1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement CPU time clocks for the POSIX clock interface. 4 */ 5 6 #include <linux/sched/signal.h> 7 #include <linux/sched/cputime.h> 8 #include <linux/posix-timers.h> 9 #include <linux/errno.h> 10 #include <linux/math64.h> 11 #include <linux/uaccess.h> 12 #include <linux/kernel_stat.h> 13 #include <trace/events/timer.h> 14 #include <linux/tick.h> 15 #include <linux/workqueue.h> 16 #include <linux/compat.h> 17 #include <linux/sched/deadline.h> 18 #include <linux/task_work.h> 19 20 #include "posix-timers.h" 21 22 static void posix_cpu_timer_rearm(struct k_itimer *timer); 23 24 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) 25 { 26 posix_cputimers_init(pct); 27 if (cpu_limit != RLIM_INFINITY) { 28 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC; 29 pct->timers_active = true; 30 } 31 } 32 33 /* 34 * Called after updating RLIMIT_CPU to run cpu timer and update 35 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if 36 * necessary. Needs siglock protection since other code may update the 37 * expiration cache as well. 38 * 39 * Returns 0 on success, -ESRCH on failure. Can fail if the task is exiting and 40 * we cannot lock_task_sighand. Cannot fail if task is current. 41 */ 42 int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 43 { 44 u64 nsecs = rlim_new * NSEC_PER_SEC; 45 unsigned long irq_fl; 46 47 if (!lock_task_sighand(task, &irq_fl)) 48 return -ESRCH; 49 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); 50 unlock_task_sighand(task, &irq_fl); 51 return 0; 52 } 53 54 /* 55 * Functions for validating access to tasks. 56 */ 57 static struct pid *pid_for_clock(const clockid_t clock, bool gettime) 58 { 59 const bool thread = !!CPUCLOCK_PERTHREAD(clock); 60 const pid_t upid = CPUCLOCK_PID(clock); 61 struct pid *pid; 62 63 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX) 64 return NULL; 65 66 /* 67 * If the encoded PID is 0, then the timer is targeted at current 68 * or the process to which current belongs. 69 */ 70 if (upid == 0) 71 return thread ? task_pid(current) : task_tgid(current); 72 73 pid = find_vpid(upid); 74 if (!pid) 75 return NULL; 76 77 if (thread) { 78 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID); 79 return (tsk && same_thread_group(tsk, current)) ? pid : NULL; 80 } 81 82 /* 83 * For clock_gettime(PROCESS) allow finding the process by 84 * with the pid of the current task. The code needs the tgid 85 * of the process so that pid_task(pid, PIDTYPE_TGID) can be 86 * used to find the process. 87 */ 88 if (gettime && (pid == task_pid(current))) 89 return task_tgid(current); 90 91 /* 92 * For processes require that pid identifies a process. 93 */ 94 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL; 95 } 96 97 static inline int validate_clock_permissions(const clockid_t clock) 98 { 99 int ret; 100 101 rcu_read_lock(); 102 ret = pid_for_clock(clock, false) ? 0 : -EINVAL; 103 rcu_read_unlock(); 104 105 return ret; 106 } 107 108 static inline enum pid_type clock_pid_type(const clockid_t clock) 109 { 110 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID; 111 } 112 113 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer) 114 { 115 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock)); 116 } 117 118 /* 119 * Update expiry time from increment, and increase overrun count, 120 * given the current clock sample. 121 */ 122 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now) 123 { 124 u64 delta, incr, expires = timer->it.cpu.node.expires; 125 int i; 126 127 if (!timer->it_interval) 128 return expires; 129 130 if (now < expires) 131 return expires; 132 133 incr = timer->it_interval; 134 delta = now + incr - expires; 135 136 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 137 for (i = 0; incr < delta - incr; i++) 138 incr = incr << 1; 139 140 for (; i >= 0; incr >>= 1, i--) { 141 if (delta < incr) 142 continue; 143 144 timer->it.cpu.node.expires += incr; 145 timer->it_overrun += 1LL << i; 146 delta -= incr; 147 } 148 return timer->it.cpu.node.expires; 149 } 150 151 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */ 152 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct) 153 { 154 return !(~pct->bases[CPUCLOCK_PROF].nextevt | 155 ~pct->bases[CPUCLOCK_VIRT].nextevt | 156 ~pct->bases[CPUCLOCK_SCHED].nextevt); 157 } 158 159 static int 160 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 161 { 162 int error = validate_clock_permissions(which_clock); 163 164 if (!error) { 165 tp->tv_sec = 0; 166 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 167 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 168 /* 169 * If sched_clock is using a cycle counter, we 170 * don't have any idea of its true resolution 171 * exported, but it is much more than 1s/HZ. 172 */ 173 tp->tv_nsec = 1; 174 } 175 } 176 return error; 177 } 178 179 static int 180 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp) 181 { 182 int error = validate_clock_permissions(clock); 183 184 /* 185 * You can never reset a CPU clock, but we check for other errors 186 * in the call before failing with EPERM. 187 */ 188 return error ? : -EPERM; 189 } 190 191 /* 192 * Sample a per-thread clock for the given task. clkid is validated. 193 */ 194 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p) 195 { 196 u64 utime, stime; 197 198 if (clkid == CPUCLOCK_SCHED) 199 return task_sched_runtime(p); 200 201 task_cputime(p, &utime, &stime); 202 203 switch (clkid) { 204 case CPUCLOCK_PROF: 205 return utime + stime; 206 case CPUCLOCK_VIRT: 207 return utime; 208 default: 209 WARN_ON_ONCE(1); 210 } 211 return 0; 212 } 213 214 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime) 215 { 216 samples[CPUCLOCK_PROF] = stime + utime; 217 samples[CPUCLOCK_VIRT] = utime; 218 samples[CPUCLOCK_SCHED] = rtime; 219 } 220 221 static void task_sample_cputime(struct task_struct *p, u64 *samples) 222 { 223 u64 stime, utime; 224 225 task_cputime(p, &utime, &stime); 226 store_samples(samples, stime, utime, p->se.sum_exec_runtime); 227 } 228 229 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at, 230 u64 *samples) 231 { 232 u64 stime, utime, rtime; 233 234 utime = atomic64_read(&at->utime); 235 stime = atomic64_read(&at->stime); 236 rtime = atomic64_read(&at->sum_exec_runtime); 237 store_samples(samples, stime, utime, rtime); 238 } 239 240 /* 241 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 242 * to avoid race conditions with concurrent updates to cputime. 