xref: /linux/kernel/time/posix-cpu-timers.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implement CPU time clocks for the POSIX clock interface.
4  */
5 
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/task_work.h>
19 
20 #include "posix-timers.h"
21 
22 static void posix_cpu_timer_rearm(struct k_itimer *timer);
23 
24 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
25 {
26 	posix_cputimers_init(pct);
27 	if (cpu_limit != RLIM_INFINITY) {
28 		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
29 		pct->timers_active = true;
30 	}
31 }
32 
33 /*
34  * Called after updating RLIMIT_CPU to run cpu timer and update
35  * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
36  * necessary. Needs siglock protection since other code may update the
37  * expiration cache as well.
38  *
39  * Returns 0 on success, -ESRCH on failure.  Can fail if the task is exiting and
40  * we cannot lock_task_sighand.  Cannot fail if task is current.
41  */
42 int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
43 {
44 	u64 nsecs = rlim_new * NSEC_PER_SEC;
45 	unsigned long irq_fl;
46 
47 	if (!lock_task_sighand(task, &irq_fl))
48 		return -ESRCH;
49 	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
50 	unlock_task_sighand(task, &irq_fl);
51 	return 0;
52 }
53 
54 /*
55  * Functions for validating access to tasks.
56  */
57 static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
58 {
59 	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
60 	const pid_t upid = CPUCLOCK_PID(clock);
61 	struct pid *pid;
62 
63 	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
64 		return NULL;
65 
66 	/*
67 	 * If the encoded PID is 0, then the timer is targeted at current
68 	 * or the process to which current belongs.
69 	 */
70 	if (upid == 0)
71 		return thread ? task_pid(current) : task_tgid(current);
72 
73 	pid = find_vpid(upid);
74 	if (!pid)
75 		return NULL;
76 
77 	if (thread) {
78 		struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
79 		return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
80 	}
81 
82 	/*
83 	 * For clock_gettime(PROCESS) allow finding the process by
84 	 * with the pid of the current task.  The code needs the tgid
85 	 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
86 	 * used to find the process.
87 	 */
88 	if (gettime && (pid == task_pid(current)))
89 		return task_tgid(current);
90 
91 	/*
92 	 * For processes require that pid identifies a process.
93 	 */
94 	return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
95 }
96 
97 static inline int validate_clock_permissions(const clockid_t clock)
98 {
99 	int ret;
100 
101 	rcu_read_lock();
102 	ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
103 	rcu_read_unlock();
104 
105 	return ret;
106 }
107 
108 static inline enum pid_type clock_pid_type(const clockid_t clock)
109 {
110 	return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
111 }
112 
113 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
114 {
115 	return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
116 }
117 
118 /*
119  * Update expiry time from increment, and increase overrun count,
120  * given the current clock sample.
121  */
122 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
123 {
124 	u64 delta, incr, expires = timer->it.cpu.node.expires;
125 	int i;
126 
127 	if (!timer->it_interval)
128 		return expires;
129 
130 	if (now < expires)
131 		return expires;
132 
133 	incr = timer->it_interval;
134 	delta = now + incr - expires;
135 
136 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
137 	for (i = 0; incr < delta - incr; i++)
138 		incr = incr << 1;
139 
140 	for (; i >= 0; incr >>= 1, i--) {
141 		if (delta < incr)
142 			continue;
143 
144 		timer->it.cpu.node.expires += incr;
145 		timer->it_overrun += 1LL << i;
146 		delta -= incr;
147 	}
148 	return timer->it.cpu.node.expires;
149 }
150 
151 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
152 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
153 {
154 	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
155 		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
156 		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
157 }
158 
159 static int
160 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
161 {
162 	int error = validate_clock_permissions(which_clock);
163 
164 	if (!error) {
165 		tp->tv_sec = 0;
166 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
167 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
168 			/*
169 			 * If sched_clock is using a cycle counter, we
170 			 * don't have any idea of its true resolution
171 			 * exported, but it is much more than 1s/HZ.
172 			 */
173 			tp->tv_nsec = 1;
174 		}
175 	}
176 	return error;
177 }
178 
179 static int
180 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
181 {
182 	int error = validate_clock_permissions(clock);
183 
184 	/*
185 	 * You can never reset a CPU clock, but we check for other errors
186 	 * in the call before failing with EPERM.
187 	 */
188 	return error ? : -EPERM;
189 }
190 
191 /*
192  * Sample a per-thread clock for the given task. clkid is validated.
