1 /* 2 * Implement CPU time clocks for the POSIX clock interface. 3 */ 4 5 #include <linux/sched/signal.h> 6 #include <linux/sched/cputime.h> 7 #include <linux/posix-timers.h> 8 #include <linux/errno.h> 9 #include <linux/math64.h> 10 #include <linux/uaccess.h> 11 #include <linux/kernel_stat.h> 12 #include <trace/events/timer.h> 13 #include <linux/tick.h> 14 #include <linux/workqueue.h> 15 16 /* 17 * Called after updating RLIMIT_CPU to run cpu timer and update 18 * tsk->signal->cputime_expires expiration cache if necessary. Needs 19 * siglock protection since other code may update expiration cache as 20 * well. 21 */ 22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 23 { 24 u64 nsecs = rlim_new * NSEC_PER_SEC; 25 26 spin_lock_irq(&task->sighand->siglock); 27 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); 28 spin_unlock_irq(&task->sighand->siglock); 29 } 30 31 static int check_clock(const clockid_t which_clock) 32 { 33 int error = 0; 34 struct task_struct *p; 35 const pid_t pid = CPUCLOCK_PID(which_clock); 36 37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 38 return -EINVAL; 39 40 if (pid == 0) 41 return 0; 42 43 rcu_read_lock(); 44 p = find_task_by_vpid(pid); 45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 46 same_thread_group(p, current) : has_group_leader_pid(p))) { 47 error = -EINVAL; 48 } 49 rcu_read_unlock(); 50 51 return error; 52 } 53 54 /* 55 * Update expiry time from increment, and increase overrun count, 56 * given the current clock sample. 57 */ 58 static void bump_cpu_timer(struct k_itimer *timer, u64 now) 59 { 60 int i; 61 u64 delta, incr; 62 63 if (timer->it.cpu.incr == 0) 64 return; 65 66 if (now < timer->it.cpu.expires) 67 return; 68 69 incr = timer->it.cpu.incr; 70 delta = now + incr - timer->it.cpu.expires; 71 72 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 73 for (i = 0; incr < delta - incr; i++) 74 incr = incr << 1; 75 76 for (; i >= 0; incr >>= 1, i--) { 77 if (delta < incr) 78 continue; 79 80 timer->it.cpu.expires += incr; 81 timer->it_overrun += 1 << i; 82 delta -= incr; 83 } 84 } 85 86 /** 87 * task_cputime_zero - Check a task_cputime struct for all zero fields. 88 * 89 * @cputime: The struct to compare. 90 * 91 * Checks @cputime to see if all fields are zero. Returns true if all fields 92 * are zero, false if any field is nonzero. 93 */ 94 static inline int task_cputime_zero(const struct task_cputime *cputime) 95 { 96 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 97 return 1; 98 return 0; 99 } 100 101 static inline u64 prof_ticks(struct task_struct *p) 102 { 103 u64 utime, stime; 104 105 task_cputime(p, &utime, &stime); 106 107 return utime + stime; 108 } 109 static inline u64 virt_ticks(struct task_struct *p) 110 { 111 u64 utime, stime; 112 113 task_cputime(p, &utime, &stime); 114 115 return utime; 116 } 117 118 static int 119 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 120 { 121 int error = check_clock(which_clock); 122 if (!error) { 123 tp->tv_sec = 0; 124 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 125 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 126 /* 127 * If sched_clock is using a cycle counter, we 128 * don't have any idea of its true resolution 129 * exported, but it is much more than 1s/HZ. 130 */ 131 tp->tv_nsec = 1; 132 } 133 } 134 return error; 135 } 136 137 static int 138 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp) 139 { 140 /* 141 * You can never reset a CPU clock, but we check for other errors 142 * in the call before failing with EPERM. 143 */ 144 int error = check_clock(which_clock); 145 if (error == 0) { 146 error = -EPERM; 147 } 148 return error; 149 } 150 151 152 /* 153 * Sample a per-thread clock for the given task. 154 */ 155 static int cpu_clock_sample(const clockid_t which_clock, 156 struct task_struct *p, u64 *sample) 157 { 158 switch (CPUCLOCK_WHICH(which_clock)) { 159 default: 160 return -EINVAL; 161 case CPUCLOCK_PROF: 162 *sample = prof_ticks(p); 163 break; 164 case CPUCLOCK_VIRT: 165 *sample = virt_ticks(p); 166 break; 167 case CPUCLOCK_SCHED: 168 *sample = task_sched_runtime(p); 169 break; 170 } 171 return 0; 172 } 173 174 /* 175 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 176 * to avoid race conditions with concurrent updates to cputime. 177 */ 178 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 179 { 180 u64 curr_cputime; 181 retry: 182 curr_cputime = atomic64_read(cputime); 183 if (sum_cputime > curr_cputime) { 184 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 185 goto retry; 186 } 187 } 188 189 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 190 { 191 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 192 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 193 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 194 } 195 196 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 197 static inline void sample_cputime_atomic(struct task_cputime *times, 198 struct task_cputime_atomic *atomic_times) 199 { 200 times->utime = atomic64_read(&atomic_times->utime); 201 times->stime = atomic64_read(&atomic_times->stime); 202 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 203 } 204 205 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 206 { 207 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 208 struct task_cputime sum; 209 210 /* Check if cputimer isn't running. This is accessed without locking. */ 211 if (!READ_ONCE(cputimer->running)) { 212 /* 213 * The POSIX timer interface allows for absolute time expiry 214 * values through the TIMER_ABSTIME flag, therefore we have 215 * to synchronize the timer to the clock every time we start it. 216 */ 217 thread_group_cputime(tsk, &sum); 218 update_gt_cputime(&cputimer->cputime_atomic, &sum); 219 220 /* 221 * We're setting cputimer->running without a lock. Ensure 222 * this only gets written to in one operation. We set 223 * running after update_gt_cputime() as a small optimization, 224 * but barriers are not required because update_gt_cputime() 225 * can handle concurrent updates. 