 263 struct task_struct *p, 264 unsigned long long *sample) 265 { 266 struct task_cputime cputime; 267 268 switch (CPUCLOCK_WHICH(which_clock)) { 269 default: 270 return -EINVAL; 271 case CPUCLOCK_PROF: 272 thread_group_cputime(p, &cputime); 273 *sample = cputime_to_expires(cputime.utime + cputime.stime); 274 break; 275 case CPUCLOCK_VIRT: 276 thread_group_cputime(p, &cputime); 277 *sample = cputime_to_expires(cputime.utime); 278 break; 279 case CPUCLOCK_SCHED: 280 thread_group_cputime(p, &cputime); 281 *sample = cputime.sum_exec_runtime; 282 break; 283 } 284 return 0; 285 } 286 287 static int posix_cpu_clock_get_task(struct task_struct *tsk, 288 const clockid_t which_clock, 289 struct timespec *tp) 290 { 291 int err = -EINVAL; 292 unsigned long long rtn; 293 294 if (CPUCLOCK_PERTHREAD(which_clock)) { 295 if (same_thread_group(tsk, current)) 296 err = cpu_clock_sample(which_clock, tsk, &rtn); 297 } else { 298 if (tsk == current || thread_group_leader(tsk)) 299 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 300 } 301 302 if (!err) 303 sample_to_timespec(which_clock, rtn, tp); 304 305 return err; 306 } 307 308 309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) 310 { 311 const pid_t pid = CPUCLOCK_PID(which_clock); 312 int err = -EINVAL; 313 314 if (pid == 0) { 315 /* 316 * Special case constant value for our own clocks. 317 * We don't have to do any lookup to find ourselves. 318 */ 319 err = posix_cpu_clock_get_task(current, which_clock, tp); 320 } else { 321 /* 322 * Find the given PID, and validate that the caller 323 * should be able to see it. 324 */ 325 struct task_struct *p; 326 rcu_read_lock(); 327 p = find_task_by_vpid(pid); 328 if (p) 329 err = posix_cpu_clock_get_task(p, which_clock, tp); 330 rcu_read_unlock(); 331 } 332 333 return err; 334 } 335 336 /* 337 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 338 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 339 * new timer already all-zeros initialized. 340 */ 341 static int posix_cpu_timer_create(struct k_itimer *new_timer) 342 { 343 int ret = 0; 344 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 345 struct task_struct *p; 346 347 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 348 return -EINVAL; 349 350 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 351 352 rcu_read_lock(); 353 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 354 if (pid == 0) { 355 p = current; 356 } else { 357 p = find_task_by_vpid(pid); 358 if (p && !same_thread_group(p, current)) 359 p = NULL; 360 } 361 } else { 362 if (pid == 0) { 363 p = current->group_leader; 364 } else { 365 p = find_task_by_vpid(pid); 366 if (p && !has_group_leader_pid(p)) 367 p = NULL; 368 } 369 } 370 new_timer->it.cpu.task = p; 371 if (p) { 372 get_task_struct(p); 373 } else { 374 ret = -EINVAL; 375 } 376 rcu_read_unlock(); 377 378 return ret; 379 } 380 381 /* 382 * Clean up a CPU-clock timer that is about to be destroyed. 383 * This is called from timer deletion with the timer already locked. 384 * If we return TIMER_RETRY, it's necessary to release the timer's lock 385 * and try again. (This happens when the timer is in the middle of firing.) 386 */ 387 static int posix_cpu_timer_del(struct k_itimer *timer) 388 { 389 int ret = 0; 390 unsigned long flags; 391 struct sighand_struct *sighand; 392 struct task_struct *p = timer->it.cpu.task; 393 394 WARN_ON_ONCE(p == NULL); 395 396 /* 397 * Protect against sighand release/switch in exit/exec and process/ 398 * thread timer list entry concurrent read/writes. 399 */ 400 sighand = lock_task_sighand(p, &flags); 401 if (unlikely(sighand == NULL)) { 402 /* 403 * We raced with the reaping of the task. 404 * The deletion should have cleared us off the list. 405 */ 406 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 407 } else { 408 if (timer->it.cpu.firing) 409 ret = TIMER_RETRY; 410 else 411 list_del(&timer->it.cpu.entry); 412 413 unlock_task_sighand(p, &flags); 414 } 415 416 if (!ret) 417 put_task_struct(p); 418 419 return ret; 420 } 421 422 static void cleanup_timers_list(struct list_head *head) 423 { 424 struct cpu_timer_list *timer, *next; 425 426 list_for_each_entry_safe(timer, next, head, entry) 427 list_del_init(&timer->entry); 428 } 429 430 /* 431 * Clean out CPU timers still ticking when a thread exited. The task 432 * pointer is cleared, and the expiry time is replaced with the residual 433 * time for later timer_gettime calls to return. 