243 */ 244 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 245 { 246 u64 curr_cputime = atomic64_read(cputime); 247 248 do { 249 if (sum_cputime <= curr_cputime) 250 return; 251 } while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime)); 252 } 253 254 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, 255 struct task_cputime *sum) 256 { 257 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 258 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 259 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 260 } 261 262 /** 263 * thread_group_sample_cputime - Sample cputime for a given task 264 * @tsk: Task for which cputime needs to be started 265 * @samples: Storage for time samples 266 * 267 * Called from sys_getitimer() to calculate the expiry time of an active 268 * timer. That means group cputime accounting is already active. Called 269 * with task sighand lock held. 270 * 271 * Updates @times with an uptodate sample of the thread group cputimes. 272 */ 273 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples) 274 { 275 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 276 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 277 278 WARN_ON_ONCE(!pct->timers_active); 279 280 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 281 } 282 283 /** 284 * thread_group_start_cputime - Start cputime and return a sample 285 * @tsk: Task for which cputime needs to be started 286 * @samples: Storage for time samples 287 * 288 * The thread group cputime accounting is avoided when there are no posix 289 * CPU timers armed. Before starting a timer it's required to check whether 290 * the time accounting is active. If not, a full update of the atomic 291 * accounting store needs to be done and the accounting enabled. 292 * 293 * Updates @times with an uptodate sample of the thread group cputimes. 294 */ 295 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples) 296 { 297 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 298 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 299 300 lockdep_assert_task_sighand_held(tsk); 301 302 /* Check if cputimer isn't running. This is accessed without locking. */ 303 if (!READ_ONCE(pct->timers_active)) { 304 struct task_cputime sum; 305 306 /* 307 * The POSIX timer interface allows for absolute time expiry 308 * values through the TIMER_ABSTIME flag, therefore we have 309 * to synchronize the timer to the clock every time we start it. 310 */ 311 thread_group_cputime(tsk, &sum); 312 update_gt_cputime(&cputimer->cputime_atomic, &sum); 313 314 /* 315 * We're setting timers_active without a lock. Ensure this 316 * only gets written to in one operation. We set it after 317 * update_gt_cputime() as a small optimization, but 318 * barriers are not required because update_gt_cputime() 319 * can handle concurrent updates. 320 */ 321 WRITE_ONCE(pct->timers_active, true); 322 } 323 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 324 } 325 326 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples) 327 { 328 struct task_cputime ct; 329 330 thread_group_cputime(tsk, &ct); 331 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime); 332 } 333 334 /* 335 * Sample a process (thread group) clock for the given task clkid. If the 336 * group's cputime accounting is already enabled, read the atomic 337 * store. Otherwise a full update is required. clkid is already validated. 338 */ 339 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p, 340 bool start) 341 { 342 struct thread_group_cputimer *cputimer = &p->signal->cputimer; 343 struct posix_cputimers *pct = &p->signal->posix_cputimers; 344 u64 samples[CPUCLOCK_MAX]; 345 346 if (!READ_ONCE(pct->timers_active)) { 347 if (start) 348 thread_group_start_cputime(p, samples); 349 else 350 __thread_group_cputime(p, samples); 351 } else { 352 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 353 } 354 355 return samples[clkid]; 356 } 357 358 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp) 359 { 360 const clockid_t clkid = CPUCLOCK_WHICH(clock); 361 struct task_struct *tsk; 362 u64 t; 363 364 rcu_read_lock(); 365 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock)); 366 if (!tsk) { 367 rcu_read_unlock(); 368 return -EINVAL; 369 } 370 371 if (CPUCLOCK_PERTHREAD(clock)) 372 t = cpu_clock_sample(clkid, tsk); 373 else 374 t = cpu_clock_sample_group(clkid, tsk, false); 375 rcu_read_unlock(); 376 377 *tp = ns_to_timespec64(t); 378 return 0; 379 } 380 381 /* 382 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 383 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 384 * new timer already all-zeros initialized. 385 */ 386 static int posix_cpu_timer_create(struct k_itimer *new_timer) 387 { 388 static struct lock_class_key posix_cpu_timers_key; 389 struct pid *pid; 390 391 rcu_read_lock(); 392 pid = pid_for_clock(new_timer->it_clock, false); 393 if (!pid) { 394 rcu_read_unlock(); 395 return -EINVAL; 396 } 397 398 /* 399 * If posix timer expiry is handled in task work context then 400 * timer::it_lock can be taken without disabling interrupts as all 401 * other locking happens in task context. This requires a separate 402 * lock class key otherwise regular posix timer expiry would record 403 * the lock class being taken in interrupt context and generate a 404 * false positive warning. 405 */ 406 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK)) 407 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key); 408 409 new_timer->kclock = &clock_posix_cpu; 410 timerqueue_init(&new_timer->it.cpu.node); 411 new_timer->it.cpu.pid = get_pid(pid); 412 rcu_read_unlock(); 413 return 0; 414 } 415 416 static struct posix_cputimer_base *timer_base(struct k_itimer *timer, 417 struct task_struct *tsk) 418 { 419 int clkidx = CPUCLOCK_WHICH(timer->it_clock); 420 421 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 422 return tsk->posix_cputimers.bases + clkidx; 423 else 424 return tsk->signal->posix_cputimers.bases + clkidx; 425 } 426 427 /* 428 * Force recalculating the base earliest expiration on the next tick. 429 * This will also re-evaluate the need to keep around the process wide 430 * cputime counter and tick dependency and eventually shut these down 431 * if necessary. 