226 */ 227 WRITE_ONCE(cputimer->running, true); 228 } 229 sample_cputime_atomic(times, &cputimer->cputime_atomic); 230 } 231 232 /* 233 * Sample a process (thread group) clock for the given group_leader task. 234 * Must be called with task sighand lock held for safe while_each_thread() 235 * traversal. 236 */ 237 static int cpu_clock_sample_group(const clockid_t which_clock, 238 struct task_struct *p, 239 u64 *sample) 240 { 241 struct task_cputime cputime; 242 243 switch (CPUCLOCK_WHICH(which_clock)) { 244 default: 245 return -EINVAL; 246 case CPUCLOCK_PROF: 247 thread_group_cputime(p, &cputime); 248 *sample = cputime.utime + cputime.stime; 249 break; 250 case CPUCLOCK_VIRT: 251 thread_group_cputime(p, &cputime); 252 *sample = cputime.utime; 253 break; 254 case CPUCLOCK_SCHED: 255 thread_group_cputime(p, &cputime); 256 *sample = cputime.sum_exec_runtime; 257 break; 258 } 259 return 0; 260 } 261 262 static int posix_cpu_clock_get_task(struct task_struct *tsk, 263 const clockid_t which_clock, 264 struct timespec64 *tp) 265 { 266 int err = -EINVAL; 267 u64 rtn; 268 269 if (CPUCLOCK_PERTHREAD(which_clock)) { 270 if (same_thread_group(tsk, current)) 271 err = cpu_clock_sample(which_clock, tsk, &rtn); 272 } else { 273 if (tsk == current || thread_group_leader(tsk)) 274 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 275 } 276 277 if (!err) 278 *tp = ns_to_timespec64(rtn); 279 280 return err; 281 } 282 283 284 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp) 285 { 286 const pid_t pid = CPUCLOCK_PID(which_clock); 287 int err = -EINVAL; 288 289 if (pid == 0) { 290 /* 291 * Special case constant value for our own clocks. 292 * We don't have to do any lookup to find ourselves. 293 */ 294 err = posix_cpu_clock_get_task(current, which_clock, tp); 295 } else { 296 /* 297 * Find the given PID, and validate that the caller 298 * should be able to see it. 299 */ 300 struct task_struct *p; 301 rcu_read_lock(); 302 p = find_task_by_vpid(pid); 303 if (p) 304 err = posix_cpu_clock_get_task(p, which_clock, tp); 305 rcu_read_unlock(); 306 } 307 308 return err; 309 } 310 311 /* 312 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 313 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 314 * new timer already all-zeros initialized. 315 */ 316 static int posix_cpu_timer_create(struct k_itimer *new_timer) 317 { 318 int ret = 0; 319 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 320 struct task_struct *p; 321 322 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 323 return -EINVAL; 324 325 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 326 327 rcu_read_lock(); 328 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 329 if (pid == 0) { 330 p = current; 331 } else { 332 p = find_task_by_vpid(pid); 333 if (p && !same_thread_group(p, current)) 334 p = NULL; 335 } 336 } else { 337 if (pid == 0) { 338 p = current->group_leader; 339 } else { 340 p = find_task_by_vpid(pid); 341 if (p && !has_group_leader_pid(p)) 342 p = NULL; 343 } 344 } 345 new_timer->it.cpu.task = p; 346 if (p) { 347 get_task_struct(p); 348 } else { 349 ret = -EINVAL; 350 } 351 rcu_read_unlock(); 352 353 return ret; 354 } 355 356 /* 357 * Clean up a CPU-clock timer that is about to be destroyed. 358 * This is called from timer deletion with the timer already locked. 359 * If we return TIMER_RETRY, it's necessary to release the timer's lock 360 * and try again. (This happens when the timer is in the middle of firing.) 361 */ 362 static int posix_cpu_timer_del(struct k_itimer *timer) 363 { 364 int ret = 0; 365 unsigned long flags; 366 struct sighand_struct *sighand; 367 struct task_struct *p = timer->it.cpu.task; 368 369 WARN_ON_ONCE(p == NULL); 370 371 /* 372 * Protect against sighand release/switch in exit/exec and process/ 373 * thread timer list entry concurrent read/writes. 374 */ 375 sighand = lock_task_sighand(p, &flags); 376 if (unlikely(sighand == NULL)) { 377 /* 378 * We raced with the reaping of the task. 379 * The deletion should have cleared us off the list. 380 */ 381 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 382 } else { 383 if (timer->it.cpu.firing) 384 ret = TIMER_RETRY; 385 else 386 list_del(&timer->it.cpu.entry); 387 388 unlock_task_sighand(p, &flags); 389 } 390 391 if (!ret) 392 put_task_struct(p); 393 394 return ret; 395 } 396 397 static void cleanup_timers_list(struct list_head *head) 398 { 399 struct cpu_timer_list *timer, *next; 400 401 list_for_each_entry_safe(timer, next, head, entry) 402 list_del_init(&timer->entry); 403 } 404 405 /* 406 * Clean out CPU timers still ticking when a thread exited. The task 407 * pointer is cleared, and the expiry time is replaced with the residual 408 * time for later timer_gettime calls to return. 