434 * This must be called with the siglock held. 435 */ 436 static void cleanup_timers(struct list_head *head) 437 { 438 cleanup_timers_list(head); 439 cleanup_timers_list(++head); 440 cleanup_timers_list(++head); 441 } 442 443 /* 444 * These are both called with the siglock held, when the current thread 445 * is being reaped. When the final (leader) thread in the group is reaped, 446 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 447 */ 448 void posix_cpu_timers_exit(struct task_struct *tsk) 449 { 450 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 451 sizeof(unsigned long long)); 452 cleanup_timers(tsk->cpu_timers); 453 454 } 455 void posix_cpu_timers_exit_group(struct task_struct *tsk) 456 { 457 cleanup_timers(tsk->signal->cpu_timers); 458 } 459 460 static inline int expires_gt(cputime_t expires, cputime_t new_exp) 461 { 462 return expires == 0 || expires > new_exp; 463 } 464 465 /* 466 * Insert the timer on the appropriate list before any timers that 467 * expire later. This must be called with the sighand lock held. 468 */ 469 static void arm_timer(struct k_itimer *timer) 470 { 471 struct task_struct *p = timer->it.cpu.task; 472 struct list_head *head, *listpos; 473 struct task_cputime *cputime_expires; 474 struct cpu_timer_list *const nt = &timer->it.cpu; 475 struct cpu_timer_list *next; 476 477 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 478 head = p->cpu_timers; 479 cputime_expires = &p->cputime_expires; 480 } else { 481 head = p->signal->cpu_timers; 482 cputime_expires = &p->signal->cputime_expires; 483 } 484 head += CPUCLOCK_WHICH(timer->it_clock); 485 486 listpos = head; 487 list_for_each_entry(next, head, entry) { 488 if (nt->expires < next->expires) 489 break; 490 listpos = &next->entry; 491 } 492 list_add(&nt->entry, listpos); 493 494 if (listpos == head) { 495 unsigned long long exp = nt->expires; 496 497 /* 498 * We are the new earliest-expiring POSIX 1.b timer, hence 499 * need to update expiration cache. Take into account that 500 * for process timers we share expiration cache with itimers 501 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 502 */ 503 504 switch (CPUCLOCK_WHICH(timer->it_clock)) { 505 case CPUCLOCK_PROF: 506 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp))) 507 cputime_expires->prof_exp = expires_to_cputime(exp); 508 break; 509 case CPUCLOCK_VIRT: 510 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp))) 511 cputime_expires->virt_exp = expires_to_cputime(exp); 512 break; 513 case CPUCLOCK_SCHED: 514 if (cputime_expires->sched_exp == 0 || 515 cputime_expires->sched_exp > exp) 516 cputime_expires->sched_exp = exp; 517 break; 518 } 519 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 520 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 521 else 522 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER); 523 } 524 } 525 526 /* 527 * The timer is locked, fire it and arrange for its reload. 528 */ 529 static void cpu_timer_fire(struct k_itimer *timer) 530 { 531 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 532 /* 533 * User don't want any signal. 534 */ 535 timer->it.cpu.expires = 0; 536 } else if (unlikely(timer->sigq == NULL)) { 537 /* 538 * This a special case for clock_nanosleep, 539 * not a normal timer from sys_timer_create. 540 */ 541 wake_up_process(timer->it_process); 542 timer->it.cpu.expires = 0; 543 } else if (timer->it.cpu.incr == 0) { 544 /* 545 * One-shot timer. Clear it as soon as it's fired. 546 */ 547 posix_timer_event(timer, 0); 548 timer->it.cpu.expires = 0; 549 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 550 /* 551 * The signal did not get queued because the signal 552 * was ignored, so we won't get any callback to 553 * reload the timer. But we need to keep it 554 * ticking in case the signal is deliverable next time. 555 */ 556 posix_cpu_timer_schedule(timer); 557 } 558 } 559 560 /* 561 * Sample a process (thread group) timer for the given group_leader task. 562 * Must be called with task sighand lock held for safe while_each_thread() 563 * traversal. 564 */ 565 static int cpu_timer_sample_group(const clockid_t which_clock, 566 struct task_struct *p, 567 unsigned long long *sample) 568 { 569 struct task_cputime cputime; 570 571 thread_group_cputimer(p, &cputime); 572 switch (CPUCLOCK_WHICH(which_clock)) { 573 default: 574 return -EINVAL; 575 case CPUCLOCK_PROF: 576 *sample = cputime_to_expires(cputime.utime + cputime.stime); 577 break; 578 case CPUCLOCK_VIRT: 579 *sample = cputime_to_expires(cputime.utime); 580 break; 581 case CPUCLOCK_SCHED: 582 *sample = cputime.sum_exec_runtime; 583 break; 584 } 585 return 0; 586 } 587 588 /* 589 * Guts of sys_timer_settime for CPU timers. 