432 */ 433 static void trigger_base_recalc_expires(struct k_itimer *timer, 434 struct task_struct *tsk) 435 { 436 struct posix_cputimer_base *base = timer_base(timer, tsk); 437 438 base->nextevt = 0; 439 } 440 441 /* 442 * Dequeue the timer and reset the base if it was its earliest expiration. 443 * It makes sure the next tick recalculates the base next expiration so we 444 * don't keep the costly process wide cputime counter around for a random 445 * amount of time, along with the tick dependency. 446 * 447 * If another timer gets queued between this and the next tick, its 448 * expiration will update the base next event if necessary on the next 449 * tick. 450 */ 451 static void disarm_timer(struct k_itimer *timer, struct task_struct *p) 452 { 453 struct cpu_timer *ctmr = &timer->it.cpu; 454 struct posix_cputimer_base *base; 455 456 if (!cpu_timer_dequeue(ctmr)) 457 return; 458 459 base = timer_base(timer, p); 460 if (cpu_timer_getexpires(ctmr) == base->nextevt) 461 trigger_base_recalc_expires(timer, p); 462 } 463 464 465 /* 466 * Clean up a CPU-clock timer that is about to be destroyed. 467 * This is called from timer deletion with the timer already locked. 468 * If we return TIMER_RETRY, it's necessary to release the timer's lock 469 * and try again. (This happens when the timer is in the middle of firing.) 470 */ 471 static int posix_cpu_timer_del(struct k_itimer *timer) 472 { 473 struct cpu_timer *ctmr = &timer->it.cpu; 474 struct sighand_struct *sighand; 475 struct task_struct *p; 476 unsigned long flags; 477 int ret = 0; 478 479 rcu_read_lock(); 480 p = cpu_timer_task_rcu(timer); 481 if (!p) 482 goto out; 483 484 /* 485 * Protect against sighand release/switch in exit/exec and process/ 486 * thread timer list entry concurrent read/writes. 487 */ 488 sighand = lock_task_sighand(p, &flags); 489 if (unlikely(sighand == NULL)) { 490 /* 491 * This raced with the reaping of the task. The exit cleanup 492 * should have removed this timer from the timer queue. 493 */ 494 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node)); 495 } else { 496 if (timer->it.cpu.firing) { 497 ret = TIMER_RETRY; 498 } else { 499 disarm_timer(timer, p); 500 timer->it_status = POSIX_TIMER_DISARMED; 501 } 502 unlock_task_sighand(p, &flags); 503 } 504 505 out: 506 rcu_read_unlock(); 507 if (!ret) 508 put_pid(ctmr->pid); 509 510 return ret; 511 } 512 513 static void cleanup_timerqueue(struct timerqueue_head *head) 514 { 515 struct timerqueue_node *node; 516 struct cpu_timer *ctmr; 517 518 while ((node = timerqueue_getnext(head))) { 519 timerqueue_del(head, node); 520 ctmr = container_of(node, struct cpu_timer, node); 521 ctmr->head = NULL; 522 } 523 } 524 525 /* 526 * Clean out CPU timers which are still armed when a thread exits. The 527 * timers are only removed from the list. No other updates are done. The 528 * corresponding posix timers are still accessible, but cannot be rearmed. 529 * 530 * This must be called with the siglock held. 531 */ 532 static void cleanup_timers(struct posix_cputimers *pct) 533 { 534 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead); 535 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead); 536 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead); 537 } 538 539 /* 540 * These are both called with the siglock held, when the current thread 541 * is being reaped. When the final (leader) thread in the group is reaped, 542 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 543 */ 544 void posix_cpu_timers_exit(struct task_struct *tsk) 545 { 546 cleanup_timers(&tsk->posix_cputimers); 547 } 548 void posix_cpu_timers_exit_group(struct task_struct *tsk) 549 { 550 cleanup_timers(&tsk->signal->posix_cputimers); 551 } 552 553 /* 554 * Insert the timer on the appropriate list before any timers that 555 * expire later. This must be called with the sighand lock held. 556 */ 557 static void arm_timer(struct k_itimer *timer, struct task_struct *p) 558 { 559 struct posix_cputimer_base *base = timer_base(timer, p); 560 struct cpu_timer *ctmr = &timer->it.cpu; 561 u64 newexp = cpu_timer_getexpires(ctmr); 562 563 timer->it_status = POSIX_TIMER_ARMED; 564 if (!cpu_timer_enqueue(&base->tqhead, ctmr)) 565 return; 566 567 /* 568 * We are the new earliest-expiring POSIX 1.b timer, hence 569 * need to update expiration cache. Take into account that 570 * for process timers we share expiration cache with itimers 571 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 572 */ 573 if (newexp < base->nextevt) 574 base->nextevt = newexp; 575 576 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 577 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 578 else 579 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER); 580 } 581 582 /* 583 * The timer is locked, fire it and arrange for its reload. 584 */ 585 static void cpu_timer_fire(struct k_itimer *timer) 586 { 587 struct cpu_timer *ctmr = &timer->it.cpu; 588 589 timer->it_status = POSIX_TIMER_DISARMED; 590 591 if (unlikely(timer->sigq == NULL)) { 592 /* 593 * This a special case for clock_nanosleep, 594 * not a normal timer from sys_timer_create. 595 */ 596 wake_up_process(timer->it_process); 597 cpu_timer_setexpires(ctmr, 0); 598 } else if (!timer->it_interval) { 599 /* 600 * One-shot timer. Clear it as soon as it's fired. 601 */ 602 posix_timer_queue_signal(timer); 603 cpu_timer_setexpires(ctmr, 0); 604 } else if (posix_timer_queue_signal(timer)) { 605 /* 606 * The signal did not get queued because the signal 607 * was ignored, so we won't get any callback to 608 * reload the timer. But we need to keep it 609 * ticking in case the signal is deliverable next time. 610 */ 611 posix_cpu_timer_rearm(timer); 612 ++timer->it_signal_seq; 613 } 614 } 615 616 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now); 617 618 /* 619 * Guts of sys_timer_settime for CPU timers. 620 * This is called with the timer locked and interrupts disabled. 621 * If we return TIMER_RETRY, it's necessary to release the timer's lock 622 * and try again. (This happens when the timer is in the middle of firing.) 