409 * This must be called with the siglock held. 410 */ 411 static void cleanup_timers(struct list_head *head) 412 { 413 cleanup_timers_list(head); 414 cleanup_timers_list(++head); 415 cleanup_timers_list(++head); 416 } 417 418 /* 419 * These are both called with the siglock held, when the current thread 420 * is being reaped. When the final (leader) thread in the group is reaped, 421 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 422 */ 423 void posix_cpu_timers_exit(struct task_struct *tsk) 424 { 425 cleanup_timers(tsk->cpu_timers); 426 } 427 void posix_cpu_timers_exit_group(struct task_struct *tsk) 428 { 429 cleanup_timers(tsk->signal->cpu_timers); 430 } 431 432 static inline int expires_gt(u64 expires, u64 new_exp) 433 { 434 return expires == 0 || expires > new_exp; 435 } 436 437 /* 438 * Insert the timer on the appropriate list before any timers that 439 * expire later. This must be called with the sighand lock held. 440 */ 441 static void arm_timer(struct k_itimer *timer) 442 { 443 struct task_struct *p = timer->it.cpu.task; 444 struct list_head *head, *listpos; 445 struct task_cputime *cputime_expires; 446 struct cpu_timer_list *const nt = &timer->it.cpu; 447 struct cpu_timer_list *next; 448 449 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 450 head = p->cpu_timers; 451 cputime_expires = &p->cputime_expires; 452 } else { 453 head = p->signal->cpu_timers; 454 cputime_expires = &p->signal->cputime_expires; 455 } 456 head += CPUCLOCK_WHICH(timer->it_clock); 457 458 listpos = head; 459 list_for_each_entry(next, head, entry) { 460 if (nt->expires < next->expires) 461 break; 462 listpos = &next->entry; 463 } 464 list_add(&nt->entry, listpos); 465 466 if (listpos == head) { 467 u64 exp = nt->expires; 468 469 /* 470 * We are the new earliest-expiring POSIX 1.b timer, hence 471 * need to update expiration cache. Take into account that 472 * for process timers we share expiration cache with itimers 473 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 474 */ 475 476 switch (CPUCLOCK_WHICH(timer->it_clock)) { 477 case CPUCLOCK_PROF: 478 if (expires_gt(cputime_expires->prof_exp, exp)) 479 cputime_expires->prof_exp = exp; 480 break; 481 case CPUCLOCK_VIRT: 482 if (expires_gt(cputime_expires->virt_exp, exp)) 483 cputime_expires->virt_exp = exp; 484 break; 485 case CPUCLOCK_SCHED: 486 if (expires_gt(cputime_expires->sched_exp, exp)) 487 cputime_expires->sched_exp = exp; 488 break; 489 } 490 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 491 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 492 else 493 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER); 494 } 495 } 496 497 /* 498 * The timer is locked, fire it and arrange for its reload. 499 */ 500 static void cpu_timer_fire(struct k_itimer *timer) 501 { 502 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 503 /* 504 * User don't want any signal. 505 */ 506 timer->it.cpu.expires = 0; 507 } else if (unlikely(timer->sigq == NULL)) { 508 /* 509 * This a special case for clock_nanosleep, 510 * not a normal timer from sys_timer_create. 511 */ 512 wake_up_process(timer->it_process); 513 timer->it.cpu.expires = 0; 514 } else if (timer->it.cpu.incr == 0) { 515 /* 516 * One-shot timer. Clear it as soon as it's fired. 517 */ 518 posix_timer_event(timer, 0); 519 timer->it.cpu.expires = 0; 520 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 521 /* 522 * The signal did not get queued because the signal 523 * was ignored, so we won't get any callback to 524 * reload the timer. But we need to keep it 525 * ticking in case the signal is deliverable next time. 526 */ 527 posix_cpu_timer_schedule(timer); 528 } 529 } 530 531 /* 532 * Sample a process (thread group) timer for the given group_leader task. 533 * Must be called with task sighand lock held for safe while_each_thread() 534 * traversal. 535 */ 536 static int cpu_timer_sample_group(const clockid_t which_clock, 537 struct task_struct *p, u64 *sample) 538 { 539 struct task_cputime cputime; 540 541 thread_group_cputimer(p, &cputime); 542 switch (CPUCLOCK_WHICH(which_clock)) { 543 default: 544 return -EINVAL; 545 case CPUCLOCK_PROF: 546 *sample = cputime.utime + cputime.stime; 547 break; 548 case CPUCLOCK_VIRT: 549 *sample = cputime.utime; 550 break; 551 case CPUCLOCK_SCHED: 552 *sample = cputime.sum_exec_runtime; 553 break; 554 } 555 return 0; 556 } 557 558 /* 559 * Guts of sys_timer_settime for CPU timers. 560 * This is called with the timer locked and interrupts disabled. 561 * If we return TIMER_RETRY, it's necessary to release the timer's lock 562 * and try again. (This happens when the timer is in the middle of firing.) 