590 * This is called with the timer locked and interrupts disabled. 591 * If we return TIMER_RETRY, it's necessary to release the timer's lock 592 * and try again. (This happens when the timer is in the middle of firing.) 593 */ 594 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 595 struct itimerspec *new, struct itimerspec *old) 596 { 597 unsigned long flags; 598 struct sighand_struct *sighand; 599 struct task_struct *p = timer->it.cpu.task; 600 unsigned long long old_expires, new_expires, old_incr, val; 601 int ret; 602 603 WARN_ON_ONCE(p == NULL); 604 605 new_expires = timespec_to_sample(timer->it_clock, &new->it_value); 606 607 /* 608 * Protect against sighand release/switch in exit/exec and p->cpu_timers 609 * and p->signal->cpu_timers read/write in arm_timer() 610 */ 611 sighand = lock_task_sighand(p, &flags); 612 /* 613 * If p has just been reaped, we can no 614 * longer get any information about it at all. 615 */ 616 if (unlikely(sighand == NULL)) { 617 return -ESRCH; 618 } 619 620 /* 621 * Disarm any old timer after extracting its expiry time. 622 */ 623 WARN_ON_ONCE(!irqs_disabled()); 624 625 ret = 0; 626 old_incr = timer->it.cpu.incr; 627 old_expires = timer->it.cpu.expires; 628 if (unlikely(timer->it.cpu.firing)) { 629 timer->it.cpu.firing = -1; 630 ret = TIMER_RETRY; 631 } else 632 list_del_init(&timer->it.cpu.entry); 633 634 /* 635 * We need to sample the current value to convert the new 636 * value from to relative and absolute, and to convert the 637 * old value from absolute to relative. To set a process 638 * timer, we need a sample to balance the thread expiry 639 * times (in arm_timer). With an absolute time, we must 640 * check if it's already passed. In short, we need a sample. 641 */ 642 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 643 cpu_clock_sample(timer->it_clock, p, &val); 644 } else { 645 cpu_timer_sample_group(timer->it_clock, p, &val); 646 } 647 648 if (old) { 649 if (old_expires == 0) { 650 old->it_value.tv_sec = 0; 651 old->it_value.tv_nsec = 0; 652 } else { 653 /* 654 * Update the timer in case it has 655 * overrun already. If it has, 656 * we'll report it as having overrun 657 * and with the next reloaded timer 658 * already ticking, though we are 659 * swallowing that pending 660 * notification here to install the 661 * new setting. 662 */ 663 bump_cpu_timer(timer, val); 664 if (val < timer->it.cpu.expires) { 665 old_expires = timer->it.cpu.expires - val; 666 sample_to_timespec(timer->it_clock, 667 old_expires, 668 &old->it_value); 669 } else { 670 old->it_value.tv_nsec = 1; 671 old->it_value.tv_sec = 0; 672 } 673 } 674 } 675 676 if (unlikely(ret)) { 677 /* 678 * We are colliding with the timer actually firing. 679 * Punt after filling in the timer's old value, and 680 * disable this firing since we are already reporting 681 * it as an overrun (thanks to bump_cpu_timer above). 682 */ 683 unlock_task_sighand(p, &flags); 684 goto out; 685 } 686 687 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 688 new_expires += val; 689 } 690 691 /* 692 * Install the new expiry time (or zero). 693 * For a timer with no notification action, we don't actually 694 * arm the timer (we'll just fake it for timer_gettime). 695 */ 696 timer->it.cpu.expires = new_expires; 697 if (new_expires != 0 && val < new_expires) { 698 arm_timer(timer); 699 } 700 701 unlock_task_sighand(p, &flags); 702 /* 703 * Install the new reload setting, and 704 * set up the signal and overrun bookkeeping. 705 */ 706 timer->it.cpu.incr = timespec_to_sample(timer->it_clock, 707 &new->it_interval); 708 709 /* 710 * This acts as a modification timestamp for the timer, 711 * so any automatic reload attempt will punt on seeing 712 * that we have reset the timer manually. 713 */ 714 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 715 ~REQUEUE_PENDING; 716 timer->it_overrun_last = 0; 717 timer->it_overrun = -1; 718 719 if (new_expires != 0 && !(val < new_expires)) { 720 /* 721 * The designated time already passed, so we notify 722 * immediately, even if the thread never runs to 723 * accumulate more time on this clock. 