623 */ 624 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 625 struct itimerspec64 *new, struct itimerspec64 *old) 626 { 627 bool sigev_none = timer->it_sigev_notify == SIGEV_NONE; 628 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 629 struct cpu_timer *ctmr = &timer->it.cpu; 630 u64 old_expires, new_expires, now; 631 struct sighand_struct *sighand; 632 struct task_struct *p; 633 unsigned long flags; 634 int ret = 0; 635 636 rcu_read_lock(); 637 p = cpu_timer_task_rcu(timer); 638 if (!p) { 639 /* 640 * If p has just been reaped, we can no 641 * longer get any information about it at all. 642 */ 643 rcu_read_unlock(); 644 return -ESRCH; 645 } 646 647 /* 648 * Use the to_ktime conversion because that clamps the maximum 649 * value to KTIME_MAX and avoid multiplication overflows. 650 */ 651 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); 652 653 /* 654 * Protect against sighand release/switch in exit/exec and p->cpu_timers 655 * and p->signal->cpu_timers read/write in arm_timer() 656 */ 657 sighand = lock_task_sighand(p, &flags); 658 /* 659 * If p has just been reaped, we can no 660 * longer get any information about it at all. 661 */ 662 if (unlikely(sighand == NULL)) { 663 rcu_read_unlock(); 664 return -ESRCH; 665 } 666 667 /* Retrieve the current expiry time before disarming the timer */ 668 old_expires = cpu_timer_getexpires(ctmr); 669 670 if (unlikely(timer->it.cpu.firing)) { 671 timer->it.cpu.firing = -1; 672 ret = TIMER_RETRY; 673 } else { 674 cpu_timer_dequeue(ctmr); 675 timer->it_status = POSIX_TIMER_DISARMED; 676 } 677 678 /* 679 * Sample the current clock for saving the previous setting 680 * and for rearming the timer. 681 */ 682 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 683 now = cpu_clock_sample(clkid, p); 684 else 685 now = cpu_clock_sample_group(clkid, p, !sigev_none); 686 687 /* Retrieve the previous expiry value if requested. */ 688 if (old) { 689 old->it_value = (struct timespec64){ }; 690 if (old_expires) 691 __posix_cpu_timer_get(timer, old, now); 692 } 693 694 /* Retry if the timer expiry is running concurrently */ 695 if (unlikely(ret)) { 696 unlock_task_sighand(p, &flags); 697 goto out; 698 } 699 700 /* Convert relative expiry time to absolute */ 701 if (new_expires && !(timer_flags & TIMER_ABSTIME)) 702 new_expires += now; 703 704 /* Set the new expiry time (might be 0) */ 705 cpu_timer_setexpires(ctmr, new_expires); 706 707 /* 708 * Arm the timer if it is not disabled, the new expiry value has 709 * not yet expired and the timer requires signal delivery. 710 * SIGEV_NONE timers are never armed. In case the timer is not 711 * armed, enforce the reevaluation of the timer base so that the 712 * process wide cputime counter can be disabled eventually. 713 */ 714 if (likely(!sigev_none)) { 715 if (new_expires && now < new_expires) 716 arm_timer(timer, p); 717 else 718 trigger_base_recalc_expires(timer, p); 719 } 720 721 unlock_task_sighand(p, &flags); 722 723 posix_timer_set_common(timer, new); 724 725 /* 726 * If the new expiry time was already in the past the timer was not 727 * queued. Fire it immediately even if the thread never runs to 728 * accumulate more time on this clock. 729 */ 730 if (!sigev_none && new_expires && now >= new_expires) 731 cpu_timer_fire(timer); 732 out: 733 rcu_read_unlock(); 734 return ret; 735 } 736 737 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now) 738 { 739 bool sigev_none = timer->it_sigev_notify == SIGEV_NONE; 740 u64 expires, iv = timer->it_interval; 741 742 /* 743 * Make sure that interval timers are moved forward for the 744 * following cases: 745 * - SIGEV_NONE timers which are never armed 746 * - Timers which expired, but the signal has not yet been 747 * delivered 748 */ 749 if (iv && ((timer->it_signal_seq & REQUEUE_PENDING) || sigev_none)) 750 expires = bump_cpu_timer(timer, now); 751 else 752 expires = cpu_timer_getexpires(&timer->it.cpu); 753 754 /* 755 * Expired interval timers cannot have a remaining time <= 0. 756 * The kernel has to move them forward so that the next 757 * timer expiry is > @now. 758 */ 759 if (now < expires) { 760 itp->it_value = ns_to_timespec64(expires - now); 761 } else { 762 /* 763 * A single shot SIGEV_NONE timer must return 0, when it is 764 * expired! Timers which have a real signal delivery mode 765 * must return a remaining time greater than 0 because the 766 * signal has not yet been delivered. 767 */ 768 if (!sigev_none) 769 itp->it_value.tv_nsec = 1; 770 } 771 } 772 773 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) 774 { 775 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 776 struct task_struct *p; 777 u64 now; 778 779 rcu_read_lock(); 780 p = cpu_timer_task_rcu(timer); 781 if (p && cpu_timer_getexpires(&timer->it.cpu)) { 782 itp->it_interval = ktime_to_timespec64(timer->it_interval); 783 784 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 785 now = cpu_clock_sample(clkid, p); 786 else 787 now = cpu_clock_sample_group(clkid, p, false); 788 789 __posix_cpu_timer_get(timer, itp, now); 790 } 791 rcu_read_unlock(); 792 } 793 794 #define MAX_COLLECTED 20 795 796 static u64 collect_timerqueue(struct timerqueue_head *head, 797 struct list_head *firing, u64 now) 798 { 799 struct timerqueue_node *next; 800 int i = 0; 801 802 while ((next = timerqueue_getnext(head))) { 803 struct cpu_timer *ctmr; 804 u64 expires; 805 806 ctmr = container_of(next, struct cpu_timer, node); 807 expires = cpu_timer_getexpires(ctmr); 808 /* Limit the number of timers to expire at once */ 809 if (++i == MAX_COLLECTED || now < expires) 810 return expires; 811 812 ctmr->firing = 1; 813 /* See posix_cpu_timer_wait_running() */ 814 rcu_assign_pointer(ctmr->handling, current); 815 cpu_timer_dequeue(ctmr); 816 list_add_tail(&ctmr->elist, firing); 817 } 818 819 return U64_MAX; 820 } 821 822 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples, 823 struct list_head *firing) 824 { 825 struct posix_cputimer_base *base = pct->bases; 826 int i; 827 828 for (i = 0; i < CPUCLOCK_MAX; i++, base++) { 829 base->nextevt = collect_timerqueue(&base->tqhead, firing, 830 samples[i]); 831 } 832 } 833 834 static inline void check_dl_overrun(struct task_struct *tsk) 835 { 836 if (tsk->dl.dl_overrun) { 837 tsk->dl.dl_overrun = 0; 838 send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID); 839 } 840 } 841 842 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard) 843 { 844 if (time < limit) 845 return false; 846 847 if (print_fatal_signals) { 848 pr_info("%s Watchdog Timeout (%s): %s[%d]\n", 849 rt ? "RT" : "CPU", hard ? "hard" : "soft", 850 current->comm, task_pid_nr(current)); 851 } 852 send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID); 853 return true; 854 } 855 856 /* 857 * Check for any per-thread CPU timers that have fired and move them off 858 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 859 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 860 */ 861 static void check_thread_timers(struct task_struct *tsk, 862 struct list_head *firing) 863 { 864 struct posix_cputimers *pct = &tsk->posix_cputimers; 865 u64 samples[CPUCLOCK_MAX]; 866 unsigned long soft; 867 868 if (dl_task(tsk)) 869 check_dl_overrun(tsk); 870 871 if (expiry_cache_is_inactive(pct)) 872 return; 873 874 task_sample_cputime(tsk, samples); 875 collect_posix_cputimers(pct, samples, firing); 876 877 /* 878 * Check for the special case thread timers. 