563 */ 564 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 565 struct itimerspec64 *new, struct itimerspec64 *old) 566 { 567 unsigned long flags; 568 struct sighand_struct *sighand; 569 struct task_struct *p = timer->it.cpu.task; 570 u64 old_expires, new_expires, old_incr, val; 571 int ret; 572 573 WARN_ON_ONCE(p == NULL); 574 575 new_expires = timespec64_to_ns(&new->it_value); 576 577 /* 578 * Protect against sighand release/switch in exit/exec and p->cpu_timers 579 * and p->signal->cpu_timers read/write in arm_timer() 580 */ 581 sighand = lock_task_sighand(p, &flags); 582 /* 583 * If p has just been reaped, we can no 584 * longer get any information about it at all. 585 */ 586 if (unlikely(sighand == NULL)) { 587 return -ESRCH; 588 } 589 590 /* 591 * Disarm any old timer after extracting its expiry time. 592 */ 593 WARN_ON_ONCE(!irqs_disabled()); 594 595 ret = 0; 596 old_incr = timer->it.cpu.incr; 597 old_expires = timer->it.cpu.expires; 598 if (unlikely(timer->it.cpu.firing)) { 599 timer->it.cpu.firing = -1; 600 ret = TIMER_RETRY; 601 } else 602 list_del_init(&timer->it.cpu.entry); 603 604 /* 605 * We need to sample the current value to convert the new 606 * value from to relative and absolute, and to convert the 607 * old value from absolute to relative. To set a process 608 * timer, we need a sample to balance the thread expiry 609 * times (in arm_timer). With an absolute time, we must 610 * check if it's already passed. In short, we need a sample. 611 */ 612 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 613 cpu_clock_sample(timer->it_clock, p, &val); 614 } else { 615 cpu_timer_sample_group(timer->it_clock, p, &val); 616 } 617 618 if (old) { 619 if (old_expires == 0) { 620 old->it_value.tv_sec = 0; 621 old->it_value.tv_nsec = 0; 622 } else { 623 /* 624 * Update the timer in case it has 625 * overrun already. If it has, 626 * we'll report it as having overrun 627 * and with the next reloaded timer 628 * already ticking, though we are 629 * swallowing that pending 630 * notification here to install the 631 * new setting. 632 */ 633 bump_cpu_timer(timer, val); 634 if (val < timer->it.cpu.expires) { 635 old_expires = timer->it.cpu.expires - val; 636 old->it_value = ns_to_timespec64(old_expires); 637 } else { 638 old->it_value.tv_nsec = 1; 639 old->it_value.tv_sec = 0; 640 } 641 } 642 } 643 644 if (unlikely(ret)) { 645 /* 646 * We are colliding with the timer actually firing. 647 * Punt after filling in the timer's old value, and 648 * disable this firing since we are already reporting 649 * it as an overrun (thanks to bump_cpu_timer above). 650 */ 651 unlock_task_sighand(p, &flags); 652 goto out; 653 } 654 655 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 656 new_expires += val; 657 } 658 659 /* 660 * Install the new expiry time (or zero). 661 * For a timer with no notification action, we don't actually 662 * arm the timer (we'll just fake it for timer_gettime). 663 */ 664 timer->it.cpu.expires = new_expires; 665 if (new_expires != 0 && val < new_expires) { 666 arm_timer(timer); 667 } 668 669 unlock_task_sighand(p, &flags); 670 /* 671 * Install the new reload setting, and 672 * set up the signal and overrun bookkeeping. 673 */ 674 timer->it.cpu.incr = timespec64_to_ns(&new->it_interval); 675 676 /* 677 * This acts as a modification timestamp for the timer, 678 * so any automatic reload attempt will punt on seeing 679 * that we have reset the timer manually. 680 */ 681 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 682 ~REQUEUE_PENDING; 683 timer->it_overrun_last = 0; 684 timer->it_overrun = -1; 685 686 if (new_expires != 0 && !(val < new_expires)) { 687 /* 688 * The designated time already passed, so we notify 689 * immediately, even if the thread never runs to 690 * accumulate more time on this clock. 691 */ 692 cpu_timer_fire(timer); 693 } 694 695 ret = 0; 696 out: 697 if (old) 698 old->it_interval = ns_to_timespec64(old_incr); 699 700 return ret; 701 } 702 703 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) 704 { 705 u64 now; 706 struct task_struct *p = timer->it.cpu.task; 707 708 WARN_ON_ONCE(p == NULL); 709 710 /* 711 * Easy part: convert the reload time. 712 */ 713 itp->it_interval = ns_to_timespec64(timer->it.cpu.incr); 714 715 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ 716 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; 717 return; 718 } 719 720 /* 721 * Sample the clock to take the difference with the expiry time. 722 */ 723 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 724 cpu_clock_sample(timer->it_clock, p, &now); 725 } else { 726 struct sighand_struct *sighand; 727 unsigned long flags; 728 729 /* 730 * Protect against sighand release/switch in exit/exec and 731 * also make timer sampling safe if it ends up calling 732 * thread_group_cputime(). 733 */ 734 sighand = lock_task_sighand(p, &flags); 735 if (unlikely(sighand == NULL)) { 736 /* 737 * The process has been reaped. 738 * We can't even collect a sample any more. 739 * Call the timer disarmed, nothing else to do. 740 */ 741 timer->it.cpu.expires = 0; 742 itp->it_value = ns_to_timespec64(timer->it.cpu.expires); 743 return; 744 } else { 745 cpu_timer_sample_group(timer->it_clock, p, &now); 746 unlock_task_sighand(p, &flags); 747 } 748 } 749 750 if (now < timer->it.cpu.expires) { 751 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now); 752 } else { 753 /* 754 * The timer should have expired already, but the firing 755 * hasn't taken place yet. Say it's just about to expire. 