724 */ 725 cpu_timer_fire(timer); 726 } 727 728 ret = 0; 729 out: 730 if (old) { 731 sample_to_timespec(timer->it_clock, 732 old_incr, &old->it_interval); 733 } 734 735 return ret; 736 } 737 738 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) 739 { 740 unsigned long long now; 741 struct task_struct *p = timer->it.cpu.task; 742 743 WARN_ON_ONCE(p == NULL); 744 745 /* 746 * Easy part: convert the reload time. 747 */ 748 sample_to_timespec(timer->it_clock, 749 timer->it.cpu.incr, &itp->it_interval); 750 751 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ 752 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; 753 return; 754 } 755 756 /* 757 * Sample the clock to take the difference with the expiry time. 758 */ 759 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 760 cpu_clock_sample(timer->it_clock, p, &now); 761 } else { 762 struct sighand_struct *sighand; 763 unsigned long flags; 764 765 /* 766 * Protect against sighand release/switch in exit/exec and 767 * also make timer sampling safe if it ends up calling 768 * thread_group_cputime(). 769 */ 770 sighand = lock_task_sighand(p, &flags); 771 if (unlikely(sighand == NULL)) { 772 /* 773 * The process has been reaped. 774 * We can't even collect a sample any more. 775 * Call the timer disarmed, nothing else to do. 776 */ 777 timer->it.cpu.expires = 0; 778 sample_to_timespec(timer->it_clock, timer->it.cpu.expires, 779 &itp->it_value); 780 return; 781 } else { 782 cpu_timer_sample_group(timer->it_clock, p, &now); 783 unlock_task_sighand(p, &flags); 784 } 785 } 786 787 if (now < timer->it.cpu.expires) { 788 sample_to_timespec(timer->it_clock, 789 timer->it.cpu.expires - now, 790 &itp->it_value); 791 } else { 792 /* 793 * The timer should have expired already, but the firing 794 * hasn't taken place yet. Say it's just about to expire. 795 */ 796 itp->it_value.tv_nsec = 1; 797 itp->it_value.tv_sec = 0; 798 } 799 } 800 801 static unsigned long long 802 check_timers_list(struct list_head *timers, 803 struct list_head *firing, 804 unsigned long long curr) 805 { 806 int maxfire = 20; 807 808 while (!list_empty(timers)) { 809 struct cpu_timer_list *t; 810 811 t = list_first_entry(timers, struct cpu_timer_list, entry); 812 813 if (!--maxfire || curr < t->expires) 814 return t->expires; 815 816 t->firing = 1; 817 list_move_tail(&t->entry, firing); 818 } 819 820 return 0; 821 } 822 823 /* 824 * Check for any per-thread CPU timers that have fired and move them off 825 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 826 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 827 */ 828 static void check_thread_timers(struct task_struct *tsk, 829 struct list_head *firing) 830 { 831 struct list_head *timers = tsk->cpu_timers; 832 struct signal_struct *const sig = tsk->signal; 833 struct task_cputime *tsk_expires = &tsk->cputime_expires; 834 unsigned long long expires; 835 unsigned long soft; 836 837 /* 838 * If cputime_expires is zero, then there are no active 839 * per thread CPU timers. 840 */ 841 if (task_cputime_zero(&tsk->cputime_expires)) 842 return; 843 844 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 845 tsk_expires->prof_exp = expires_to_cputime(expires); 846 847 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 848 tsk_expires->virt_exp = expires_to_cputime(expires); 849 850 tsk_expires->sched_exp = check_timers_list(++timers, firing, 851 tsk->se.sum_exec_runtime); 852 853 /* 854 * Check for the special case thread timers. 855 */ 856 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); 857 if (soft != RLIM_INFINITY) { 858 unsigned long hard = 859 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); 860 861 if (hard != RLIM_INFINITY && 862 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 863 /* 864 * At the hard limit, we just die. 865 * No need to calculate anything else now. 866 */ 867 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 868 return; 869 } 870 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 871 /* 872 * At the soft limit, send a SIGXCPU every second. 873 */ 874 if (soft < hard) { 875 soft += USEC_PER_SEC; 876 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; 877 } 878 printk(KERN_INFO 879 "RT Watchdog Timeout: %s[%d]\n", 880 tsk->comm, task_pid_nr(tsk)); 881 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 882 } 883 } 884 if (task_cputime_zero(tsk_expires)) 885 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 886 } 887 888 static inline void stop_process_timers(struct signal_struct *sig) 889 { 890 struct thread_group_cputimer *cputimer = &sig->cputimer; 891 892 /* Turn off cputimer->running. This is done without locking. */ 893 WRITE_ONCE(cputimer->running, false); 894 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 895 } 896 897 static u32 onecputick; 898 899 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 900 unsigned long long *expires, 901 unsigned long long cur_time, int signo) 902 { 903 if (!it->expires) 904 return; 905 906 if (cur_time >= it->expires) { 907 if (it->incr) { 908 it->expires += it->incr; 909 it->error += it->incr_error; 910 if (it->error >= onecputick) { 911 it->expires -= cputime_one_jiffy; 912 it->error -= onecputick; 913 } 914 } else { 915 it->expires = 0; 916 } 917 918 trace_itimer_expire(signo == SIGPROF ? 