879 */ 880 soft = task_rlimit(tsk, RLIMIT_RTTIME); 881 if (soft != RLIM_INFINITY) { 882 /* Task RT timeout is accounted in jiffies. RTTIME is usec */ 883 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ); 884 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); 885 886 /* At the hard limit, send SIGKILL. No further action. */ 887 if (hard != RLIM_INFINITY && 888 check_rlimit(rttime, hard, SIGKILL, true, true)) 889 return; 890 891 /* At the soft limit, send a SIGXCPU every second */ 892 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) { 893 soft += USEC_PER_SEC; 894 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft; 895 } 896 } 897 898 if (expiry_cache_is_inactive(pct)) 899 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 900 } 901 902 static inline void stop_process_timers(struct signal_struct *sig) 903 { 904 struct posix_cputimers *pct = &sig->posix_cputimers; 905 906 /* Turn off the active flag. This is done without locking. */ 907 WRITE_ONCE(pct->timers_active, false); 908 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 909 } 910 911 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 912 u64 *expires, u64 cur_time, int signo) 913 { 914 if (!it->expires) 915 return; 916 917 if (cur_time >= it->expires) { 918 if (it->incr) 919 it->expires += it->incr; 920 else 921 it->expires = 0; 922 923 trace_itimer_expire(signo == SIGPROF ? 924 ITIMER_PROF : ITIMER_VIRTUAL, 925 task_tgid(tsk), cur_time); 926 send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID); 927 } 928 929 if (it->expires && it->expires < *expires) 930 *expires = it->expires; 931 } 932 933 /* 934 * Check for any per-thread CPU timers that have fired and move them 935 * off the tsk->*_timers list onto the firing list. Per-thread timers 936 * have already been taken off. 937 */ 938 static void check_process_timers(struct task_struct *tsk, 939 struct list_head *firing) 940 { 941 struct signal_struct *const sig = tsk->signal; 942 struct posix_cputimers *pct = &sig->posix_cputimers; 943 u64 samples[CPUCLOCK_MAX]; 944 unsigned long soft; 945 946 /* 947 * If there are no active process wide timers (POSIX 1.b, itimers, 948 * RLIMIT_CPU) nothing to check. Also skip the process wide timer 949 * processing when there is already another task handling them. 950 */ 951 if (!READ_ONCE(pct->timers_active) || pct->expiry_active) 952 return; 953 954 /* 955 * Signify that a thread is checking for process timers. 956 * Write access to this field is protected by the sighand lock. 957 */ 958 pct->expiry_active = true; 959 960 /* 961 * Collect the current process totals. Group accounting is active 962 * so the sample can be taken directly. 963 */ 964 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples); 965 collect_posix_cputimers(pct, samples, firing); 966 967 /* 968 * Check for the special case process timers. 969 */ 970 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], 971 &pct->bases[CPUCLOCK_PROF].nextevt, 972 samples[CPUCLOCK_PROF], SIGPROF); 973 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], 974 &pct->bases[CPUCLOCK_VIRT].nextevt, 975 samples[CPUCLOCK_VIRT], SIGVTALRM); 976 977 soft = task_rlimit(tsk, RLIMIT_CPU); 978 if (soft != RLIM_INFINITY) { 979 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */ 980 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); 981 u64 ptime = samples[CPUCLOCK_PROF]; 982 u64 softns = (u64)soft * NSEC_PER_SEC; 983 u64 hardns = (u64)hard * NSEC_PER_SEC; 984 985 /* At the hard limit, send SIGKILL. No further action. */ 986 if (hard != RLIM_INFINITY && 987 check_rlimit(ptime, hardns, SIGKILL, false, true)) 988 return; 989 990 /* At the soft limit, send a SIGXCPU every second */ 991 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) { 992 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1; 993 softns += NSEC_PER_SEC; 994 } 995 996 /* Update the expiry cache */ 997 if (softns < pct->bases[CPUCLOCK_PROF].nextevt) 998 pct->bases[CPUCLOCK_PROF].nextevt = softns; 999 } 1000 1001 if (expiry_cache_is_inactive(pct)) 1002 stop_process_timers(sig); 1003 1004 pct->expiry_active = false; 1005 } 1006 1007 /* 1008 * This is called from the signal code (via posixtimer_rearm) 1009 * when the last timer signal was delivered and we have to reload the timer. 1010 */ 1011 static void posix_cpu_timer_rearm(struct k_itimer *timer) 1012 { 1013 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 1014 struct task_struct *p; 1015 struct sighand_struct *sighand; 1016 unsigned long flags; 1017 u64 now; 1018 1019 rcu_read_lock(); 1020 p = cpu_timer_task_rcu(timer); 1021 if (!p) 1022 goto out; 1023 1024 /* Protect timer list r/w in arm_timer() */ 1025 sighand = lock_task_sighand(p, &flags); 1026 if (unlikely(sighand == NULL)) 1027 goto out; 1028 1029 /* 1030 * Fetch the current sample and update the timer's expiry time. 1031 */ 1032 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 1033 now = cpu_clock_sample(clkid, p); 1034 else 1035 now = cpu_clock_sample_group(clkid, p, true); 1036 1037 bump_cpu_timer(timer, now); 1038 1039 /* 1040 * Now re-arm for the new expiry time. 1041 */ 1042 arm_timer(timer, p); 1043 unlock_task_sighand(p, &flags); 1044 out: 1045 rcu_read_unlock(); 1046 } 1047 1048 /** 1049 * task_cputimers_expired - Check whether posix CPU timers are expired 1050 * 1051 * @samples: Array of current samples for the CPUCLOCK clocks 1052 * @pct: Pointer to a posix_cputimers container 1053 * 1054 * Returns true if any member of @samples is greater than the corresponding 1055 * member of @pct->bases[CLK].nextevt. False otherwise 1056 */ 1057 static inline bool 1058 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct) 1059 { 1060 int i; 1061 1062 for (i = 0; i < CPUCLOCK_MAX; i++) { 1063 if (samples[i] >= pct->bases[i].nextevt) 1064 return true; 1065 } 1066 return false; 1067 } 1068 1069 /** 1070 * fastpath_timer_check - POSIX CPU timers fast path. 1071 * 1072 * @tsk: The task (thread) being checked. 