756 */ 757 itp->it_value.tv_nsec = 1; 758 itp->it_value.tv_sec = 0; 759 } 760 } 761 762 static unsigned long long 763 check_timers_list(struct list_head *timers, 764 struct list_head *firing, 765 unsigned long long curr) 766 { 767 int maxfire = 20; 768 769 while (!list_empty(timers)) { 770 struct cpu_timer_list *t; 771 772 t = list_first_entry(timers, struct cpu_timer_list, entry); 773 774 if (!--maxfire || curr < t->expires) 775 return t->expires; 776 777 t->firing = 1; 778 list_move_tail(&t->entry, firing); 779 } 780 781 return 0; 782 } 783 784 /* 785 * Check for any per-thread CPU timers that have fired and move them off 786 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 787 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 788 */ 789 static void check_thread_timers(struct task_struct *tsk, 790 struct list_head *firing) 791 { 792 struct list_head *timers = tsk->cpu_timers; 793 struct signal_struct *const sig = tsk->signal; 794 struct task_cputime *tsk_expires = &tsk->cputime_expires; 795 u64 expires; 796 unsigned long soft; 797 798 /* 799 * If cputime_expires is zero, then there are no active 800 * per thread CPU timers. 801 */ 802 if (task_cputime_zero(&tsk->cputime_expires)) 803 return; 804 805 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 806 tsk_expires->prof_exp = expires; 807 808 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 809 tsk_expires->virt_exp = expires; 810 811 tsk_expires->sched_exp = check_timers_list(++timers, firing, 812 tsk->se.sum_exec_runtime); 813 814 /* 815 * Check for the special case thread timers. 816 */ 817 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); 818 if (soft != RLIM_INFINITY) { 819 unsigned long hard = 820 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); 821 822 if (hard != RLIM_INFINITY && 823 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 824 /* 825 * At the hard limit, we just die. 826 * No need to calculate anything else now. 827 */ 828 if (print_fatal_signals) { 829 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n", 830 tsk->comm, task_pid_nr(tsk)); 831 } 832 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 833 return; 834 } 835 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 836 /* 837 * At the soft limit, send a SIGXCPU every second. 838 */ 839 if (soft < hard) { 840 soft += USEC_PER_SEC; 841 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; 842 } 843 if (print_fatal_signals) { 844 pr_info("RT Watchdog Timeout (soft): %s[%d]\n", 845 tsk->comm, task_pid_nr(tsk)); 846 } 847 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 848 } 849 } 850 if (task_cputime_zero(tsk_expires)) 851 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 852 } 853 854 static inline void stop_process_timers(struct signal_struct *sig) 855 { 856 struct thread_group_cputimer *cputimer = &sig->cputimer; 857 858 /* Turn off cputimer->running. This is done without locking. */ 859 WRITE_ONCE(cputimer->running, false); 860 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 861 } 862 863 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 864 u64 *expires, u64 cur_time, int signo) 865 { 866 if (!it->expires) 867 return; 868 869 if (cur_time >= it->expires) { 870 if (it->incr) 871 it->expires += it->incr; 872 else 873 it->expires = 0; 874 875 trace_itimer_expire(signo == SIGPROF ? 876 ITIMER_PROF : ITIMER_VIRTUAL, 877 tsk->signal->leader_pid, cur_time); 878 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 879 } 880 881 if (it->expires && (!*expires || it->expires < *expires)) 882 *expires = it->expires; 883 } 884 885 /* 886 * Check for any per-thread CPU timers that have fired and move them 887 * off the tsk->*_timers list onto the firing list. Per-thread timers 888 * have already been taken off. 889 */ 890 static void check_process_timers(struct task_struct *tsk, 891 struct list_head *firing) 892 { 893 struct signal_struct *const sig = tsk->signal; 894 u64 utime, ptime, virt_expires, prof_expires; 895 u64 sum_sched_runtime, sched_expires; 896 struct list_head *timers = sig->cpu_timers; 897 struct task_cputime cputime; 898 unsigned long soft; 899 900 /* 901 * If cputimer is not running, then there are no active 902 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). 903 */ 904 if (!READ_ONCE(tsk->signal->cputimer.running)) 905 return; 906 907 /* 908 * Signify that a thread is checking for process timers. 909 * Write access to this field is protected by the sighand lock. 910 */ 911 sig->cputimer.checking_timer = true; 912 913 /* 914 * Collect the current process totals. 915 */ 916 thread_group_cputimer(tsk, &cputime); 917 utime = cputime.utime; 918 ptime = utime + cputime.stime; 919 sum_sched_runtime = cputime.sum_exec_runtime; 920 921 prof_expires = check_timers_list(timers, firing, ptime); 922 virt_expires = check_timers_list(++timers, firing, utime); 923 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 924 925 /* 926 * Check for the special case process timers. 927 */ 928 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 929 SIGPROF); 930 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 931 SIGVTALRM); 932 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 933 if (soft != RLIM_INFINITY) { 934 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC); 935 unsigned long hard = 936 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); 937 u64 x; 938 if (psecs >= hard) { 939 /* 940 * At the hard limit, we just die. 941 * No need to calculate anything else now. 942 */ 943 if (print_fatal_signals) { 944 pr_info("RT Watchdog Timeout (hard): %s[%d]\n", 945 tsk->comm, task_pid_nr(tsk)); 946 } 947 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 948 return; 949 } 950 if (psecs >= soft) { 951 /* 952 * At the soft limit, send a SIGXCPU every second. 