919 ITIMER_PROF : ITIMER_VIRTUAL, 920 tsk->signal->leader_pid, cur_time); 921 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 922 } 923 924 if (it->expires && (!*expires || it->expires < *expires)) { 925 *expires = it->expires; 926 } 927 } 928 929 /* 930 * Check for any per-thread CPU timers that have fired and move them 931 * off the tsk->*_timers list onto the firing list. Per-thread timers 932 * have already been taken off. 933 */ 934 static void check_process_timers(struct task_struct *tsk, 935 struct list_head *firing) 936 { 937 struct signal_struct *const sig = tsk->signal; 938 unsigned long long utime, ptime, virt_expires, prof_expires; 939 unsigned long long sum_sched_runtime, sched_expires; 940 struct list_head *timers = sig->cpu_timers; 941 struct task_cputime cputime; 942 unsigned long soft; 943 944 /* 945 * If cputimer is not running, then there are no active 946 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). 947 */ 948 if (!READ_ONCE(tsk->signal->cputimer.running)) 949 return; 950 951 /* 952 * Signify that a thread is checking for process timers. 953 * Write access to this field is protected by the sighand lock. 954 */ 955 sig->cputimer.checking_timer = true; 956 957 /* 958 * Collect the current process totals. 959 */ 960 thread_group_cputimer(tsk, &cputime); 961 utime = cputime_to_expires(cputime.utime); 962 ptime = utime + cputime_to_expires(cputime.stime); 963 sum_sched_runtime = cputime.sum_exec_runtime; 964 965 prof_expires = check_timers_list(timers, firing, ptime); 966 virt_expires = check_timers_list(++timers, firing, utime); 967 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 968 969 /* 970 * Check for the special case process timers. 971 */ 972 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 973 SIGPROF); 974 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 975 SIGVTALRM); 976 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 977 if (soft != RLIM_INFINITY) { 978 unsigned long psecs = cputime_to_secs(ptime); 979 unsigned long hard = 980 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); 981 cputime_t x; 982 if (psecs >= hard) { 983 /* 984 * At the hard limit, we just die. 985 * No need to calculate anything else now. 986 */ 987 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 988 return; 989 } 990 if (psecs >= soft) { 991 /* 992 * At the soft limit, send a SIGXCPU every second. 993 */ 994 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 995 if (soft < hard) { 996 soft++; 997 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 998 } 999 } 1000 x = secs_to_cputime(soft); 1001 if (!prof_expires || x < prof_expires) { 1002 prof_expires = x; 1003 } 1004 } 1005 1006 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires); 1007 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires); 1008 sig->cputime_expires.sched_exp = sched_expires; 1009 if (task_cputime_zero(&sig->cputime_expires)) 1010 stop_process_timers(sig); 1011 1012 sig->cputimer.checking_timer = false; 1013 } 1014 1015 /* 1016 * This is called from the signal code (via do_schedule_next_timer) 1017 * when the last timer signal was delivered and we have to reload the timer. 1018 */ 1019 void posix_cpu_timer_schedule(struct k_itimer *timer) 1020 { 1021 struct sighand_struct *sighand; 1022 unsigned long flags; 1023 struct task_struct *p = timer->it.cpu.task; 1024 unsigned long long now; 1025 1026 WARN_ON_ONCE(p == NULL); 1027 1028 /* 1029 * Fetch the current sample and update the timer's expiry time. 1030 */ 1031 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 1032 cpu_clock_sample(timer->it_clock, p, &now); 1033 bump_cpu_timer(timer, now); 1034 if (unlikely(p->exit_state)) 1035 goto out; 1036 1037 /* Protect timer list r/w in arm_timer() */ 1038 sighand = lock_task_sighand(p, &flags); 1039 if (!sighand) 1040 goto out; 1041 } else { 1042 /* 1043 * Protect arm_timer() and timer sampling in case of call to 1044 * thread_group_cputime(). 1045 */ 1046 sighand = lock_task_sighand(p, &flags); 1047 if (unlikely(sighand == NULL)) { 1048 /* 1049 * The process has been reaped. 