1073 * 1074 * Check the task and thread group timers. If both are zero (there are no 1075 * timers set) return false. Otherwise snapshot the task and thread group 1076 * timers and compare them with the corresponding expiration times. Return 1077 * true if a timer has expired, else return false. 1078 */ 1079 static inline bool fastpath_timer_check(struct task_struct *tsk) 1080 { 1081 struct posix_cputimers *pct = &tsk->posix_cputimers; 1082 struct signal_struct *sig; 1083 1084 if (!expiry_cache_is_inactive(pct)) { 1085 u64 samples[CPUCLOCK_MAX]; 1086 1087 task_sample_cputime(tsk, samples); 1088 if (task_cputimers_expired(samples, pct)) 1089 return true; 1090 } 1091 1092 sig = tsk->signal; 1093 pct = &sig->posix_cputimers; 1094 /* 1095 * Check if thread group timers expired when timers are active and 1096 * no other thread in the group is already handling expiry for 1097 * thread group cputimers. These fields are read without the 1098 * sighand lock. However, this is fine because this is meant to be 1099 * a fastpath heuristic to determine whether we should try to 1100 * acquire the sighand lock to handle timer expiry. 1101 * 1102 * In the worst case scenario, if concurrently timers_active is set 1103 * or expiry_active is cleared, but the current thread doesn't see 1104 * the change yet, the timer checks are delayed until the next 1105 * thread in the group gets a scheduler interrupt to handle the 1106 * timer. This isn't an issue in practice because these types of 1107 * delays with signals actually getting sent are expected. 1108 */ 1109 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) { 1110 u64 samples[CPUCLOCK_MAX]; 1111 1112 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, 1113 samples); 1114 1115 if (task_cputimers_expired(samples, pct)) 1116 return true; 1117 } 1118 1119 if (dl_task(tsk) && tsk->dl.dl_overrun) 1120 return true; 1121 1122 return false; 1123 } 1124 1125 static void handle_posix_cpu_timers(struct task_struct *tsk); 1126 1127 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 1128 static void posix_cpu_timers_work(struct callback_head *work) 1129 { 1130 struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work); 1131 1132 mutex_lock(&cw->mutex); 1133 handle_posix_cpu_timers(current); 1134 mutex_unlock(&cw->mutex); 1135 } 1136 1137 /* 1138 * Invoked from the posix-timer core when a cancel operation failed because 1139 * the timer is marked firing. The caller holds rcu_read_lock(), which 1140 * protects the timer and the task which is expiring it from being freed. 1141 */ 1142 static void posix_cpu_timer_wait_running(struct k_itimer *timr) 1143 { 1144 struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling); 1145 1146 /* Has the handling task completed expiry already? */ 1147 if (!tsk) 1148 return; 1149 1150 /* Ensure that the task cannot go away */ 1151 get_task_struct(tsk); 1152 /* Now drop the RCU protection so the mutex can be locked */ 1153 rcu_read_unlock(); 1154 /* Wait on the expiry mutex */ 1155 mutex_lock(&tsk->posix_cputimers_work.mutex); 1156 /* Release it immediately again. */ 1157 mutex_unlock(&tsk->posix_cputimers_work.mutex); 1158 /* Drop the task reference. */ 1159 put_task_struct(tsk); 1160 /* Relock RCU so the callsite is balanced */ 1161 rcu_read_lock(); 1162 } 1163 1164 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) 1165 { 1166 /* Ensure that timr->it.cpu.handling task cannot go away */ 1167 rcu_read_lock(); 1168 spin_unlock_irq(&timr->it_lock); 1169 posix_cpu_timer_wait_running(timr); 1170 rcu_read_unlock(); 1171 /* @timr is on stack and is valid */ 1172 spin_lock_irq(&timr->it_lock); 1173 } 1174 1175 /* 1176 * Clear existing posix CPU timers task work. 1177 */ 1178 void clear_posix_cputimers_work(struct task_struct *p) 1179 { 1180 /* 1181 * A copied work entry from the old task is not meaningful, clear it. 1182 * N.B. init_task_work will not do this. 1183 */ 1184 memset(&p->posix_cputimers_work.work, 0, 1185 sizeof(p->posix_cputimers_work.work)); 1186 init_task_work(&p->posix_cputimers_work.work, 1187 posix_cpu_timers_work); 1188 mutex_init(&p->posix_cputimers_work.mutex); 1189 p->posix_cputimers_work.scheduled = false; 1190 } 1191 1192 /* 1193 * Initialize posix CPU timers task work in init task. Out of line to 1194 * keep the callback static and to avoid header recursion hell. 1195 */ 1196 void __init posix_cputimers_init_work(void) 1197 { 1198 clear_posix_cputimers_work(current); 1199 } 1200 1201 /* 1202 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either 1203 * in hard interrupt context or in task context with interrupts 1204 * disabled. Aside of that the writer/reader interaction is always in the 1205 * context of the current task, which means they are strict per CPU. 1206 */ 1207 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1208 { 1209 return tsk->posix_cputimers_work.scheduled; 1210 } 1211 1212 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1213 { 1214 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) 1215 return; 1216 1217 /* Schedule task work to actually expire the timers */ 1218 tsk->posix_cputimers_work.scheduled = true; 1219 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); 1220 } 1221 1222 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1223 unsigned long start) 1224 { 1225 bool ret = true; 1226 1227 /* 1228 * On !RT kernels interrupts are disabled while collecting expired 1229 * timers, so no tick can happen and the fast path check can be 1230 * reenabled without further checks. 1231 */ 1232 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 1233 tsk->posix_cputimers_work.scheduled = false; 1234 return true; 1235 } 1236 1237 /* 1238 * On RT enabled kernels ticks can happen while the expired timers 1239 * are collected under sighand lock. But any tick which observes 1240 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath 1241 * checks. So reenabling the tick work has do be done carefully: 1242 * 1243 * Disable interrupts and run the fast path check if jiffies have 1244 * advanced since the collecting of expired timers started. If 1245 * jiffies have not advanced or the fast path check did not find 1246 * newly expired timers, reenable the fast path check in the timer 1247 * interrupt. If there are newly expired timers, return false and 1248 * let the collection loop repeat. 