953 */ 954 if (print_fatal_signals) { 955 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n", 956 tsk->comm, task_pid_nr(tsk)); 957 } 958 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 959 if (soft < hard) { 960 soft++; 961 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 962 } 963 } 964 x = soft * NSEC_PER_SEC; 965 if (!prof_expires || x < prof_expires) 966 prof_expires = x; 967 } 968 969 sig->cputime_expires.prof_exp = prof_expires; 970 sig->cputime_expires.virt_exp = virt_expires; 971 sig->cputime_expires.sched_exp = sched_expires; 972 if (task_cputime_zero(&sig->cputime_expires)) 973 stop_process_timers(sig); 974 975 sig->cputimer.checking_timer = false; 976 } 977 978 /* 979 * This is called from the signal code (via do_schedule_next_timer) 980 * when the last timer signal was delivered and we have to reload the timer. 981 */ 982 void posix_cpu_timer_schedule(struct k_itimer *timer) 983 { 984 struct sighand_struct *sighand; 985 unsigned long flags; 986 struct task_struct *p = timer->it.cpu.task; 987 u64 now; 988 989 WARN_ON_ONCE(p == NULL); 990 991 /* 992 * Fetch the current sample and update the timer's expiry time. 993 */ 994 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 995 cpu_clock_sample(timer->it_clock, p, &now); 996 bump_cpu_timer(timer, now); 997 if (unlikely(p->exit_state)) 998 goto out; 999 1000 /* Protect timer list r/w in arm_timer() */ 1001 sighand = lock_task_sighand(p, &flags); 1002 if (!sighand) 1003 goto out; 1004 } else { 1005 /* 1006 * Protect arm_timer() and timer sampling in case of call to 1007 * thread_group_cputime(). 1008 */ 1009 sighand = lock_task_sighand(p, &flags); 1010 if (unlikely(sighand == NULL)) { 1011 /* 1012 * The process has been reaped. 1013 * We can't even collect a sample any more. 1014 */ 1015 timer->it.cpu.expires = 0; 1016 goto out; 1017 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1018 unlock_task_sighand(p, &flags); 1019 /* Optimizations: if the process is dying, no need to rearm */ 1020 goto out; 1021 } 1022 cpu_timer_sample_group(timer->it_clock, p, &now); 1023 bump_cpu_timer(timer, now); 1024 /* Leave the sighand locked for the call below. */ 1025 } 1026 1027 /* 1028 * Now re-arm for the new expiry time. 1029 */ 1030 WARN_ON_ONCE(!irqs_disabled()); 1031 arm_timer(timer); 1032 unlock_task_sighand(p, &flags); 1033 1034 out: 1035 timer->it_overrun_last = timer->it_overrun; 1036 timer->it_overrun = -1; 1037 ++timer->it_requeue_pending; 1038 } 1039 1040 /** 1041 * task_cputime_expired - Compare two task_cputime entities. 1042 * 1043 * @sample: The task_cputime structure to be checked for expiration. 1044 * @expires: Expiration times, against which @sample will be checked. 1045 * 1046 * Checks @sample against @expires to see if any field of @sample has expired. 1047 * Returns true if any field of the former is greater than the corresponding 1048 * field of the latter if the latter field is set. Otherwise returns false. 1049 */ 1050 static inline int task_cputime_expired(const struct task_cputime *sample, 1051 const struct task_cputime *expires) 1052 { 1053 if (expires->utime && sample->utime >= expires->utime) 1054 return 1; 1055 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1056 return 1; 1057 if (expires->sum_exec_runtime != 0 && 1058 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1059 return 1; 1060 return 0; 1061 } 1062 1063 /** 1064 * fastpath_timer_check - POSIX CPU timers fast path. 1065 * 1066 * @tsk: The task (thread) being checked. 1067 * 1068 * Check the task and thread group timers. If both are zero (there are no 1069 * timers set) return false. Otherwise snapshot the task and thread group 1070 * timers and compare them with the corresponding expiration times. Return 1071 * true if a timer has expired, else return false. 1072 */ 1073 static inline int fastpath_timer_check(struct task_struct *tsk) 1074 { 1075 struct signal_struct *sig; 1076 1077 if (!task_cputime_zero(&tsk->cputime_expires)) { 1078 struct task_cputime task_sample; 1079 1080 task_cputime(tsk, &task_sample.utime, &task_sample.stime); 1081 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; 1082 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1083 return 1; 1084 } 1085 1086 sig = tsk->signal; 1087 /* 1088 * Check if thread group timers expired when the cputimer is 1089 * running and no other thread in the group is already checking 1090 * for thread group cputimers. These fields are read without the 1091 * sighand lock. However, this is fine because this is meant to 1092 * be a fastpath heuristic to determine whether we should try to 1093 * acquire the sighand lock to check/handle timers. 1094 * 1095 * In the worst case scenario, if 'running' or 'checking_timer' gets 1096 * set but the current thread doesn't see the change yet, we'll wait 1097 * until the next thread in the group gets a scheduler interrupt to 1098 * handle the timer. This isn't an issue in practice because these 1099 * types of delays with signals actually getting sent are expected. 