1050 * We can't even collect a sample any more. 1051 */ 1052 timer->it.cpu.expires = 0; 1053 goto out; 1054 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1055 unlock_task_sighand(p, &flags); 1056 /* Optimizations: if the process is dying, no need to rearm */ 1057 goto out; 1058 } 1059 cpu_timer_sample_group(timer->it_clock, p, &now); 1060 bump_cpu_timer(timer, now); 1061 /* Leave the sighand locked for the call below. */ 1062 } 1063 1064 /* 1065 * Now re-arm for the new expiry time. 1066 */ 1067 WARN_ON_ONCE(!irqs_disabled()); 1068 arm_timer(timer); 1069 unlock_task_sighand(p, &flags); 1070 1071 out: 1072 timer->it_overrun_last = timer->it_overrun; 1073 timer->it_overrun = -1; 1074 ++timer->it_requeue_pending; 1075 } 1076 1077 /** 1078 * task_cputime_expired - Compare two task_cputime entities. 1079 * 1080 * @sample: The task_cputime structure to be checked for expiration. 1081 * @expires: Expiration times, against which @sample will be checked. 1082 * 1083 * Checks @sample against @expires to see if any field of @sample has expired. 1084 * Returns true if any field of the former is greater than the corresponding 1085 * field of the latter if the latter field is set. Otherwise returns false. 1086 */ 1087 static inline int task_cputime_expired(const struct task_cputime *sample, 1088 const struct task_cputime *expires) 1089 { 1090 if (expires->utime && sample->utime >= expires->utime) 1091 return 1; 1092 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1093 return 1; 1094 if (expires->sum_exec_runtime != 0 && 1095 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1096 return 1; 1097 return 0; 1098 } 1099 1100 /** 1101 * fastpath_timer_check - POSIX CPU timers fast path. 1102 * 1103 * @tsk: The task (thread) being checked. 1104 * 1105 * Check the task and thread group timers. If both are zero (there are no 1106 * timers set) return false. Otherwise snapshot the task and thread group 1107 * timers and compare them with the corresponding expiration times. Return 1108 * true if a timer has expired, else return false. 1109 */ 1110 static inline int fastpath_timer_check(struct task_struct *tsk) 1111 { 1112 struct signal_struct *sig; 1113 1114 if (!task_cputime_zero(&tsk->cputime_expires)) { 1115 struct task_cputime task_sample; 1116 1117 task_cputime(tsk, &task_sample.utime, &task_sample.stime); 1118 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; 1119 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1120 return 1; 1121 } 1122 1123 sig = tsk->signal; 1124 /* 1125 * Check if thread group timers expired when the cputimer is 1126 * running and no other thread in the group is already checking 1127 * for thread group cputimers. These fields are read without the 1128 * sighand lock. However, this is fine because this is meant to 1129 * be a fastpath heuristic to determine whether we should try to 1130 * acquire the sighand lock to check/handle timers. 1131 * 1132 * In the worst case scenario, if 'running' or 'checking_timer' gets 1133 * set but the current thread doesn't see the change yet, we'll wait 1134 * until the next thread in the group gets a scheduler interrupt to 1135 * handle the timer. This isn't an issue in practice because these 1136 * types of delays with signals actually getting sent are expected. 1137 */ 1138 if (READ_ONCE(sig->cputimer.running) && 1139 !READ_ONCE(sig->cputimer.checking_timer)) { 1140 struct task_cputime group_sample; 1141 1142 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1143 1144 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1145 return 1; 1146 } 1147 1148 return 0; 1149 } 1150 1151 /* 1152 * This is called from the timer interrupt handler. The irq handler has 1153 * already updated our counts. We need to check if any timers fire now. 1154 * Interrupts are disabled. 1155 */ 1156 void run_posix_cpu_timers(struct task_struct *tsk) 1157 { 1158 LIST_HEAD(firing); 1159 struct k_itimer *timer, *next; 1160 unsigned long flags; 1161 1162 WARN_ON_ONCE(!irqs_disabled()); 1163 1164 /* 1165 * The fast path checks that there are no expired thread or thread 1166 * group timers. If that's so, just return. 1167 */ 1168 if (!fastpath_timer_check(tsk)) 1169 return; 1170 1171 if (!lock_task_sighand(tsk, &flags)) 1172 return; 1173 /* 1174 * Here we take off tsk->signal->cpu_timers[N] and 1175 * tsk->cpu_timers[N] all the timers that are firing, and 1176 * put them on the firing list. 1177 */ 1178 check_thread_timers(tsk, &firing); 1179 1180 check_process_timers(tsk, &firing); 1181 1182 /* 1183 * We must release these locks before taking any timer's lock. 1184 * There is a potential race with timer deletion here, as the 1185 * siglock now protects our private firing list. We have set 1186 * the firing flag in each timer, so that a deletion attempt 1187 * that gets the timer lock before we do will give it up and 1188 * spin until we've taken care of that timer below. 