1249 */ 1250 local_irq_disable(); 1251 if (start != jiffies && fastpath_timer_check(tsk)) 1252 ret = false; 1253 else 1254 tsk->posix_cputimers_work.scheduled = false; 1255 local_irq_enable(); 1256 1257 return ret; 1258 } 1259 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1260 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1261 { 1262 lockdep_posixtimer_enter(); 1263 handle_posix_cpu_timers(tsk); 1264 lockdep_posixtimer_exit(); 1265 } 1266 1267 static void posix_cpu_timer_wait_running(struct k_itimer *timr) 1268 { 1269 cpu_relax(); 1270 } 1271 1272 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) 1273 { 1274 spin_unlock_irq(&timr->it_lock); 1275 cpu_relax(); 1276 spin_lock_irq(&timr->it_lock); 1277 } 1278 1279 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1280 { 1281 return false; 1282 } 1283 1284 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1285 unsigned long start) 1286 { 1287 return true; 1288 } 1289 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1290 1291 static void handle_posix_cpu_timers(struct task_struct *tsk) 1292 { 1293 struct k_itimer *timer, *next; 1294 unsigned long flags, start; 1295 LIST_HEAD(firing); 1296 1297 if (!lock_task_sighand(tsk, &flags)) 1298 return; 1299 1300 do { 1301 /* 1302 * On RT locking sighand lock does not disable interrupts, 1303 * so this needs to be careful vs. ticks. Store the current 1304 * jiffies value. 1305 */ 1306 start = READ_ONCE(jiffies); 1307 barrier(); 1308 1309 /* 1310 * Here we take off tsk->signal->cpu_timers[N] and 1311 * tsk->cpu_timers[N] all the timers that are firing, and 1312 * put them on the firing list. 1313 */ 1314 check_thread_timers(tsk, &firing); 1315 1316 check_process_timers(tsk, &firing); 1317 1318 /* 1319 * The above timer checks have updated the expiry cache and 1320 * because nothing can have queued or modified timers after 1321 * sighand lock was taken above it is guaranteed to be 1322 * consistent. So the next timer interrupt fastpath check 1323 * will find valid data. 1324 * 1325 * If timer expiry runs in the timer interrupt context then 1326 * the loop is not relevant as timers will be directly 1327 * expired in interrupt context. The stub function below 1328 * returns always true which allows the compiler to 1329 * optimize the loop out. 1330 * 1331 * If timer expiry is deferred to task work context then 1332 * the following rules apply: 1333 * 1334 * - On !RT kernels no tick can have happened on this CPU 1335 * after sighand lock was acquired because interrupts are 1336 * disabled. So reenabling task work before dropping 1337 * sighand lock and reenabling interrupts is race free. 1338 * 1339 * - On RT kernels ticks might have happened but the tick 1340 * work ignored posix CPU timer handling because the 1341 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work 1342 * must be done very carefully including a check whether 1343 * ticks have happened since the start of the timer 1344 * expiry checks. posix_cpu_timers_enable_work() takes 1345 * care of that and eventually lets the expiry checks 1346 * run again. 1347 */ 1348 } while (!posix_cpu_timers_enable_work(tsk, start)); 1349 1350 /* 1351 * We must release sighand lock before taking any timer's lock. 1352 * There is a potential race with timer deletion here, as the 1353 * siglock now protects our private firing list. We have set 1354 * the firing flag in each timer, so that a deletion attempt 1355 * that gets the timer lock before we do will give it up and 1356 * spin until we've taken care of that timer below. 1357 */ 1358 unlock_task_sighand(tsk, &flags); 1359 1360 /* 1361 * Now that all the timers on our list have the firing flag, 1362 * no one will touch their list entries but us. We'll take 1363 * each timer's lock before clearing its firing flag, so no 1364 * timer call will interfere. 1365 */ 1366 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { 1367 int cpu_firing; 1368 1369 /* 1370 * spin_lock() is sufficient here even independent of the 1371 * expiry context. If expiry happens in hard interrupt 1372 * context it's obvious. For task work context it's safe 1373 * because all other operations on timer::it_lock happen in 1374 * task context (syscall or exit). 1375 */ 1376 spin_lock(&timer->it_lock); 1377 list_del_init(&timer->it.cpu.elist); 1378 cpu_firing = timer->it.cpu.firing; 1379 timer->it.cpu.firing = 0; 1380 /* 1381 * The firing flag is -1 if we collided with a reset 1382 * of the timer, which already reported this 1383 * almost-firing as an overrun. So don't generate an event. 1384 */ 1385 if (likely(cpu_firing >= 0)) 1386 cpu_timer_fire(timer); 1387 /* See posix_cpu_timer_wait_running() */ 1388 rcu_assign_pointer(timer->it.cpu.handling, NULL); 1389 spin_unlock(&timer->it_lock); 1390 } 1391 } 1392 1393 /* 1394 * This is called from the timer interrupt handler. The irq handler has 1395 * already updated our counts. We need to check if any timers fire now. 1396 * Interrupts are disabled. 1397 */ 1398 void run_posix_cpu_timers(void) 1399 { 1400 struct task_struct *tsk = current; 1401 1402 lockdep_assert_irqs_disabled(); 1403 1404 /* 1405 * If the actual expiry is deferred to task work context and the 1406 * work is already scheduled there is no point to do anything here. 1407 */ 1408 if (posix_cpu_timers_work_scheduled(tsk)) 1409 return; 1410 1411 /* 1412 * The fast path checks that there are no expired thread or thread 1413 * group timers. If that's so, just return. 1414 */ 1415 if (!fastpath_timer_check(tsk)) 1416 return; 1417 1418 __run_posix_cpu_timers(tsk); 1419 } 1420 1421 /* 1422 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1423 * The tsk->sighand->siglock must be held by the caller. 1424 */ 1425 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid, 1426 u64 *newval, u64 *oldval) 1427 { 1428 u64 now, *nextevt; 1429 1430 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED)) 1431 return; 1432 1433 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt; 1434 now = cpu_clock_sample_group(clkid, tsk, true); 1435 1436 if (oldval) { 1437 /* 1438 * We are setting itimer. The *oldval is absolute and we update 1439 * it to be relative, *newval argument is relative and we update 1440 * it to be absolute. 