1100 */ 1101 if (READ_ONCE(sig->cputimer.running) && 1102 !READ_ONCE(sig->cputimer.checking_timer)) { 1103 struct task_cputime group_sample; 1104 1105 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1106 1107 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1108 return 1; 1109 } 1110 1111 return 0; 1112 } 1113 1114 /* 1115 * This is called from the timer interrupt handler. The irq handler has 1116 * already updated our counts. We need to check if any timers fire now. 1117 * Interrupts are disabled. 1118 */ 1119 void run_posix_cpu_timers(struct task_struct *tsk) 1120 { 1121 LIST_HEAD(firing); 1122 struct k_itimer *timer, *next; 1123 unsigned long flags; 1124 1125 WARN_ON_ONCE(!irqs_disabled()); 1126 1127 /* 1128 * The fast path checks that there are no expired thread or thread 1129 * group timers. If that's so, just return. 1130 */ 1131 if (!fastpath_timer_check(tsk)) 1132 return; 1133 1134 if (!lock_task_sighand(tsk, &flags)) 1135 return; 1136 /* 1137 * Here we take off tsk->signal->cpu_timers[N] and 1138 * tsk->cpu_timers[N] all the timers that are firing, and 1139 * put them on the firing list. 1140 */ 1141 check_thread_timers(tsk, &firing); 1142 1143 check_process_timers(tsk, &firing); 1144 1145 /* 1146 * We must release these locks before taking any timer's lock. 1147 * There is a potential race with timer deletion here, as the 1148 * siglock now protects our private firing list. We have set 1149 * the firing flag in each timer, so that a deletion attempt 1150 * that gets the timer lock before we do will give it up and 1151 * spin until we've taken care of that timer below. 1152 */ 1153 unlock_task_sighand(tsk, &flags); 1154 1155 /* 1156 * Now that all the timers on our list have the firing flag, 1157 * no one will touch their list entries but us. We'll take 1158 * each timer's lock before clearing its firing flag, so no 1159 * timer call will interfere. 1160 */ 1161 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1162 int cpu_firing; 1163 1164 spin_lock(&timer->it_lock); 1165 list_del_init(&timer->it.cpu.entry); 1166 cpu_firing = timer->it.cpu.firing; 1167 timer->it.cpu.firing = 0; 1168 /* 1169 * The firing flag is -1 if we collided with a reset 1170 * of the timer, which already reported this 1171 * almost-firing as an overrun. So don't generate an event. 1172 */ 1173 if (likely(cpu_firing >= 0)) 1174 cpu_timer_fire(timer); 1175 spin_unlock(&timer->it_lock); 1176 } 1177 } 1178 1179 /* 1180 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1181 * The tsk->sighand->siglock must be held by the caller. 1182 */ 1183 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1184 u64 *newval, u64 *oldval) 1185 { 1186 u64 now; 1187 1188 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1189 cpu_timer_sample_group(clock_idx, tsk, &now); 1190 1191 if (oldval) { 1192 /* 1193 * We are setting itimer. The *oldval is absolute and we update 1194 * it to be relative, *newval argument is relative and we update 1195 * it to be absolute. 1196 */ 1197 if (*oldval) { 1198 if (*oldval <= now) { 1199 /* Just about to fire. */ 1200 *oldval = TICK_NSEC; 1201 } else { 1202 *oldval -= now; 1203 } 1204 } 1205 1206 if (!*newval) 1207 return; 1208 *newval += now; 1209 } 1210 1211 /* 1212 * Update expiration cache if we are the earliest timer, or eventually 1213 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1214 */ 1215 switch (clock_idx) { 1216 case CPUCLOCK_PROF: 1217 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1218 tsk->signal->cputime_expires.prof_exp = *newval; 1219 break; 1220 case CPUCLOCK_VIRT: 1221 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1222 tsk->signal->cputime_expires.virt_exp = *newval; 1223 break; 1224 } 1225 1226 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); 1227 } 1228 1229 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1230 struct timespec64 *rqtp, struct itimerspec64 *it) 1231 { 1232 struct k_itimer timer; 1233 int error; 1234 1235 /* 1236 * Set up a temporary timer and then wait for it to go off. 1237 */ 1238 memset(&timer, 0, sizeof timer); 1239 spin_lock_init(&timer.it_lock); 1240 timer.it_clock = which_clock; 1241 timer.it_overrun = -1; 1242 error = posix_cpu_timer_create(&timer); 1243 timer.it_process = current; 1244 if (!error) { 1245 static struct itimerspec64 zero_it; 1246 1247 memset(it, 0, sizeof *it); 1248 it->it_value = *rqtp; 1249 1250 spin_lock_irq(&timer.it_lock); 1251 error = posix_cpu_timer_set(&timer, flags, it, NULL); 1252 if (error) { 1253 spin_unlock_irq(&timer.it_lock); 1254 return error; 1255 } 1256 1257 while (!signal_pending(current)) { 1258 if (timer.it.cpu.expires == 0) { 1259 /* 1260 * Our timer fired and was reset, below 1261 * deletion can not fail. 1262 */ 1263 posix_cpu_timer_del(&timer); 1264 spin_unlock_irq(&timer.it_lock); 1265 return 0; 1266 } 1267 1268 /* 1269 * Block until cpu_timer_fire (or a signal) wakes us. 1270 */ 1271 __set_current_state(TASK_INTERRUPTIBLE); 1272 spin_unlock_irq(&timer.it_lock); 1273 schedule(); 1274 spin_lock_irq(&timer.it_lock); 1275 } 1276 1277 /* 1278 * We were interrupted by a signal. 