1189 */ 1190 unlock_task_sighand(tsk, &flags); 1191 1192 /* 1193 * Now that all the timers on our list have the firing flag, 1194 * no one will touch their list entries but us. We'll take 1195 * each timer's lock before clearing its firing flag, so no 1196 * timer call will interfere. 1197 */ 1198 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1199 int cpu_firing; 1200 1201 spin_lock(&timer->it_lock); 1202 list_del_init(&timer->it.cpu.entry); 1203 cpu_firing = timer->it.cpu.firing; 1204 timer->it.cpu.firing = 0; 1205 /* 1206 * The firing flag is -1 if we collided with a reset 1207 * of the timer, which already reported this 1208 * almost-firing as an overrun. So don't generate an event. 1209 */ 1210 if (likely(cpu_firing >= 0)) 1211 cpu_timer_fire(timer); 1212 spin_unlock(&timer->it_lock); 1213 } 1214 } 1215 1216 /* 1217 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1218 * The tsk->sighand->siglock must be held by the caller. 1219 */ 1220 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1221 cputime_t *newval, cputime_t *oldval) 1222 { 1223 unsigned long long now; 1224 1225 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1226 cpu_timer_sample_group(clock_idx, tsk, &now); 1227 1228 if (oldval) { 1229 /* 1230 * We are setting itimer. The *oldval is absolute and we update 1231 * it to be relative, *newval argument is relative and we update 1232 * it to be absolute. 1233 */ 1234 if (*oldval) { 1235 if (*oldval <= now) { 1236 /* Just about to fire. */ 1237 *oldval = cputime_one_jiffy; 1238 } else { 1239 *oldval -= now; 1240 } 1241 } 1242 1243 if (!*newval) 1244 return; 1245 *newval += now; 1246 } 1247 1248 /* 1249 * Update expiration cache if we are the earliest timer, or eventually 1250 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1251 */ 1252 switch (clock_idx) { 1253 case CPUCLOCK_PROF: 1254 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1255 tsk->signal->cputime_expires.prof_exp = *newval; 1256 break; 1257 case CPUCLOCK_VIRT: 1258 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1259 tsk->signal->cputime_expires.virt_exp = *newval; 1260 break; 1261 } 1262 1263 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); 1264 } 1265 1266 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1267 struct timespec *rqtp, struct itimerspec *it) 1268 { 1269 struct k_itimer timer; 1270 int error; 1271 1272 /* 1273 * Set up a temporary timer and then wait for it to go off. 1274 */ 1275 memset(&timer, 0, sizeof timer); 1276 spin_lock_init(&timer.it_lock); 1277 timer.it_clock = which_clock; 1278 timer.it_overrun = -1; 1279 error = posix_cpu_timer_create(&timer); 1280 timer.it_process = current; 1281 if (!error) { 1282 static struct itimerspec zero_it; 1283 1284 memset(it, 0, sizeof *it); 1285 it->it_value = *rqtp; 1286 1287 spin_lock_irq(&timer.it_lock); 1288 error = posix_cpu_timer_set(&timer, flags, it, NULL); 1289 if (error) { 1290 spin_unlock_irq(&timer.it_lock); 1291 return error; 1292 } 1293 1294 while (!signal_pending(current)) { 1295 if (timer.it.cpu.expires == 0) { 1296 /* 1297 * Our timer fired and was reset, below 1298 * deletion can not fail. 1299 */ 1300 posix_cpu_timer_del(&timer); 1301 spin_unlock_irq(&timer.it_lock); 1302 return 0; 1303 } 1304 1305 /* 1306 * Block until cpu_timer_fire (or a signal) wakes us. 1307 */ 1308 __set_current_state(TASK_INTERRUPTIBLE); 1309 spin_unlock_irq(&timer.it_lock); 1310 schedule(); 1311 spin_lock_irq(&timer.it_lock); 1312 } 1313 1314 /* 1315 * We were interrupted by a signal. 1316 */ 1317 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); 1318 error = posix_cpu_timer_set(&timer, 0, &zero_it, it); 1319 if (!error) { 1320 /* 1321 * Timer is now unarmed, deletion can not fail. 1322 */ 1323 posix_cpu_timer_del(&timer); 1324 } 1325 spin_unlock_irq(&timer.it_lock); 1326 1327 while (error == TIMER_RETRY) { 1328 /* 1329 * We need to handle case when timer was or is in the 1330 * middle of firing. In other cases we already freed 1331 * resources. 1332 */ 1333 spin_lock_irq(&timer.it_lock); 1334 error = posix_cpu_timer_del(&timer); 1335 spin_unlock_irq(&timer.it_lock); 1336 } 1337 1338 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { 1339 /* 1340 * It actually did fire already. 