1441 */ 1442 if (*oldval) { 1443 if (*oldval <= now) { 1444 /* Just about to fire. */ 1445 *oldval = TICK_NSEC; 1446 } else { 1447 *oldval -= now; 1448 } 1449 } 1450 1451 if (*newval) 1452 *newval += now; 1453 } 1454 1455 /* 1456 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF 1457 * expiry cache is also used by RLIMIT_CPU!. 1458 */ 1459 if (*newval < *nextevt) 1460 *nextevt = *newval; 1461 1462 tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER); 1463 } 1464 1465 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1466 const struct timespec64 *rqtp) 1467 { 1468 struct itimerspec64 it; 1469 struct k_itimer timer; 1470 u64 expires; 1471 int error; 1472 1473 /* 1474 * Set up a temporary timer and then wait for it to go off. 1475 */ 1476 memset(&timer, 0, sizeof timer); 1477 spin_lock_init(&timer.it_lock); 1478 timer.it_clock = which_clock; 1479 timer.it_overrun = -1; 1480 error = posix_cpu_timer_create(&timer); 1481 timer.it_process = current; 1482 1483 if (!error) { 1484 static struct itimerspec64 zero_it; 1485 struct restart_block *restart; 1486 1487 memset(&it, 0, sizeof(it)); 1488 it.it_value = *rqtp; 1489 1490 spin_lock_irq(&timer.it_lock); 1491 error = posix_cpu_timer_set(&timer, flags, &it, NULL); 1492 if (error) { 1493 spin_unlock_irq(&timer.it_lock); 1494 return error; 1495 } 1496 1497 while (!signal_pending(current)) { 1498 if (!cpu_timer_getexpires(&timer.it.cpu)) { 1499 /* 1500 * Our timer fired and was reset, below 1501 * deletion can not fail. 1502 */ 1503 posix_cpu_timer_del(&timer); 1504 spin_unlock_irq(&timer.it_lock); 1505 return 0; 1506 } 1507 1508 /* 1509 * Block until cpu_timer_fire (or a signal) wakes us. 1510 */ 1511 __set_current_state(TASK_INTERRUPTIBLE); 1512 spin_unlock_irq(&timer.it_lock); 1513 schedule(); 1514 spin_lock_irq(&timer.it_lock); 1515 } 1516 1517 /* 1518 * We were interrupted by a signal. 1519 */ 1520 expires = cpu_timer_getexpires(&timer.it.cpu); 1521 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); 1522 if (!error) { 1523 /* Timer is now unarmed, deletion can not fail. */ 1524 posix_cpu_timer_del(&timer); 1525 } else { 1526 while (error == TIMER_RETRY) { 1527 posix_cpu_timer_wait_running_nsleep(&timer); 1528 error = posix_cpu_timer_del(&timer); 1529 } 1530 } 1531 1532 spin_unlock_irq(&timer.it_lock); 1533 1534 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { 1535 /* 1536 * It actually did fire already. 1537 */ 1538 return 0; 1539 } 1540 1541 error = -ERESTART_RESTARTBLOCK; 1542 /* 1543 * Report back to the user the time still remaining. 1544 */ 1545 restart = ¤t->restart_block; 1546 restart->nanosleep.expires = expires; 1547 if (restart->nanosleep.type != TT_NONE) 1548 error = nanosleep_copyout(restart, &it.it_value); 1549 } 1550 1551 return error; 1552 } 1553 1554 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1555 1556 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1557 const struct timespec64 *rqtp) 1558 { 1559 struct restart_block *restart_block = ¤t->restart_block; 1560 int error; 1561 1562 /* 1563 * Diagnose required errors first. 1564 */ 1565 if (CPUCLOCK_PERTHREAD(which_clock) && 1566 (CPUCLOCK_PID(which_clock) == 0 || 1567 CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) 1568 return -EINVAL; 1569 1570 error = do_cpu_nanosleep(which_clock, flags, rqtp); 1571 1572 if (error == -ERESTART_RESTARTBLOCK) { 1573 1574 if (flags & TIMER_ABSTIME) 1575 return -ERESTARTNOHAND; 1576 1577 restart_block->nanosleep.clockid = which_clock; 1578 set_restart_fn(restart_block, posix_cpu_nsleep_restart); 1579 } 1580 return error; 1581 } 1582 1583 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1584 { 1585 clockid_t which_clock = restart_block->nanosleep.clockid; 1586 struct timespec64 t; 1587 1588 t = ns_to_timespec64(restart_block->nanosleep.expires); 1589 1590 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); 1591 } 1592 1593 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED) 1594 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED) 1595 1596 static int process_cpu_clock_getres(const clockid_t which_clock, 1597 struct timespec64 *tp) 1598 { 1599 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1600 } 1601 static int process_cpu_clock_get(const clockid_t which_clock, 1602 struct timespec64 *tp) 1603 { 1604 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1605 } 1606 static int process_cpu_timer_create(struct k_itimer *timer) 1607 { 1608 timer->it_clock = PROCESS_CLOCK; 1609 return posix_cpu_timer_create(timer); 1610 } 1611 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1612 const struct timespec64 *rqtp) 1613 { 1614 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); 1615 } 1616 static int thread_cpu_clock_getres(const clockid_t which_clock, 1617 struct timespec64 *tp) 1618 { 1619 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1620 } 1621 static int thread_cpu_clock_get(const clockid_t which_clock, 1622 struct timespec64 *tp) 1623 { 1624 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1625 } 1626 static int thread_cpu_timer_create(struct k_itimer *timer) 1627 { 1628 timer->it_clock = THREAD_CLOCK; 1629 return posix_cpu_timer_create(timer); 1630 } 1631 1632 const struct k_clock clock_posix_cpu = { 1633 .clock_getres = posix_cpu_clock_getres, 1634 .clock_set = posix_cpu_clock_set, 1635 .clock_get_timespec = posix_cpu_clock_get, 1636 .timer_create = posix_cpu_timer_create, 1637 .nsleep = posix_cpu_nsleep, 1638 .timer_set = posix_cpu_timer_set, 1639 .timer_del = posix_cpu_timer_del, 1640 .timer_get = posix_cpu_timer_get, 1641 .timer_rearm = posix_cpu_timer_rearm, 1642 .timer_wait_running = posix_cpu_timer_wait_running, 1643 }; 1644 1645 const struct k_clock clock_process = { 1646 .clock_getres = process_cpu_clock_getres, 1647 .clock_get_timespec = process_cpu_clock_get, 1648 .timer_create = process_cpu_timer_create, 1649 .nsleep = process_cpu_nsleep, 1650 }; 1651 1652 const struct k_clock clock_thread = { 1653 .clock_getres = thread_cpu_clock_getres, 1654 .clock_get_timespec = thread_cpu_clock_get, 1655 .timer_create = thread_cpu_timer_create, 1656 }; 1657