1279 */ 1280 *rqtp = ns_to_timespec64(timer.it.cpu.expires); 1281 error = posix_cpu_timer_set(&timer, 0, &zero_it, it); 1282 if (!error) { 1283 /* 1284 * Timer is now unarmed, deletion can not fail. 1285 */ 1286 posix_cpu_timer_del(&timer); 1287 } 1288 spin_unlock_irq(&timer.it_lock); 1289 1290 while (error == TIMER_RETRY) { 1291 /* 1292 * We need to handle case when timer was or is in the 1293 * middle of firing. In other cases we already freed 1294 * resources. 1295 */ 1296 spin_lock_irq(&timer.it_lock); 1297 error = posix_cpu_timer_del(&timer); 1298 spin_unlock_irq(&timer.it_lock); 1299 } 1300 1301 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { 1302 /* 1303 * It actually did fire already. 1304 */ 1305 return 0; 1306 } 1307 1308 error = -ERESTART_RESTARTBLOCK; 1309 } 1310 1311 return error; 1312 } 1313 1314 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1315 1316 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1317 struct timespec64 *rqtp, struct timespec __user *rmtp) 1318 { 1319 struct restart_block *restart_block = ¤t->restart_block; 1320 struct itimerspec64 it; 1321 struct timespec ts; 1322 int error; 1323 1324 /* 1325 * Diagnose required errors first. 1326 */ 1327 if (CPUCLOCK_PERTHREAD(which_clock) && 1328 (CPUCLOCK_PID(which_clock) == 0 || 1329 CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) 1330 return -EINVAL; 1331 1332 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); 1333 1334 if (error == -ERESTART_RESTARTBLOCK) { 1335 1336 if (flags & TIMER_ABSTIME) 1337 return -ERESTARTNOHAND; 1338 /* 1339 * Report back to the user the time still remaining. 1340 */ 1341 ts = timespec64_to_timespec(it.it_value); 1342 if (rmtp && copy_to_user(rmtp, &ts, sizeof(*rmtp))) 1343 return -EFAULT; 1344 1345 restart_block->fn = posix_cpu_nsleep_restart; 1346 restart_block->nanosleep.clockid = which_clock; 1347 restart_block->nanosleep.rmtp = rmtp; 1348 restart_block->nanosleep.expires = timespec64_to_ns(rqtp); 1349 } 1350 return error; 1351 } 1352 1353 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1354 { 1355 clockid_t which_clock = restart_block->nanosleep.clockid; 1356 struct itimerspec64 it; 1357 struct timespec64 t; 1358 struct timespec tmp; 1359 int error; 1360 1361 t = ns_to_timespec64(restart_block->nanosleep.expires); 1362 1363 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); 1364 1365 if (error == -ERESTART_RESTARTBLOCK) { 1366 struct timespec __user *rmtp = restart_block->nanosleep.rmtp; 1367 /* 1368 * Report back to the user the time still remaining. 1369 */ 1370 tmp = timespec64_to_timespec(it.it_value); 1371 if (rmtp && copy_to_user(rmtp, &tmp, sizeof(*rmtp))) 1372 return -EFAULT; 1373 1374 restart_block->nanosleep.expires = timespec64_to_ns(&t); 1375 } 1376 return error; 1377 1378 } 1379 1380 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1381 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1382 1383 static int process_cpu_clock_getres(const clockid_t which_clock, 1384 struct timespec64 *tp) 1385 { 1386 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1387 } 1388 static int process_cpu_clock_get(const clockid_t which_clock, 1389 struct timespec64 *tp) 1390 { 1391 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1392 } 1393 static int process_cpu_timer_create(struct k_itimer *timer) 1394 { 1395 timer->it_clock = PROCESS_CLOCK; 1396 return posix_cpu_timer_create(timer); 1397 } 1398 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1399 struct timespec64 *rqtp, 1400 struct timespec __user *rmtp) 1401 { 1402 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); 1403 } 1404 static long process_cpu_nsleep_restart(struct restart_block *restart_block) 1405 { 1406 return -EINVAL; 1407 } 1408 static int thread_cpu_clock_getres(const clockid_t which_clock, 1409 struct timespec64 *tp) 1410 { 1411 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1412 } 1413 static int thread_cpu_clock_get(const clockid_t which_clock, 1414 struct timespec64 *tp) 1415 { 1416 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1417 } 1418 static int thread_cpu_timer_create(struct k_itimer *timer) 1419 { 1420 timer->it_clock = THREAD_CLOCK; 1421 return posix_cpu_timer_create(timer); 1422 } 1423 1424 struct k_clock clock_posix_cpu = { 1425 .clock_getres = posix_cpu_clock_getres, 1426 .clock_set = posix_cpu_clock_set, 1427 .clock_get = posix_cpu_clock_get, 1428 .timer_create = posix_cpu_timer_create, 1429 .nsleep = posix_cpu_nsleep, 1430 .nsleep_restart = posix_cpu_nsleep_restart, 1431 .timer_set = posix_cpu_timer_set, 1432 .timer_del = posix_cpu_timer_del, 1433 .timer_get = posix_cpu_timer_get, 1434 }; 1435 1436 static __init int init_posix_cpu_timers(void) 1437 { 1438 struct k_clock process = { 1439 .clock_getres = process_cpu_clock_getres, 1440 .clock_get = process_cpu_clock_get, 1441 .timer_create = process_cpu_timer_create, 1442 .nsleep = process_cpu_nsleep, 1443 .nsleep_restart = process_cpu_nsleep_restart, 1444 }; 1445 struct k_clock thread = { 1446 .clock_getres = thread_cpu_clock_getres, 1447 .clock_get = thread_cpu_clock_get, 1448 .timer_create = thread_cpu_timer_create, 1449 }; 1450 1451 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1452 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1453 1454 return 0; 1455 } 1456 __initcall(init_posix_cpu_timers); 1457