1341 */ 1342 return 0; 1343 } 1344 1345 error = -ERESTART_RESTARTBLOCK; 1346 } 1347 1348 return error; 1349 } 1350 1351 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1352 1353 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1354 struct timespec *rqtp, struct timespec __user *rmtp) 1355 { 1356 struct restart_block *restart_block = ¤t->restart_block; 1357 struct itimerspec it; 1358 int error; 1359 1360 /* 1361 * Diagnose required errors first. 1362 */ 1363 if (CPUCLOCK_PERTHREAD(which_clock) && 1364 (CPUCLOCK_PID(which_clock) == 0 || 1365 CPUCLOCK_PID(which_clock) == current->pid)) 1366 return -EINVAL; 1367 1368 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); 1369 1370 if (error == -ERESTART_RESTARTBLOCK) { 1371 1372 if (flags & TIMER_ABSTIME) 1373 return -ERESTARTNOHAND; 1374 /* 1375 * Report back to the user the time still remaining. 1376 */ 1377 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1378 return -EFAULT; 1379 1380 restart_block->fn = posix_cpu_nsleep_restart; 1381 restart_block->nanosleep.clockid = which_clock; 1382 restart_block->nanosleep.rmtp = rmtp; 1383 restart_block->nanosleep.expires = timespec_to_ns(rqtp); 1384 } 1385 return error; 1386 } 1387 1388 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1389 { 1390 clockid_t which_clock = restart_block->nanosleep.clockid; 1391 struct timespec t; 1392 struct itimerspec it; 1393 int error; 1394 1395 t = ns_to_timespec(restart_block->nanosleep.expires); 1396 1397 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); 1398 1399 if (error == -ERESTART_RESTARTBLOCK) { 1400 struct timespec __user *rmtp = restart_block->nanosleep.rmtp; 1401 /* 1402 * Report back to the user the time still remaining. 1403 */ 1404 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1405 return -EFAULT; 1406 1407 restart_block->nanosleep.expires = timespec_to_ns(&t); 1408 } 1409 return error; 1410 1411 } 1412 1413 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1414 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1415 1416 static int process_cpu_clock_getres(const clockid_t which_clock, 1417 struct timespec *tp) 1418 { 1419 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1420 } 1421 static int process_cpu_clock_get(const clockid_t which_clock, 1422 struct timespec *tp) 1423 { 1424 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1425 } 1426 static int process_cpu_timer_create(struct k_itimer *timer) 1427 { 1428 timer->it_clock = PROCESS_CLOCK; 1429 return posix_cpu_timer_create(timer); 1430 } 1431 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1432 struct timespec *rqtp, 1433 struct timespec __user *rmtp) 1434 { 1435 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); 1436 } 1437 static long process_cpu_nsleep_restart(struct restart_block *restart_block) 1438 { 1439 return -EINVAL; 1440 } 1441 static int thread_cpu_clock_getres(const clockid_t which_clock, 1442 struct timespec *tp) 1443 { 1444 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1445 } 1446 static int thread_cpu_clock_get(const clockid_t which_clock, 1447 struct timespec *tp) 1448 { 1449 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1450 } 1451 static int thread_cpu_timer_create(struct k_itimer *timer) 1452 { 1453 timer->it_clock = THREAD_CLOCK; 1454 return posix_cpu_timer_create(timer); 1455 } 1456 1457 struct k_clock clock_posix_cpu = { 1458 .clock_getres = posix_cpu_clock_getres, 1459 .clock_set = posix_cpu_clock_set, 1460 .clock_get = posix_cpu_clock_get, 1461 .timer_create = posix_cpu_timer_create, 1462 .nsleep = posix_cpu_nsleep, 1463 .nsleep_restart = posix_cpu_nsleep_restart, 1464 .timer_set = posix_cpu_timer_set, 1465 .timer_del = posix_cpu_timer_del, 1466 .timer_get = posix_cpu_timer_get, 1467 }; 1468 1469 static __init int init_posix_cpu_timers(void) 1470 { 1471 struct k_clock process = { 1472 .clock_getres = process_cpu_clock_getres, 1473 .clock_get = process_cpu_clock_get, 1474 .timer_create = process_cpu_timer_create, 1475 .nsleep = process_cpu_nsleep, 1476 .nsleep_restart = process_cpu_nsleep_restart, 1477 }; 1478 struct k_clock thread = { 1479 .clock_getres = thread_cpu_clock_getres, 1480 .clock_get = thread_cpu_clock_get, 1481 .timer_create = thread_cpu_timer_create, 1482 }; 1483 struct timespec ts; 1484 1485 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1486 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1487 1488 cputime_to_timespec(cputime_one_jiffy, &ts); 1489 onecputick = ts.tv_nsec; 1490 WARN_ON(ts.tv_sec != 0); 1491 1492 return 0; 1493 } 1494 __initcall(init_posix_cpu_timers); 1495