193  */
194 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
195 {
196 	u64 utime, stime;
197 
198 	if (clkid == CPUCLOCK_SCHED)
199 		return task_sched_runtime(p);
200 
201 	task_cputime(p, &utime, &stime);
202 
203 	switch (clkid) {
204 	case CPUCLOCK_PROF:
205 		return utime + stime;
206 	case CPUCLOCK_VIRT:
207 		return utime;
208 	default:
209 		WARN_ON_ONCE(1);
210 	}
211 	return 0;
212 }
213 
214 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
215 {
216 	samples[CPUCLOCK_PROF] = stime + utime;
217 	samples[CPUCLOCK_VIRT] = utime;
218 	samples[CPUCLOCK_SCHED] = rtime;
219 }
220 
221 static void task_sample_cputime(struct task_struct *p, u64 *samples)
222 {
223 	u64 stime, utime;
224 
225 	task_cputime(p, &utime, &stime);
226 	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
227 }
228 
229 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
230 				       u64 *samples)
231 {
232 	u64 stime, utime, rtime;
233 
234 	utime = atomic64_read(&at->utime);
235 	stime = atomic64_read(&at->stime);
236 	rtime = atomic64_read(&at->sum_exec_runtime);
237 	store_samples(samples, stime, utime, rtime);
238 }
239 
240 /*
241  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
242  * to avoid race conditions with concurrent updates to cputime.
243  */
244 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
245 {
246 	u64 curr_cputime = atomic64_read(cputime);
247 
248 	do {
249 		if (sum_cputime <= curr_cputime)
250 			return;
251 	} while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime));
252 }
253 
254 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
255 			      struct task_cputime *sum)
256 {
257 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
258 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
259 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
260 }
261 
262 /**
263  * thread_group_sample_cputime - Sample cputime for a given task
264  * @tsk:	Task for which cputime needs to be started
265  * @samples:	Storage for time samples
266  *
267  * Called from sys_getitimer() to calculate the expiry time of an active
268  * timer. That means group cputime accounting is already active. Called
269  * with task sighand lock held.
270  *
271  * Updates @times with an uptodate sample of the thread group cputimes.
272  */
273 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
274 {
275 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
276 	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
277 
278 	WARN_ON_ONCE(!pct->timers_active);
279 
280 	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
281 }
282 
283 /**
284  * thread_group_start_cputime - Start cputime and return a sample
285  * @tsk:	Task for which cputime needs to be started
286  * @samples:	Storage for time samples
287  *
288  * The thread group cputime accounting is avoided when there are no posix
289  * CPU timers armed. Before starting a timer it's required to check whether
290  * the time accounting is active. If not, a full update of the atomic
291  * accounting store needs to be done and the accounting enabled.
292  *
293  * Updates @times with an uptodate sample of the thread group cputimes.
294  */
295 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
296 {
297 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
298 	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
299 
300 	lockdep_assert_task_sighand_held(tsk);
301 
302 	/* Check if cputimer isn't running. This is accessed without locking. */
303 	if (!READ_ONCE(pct->timers_active)) {
304 		struct task_cputime sum;
305 
306 		/*
307 		 * The POSIX timer interface allows for absolute time expiry
308 		 * values through the TIMER_ABSTIME flag, therefore we have
309 		 * to synchronize the timer to the clock every time we start it.
310 		 */
311 		thread_group_cputime(tsk, &sum);
312 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
313 
314 		/*
315 		 * We're setting timers_active without a lock. Ensure this
316 		 * only gets written to in one operation. We set it after
317 		 * update_gt_cputime() as a small optimization, but
318 		 * barriers are not required because update_gt_cputime()
319 		 * can handle concurrent updates.
320 		 */
321 		WRITE_ONCE(pct->timers_active, true);
322 	}
323 	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
324 }
325 
326 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
327 {
328 	struct task_cputime ct;
329 
330 	thread_group_cputime(tsk, &ct);
331 	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
332 }
333 
334 /*
335  * Sample a process (thread group) clock for the given task clkid. If the
336  * group's cputime accounting is already enabled, read the atomic
337  * store. Otherwise a full update is required.  clkid is already validated.
338  */
339 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
340 				  bool start)
341 {
342 	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
343 	struct posix_cputimers *pct = &p->signal->posix_cputimers;
344 	u64 samples[CPUCLOCK_MAX];
345 
346 	if (!READ_ONCE(pct->timers_active)) {
347 		if (start)
348 			thread_group_start_cputime(p, samples);
349 		else
350 			__thread_group_cputime(p, samples);
351 	} else {
352 		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
353 	}
354 
355 	return samples[clkid];
356 }
357 
358 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
359 {
360 	const clockid_t clkid = CPUCLOCK_WHICH(clock);
361 	struct task_struct *tsk;
362 	u64 t;
363 
364 	rcu_read_lock();
365 	tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
366 	if (!tsk) {
367 		rcu_read_unlock();
368 		return -EINVAL;
369 	}
370 
371 	if (CPUCLOCK_PERTHREAD(clock))
372 		t = cpu_clock_sample(clkid, tsk);
373 	else
374 		t = cpu_clock_sample_group(clkid, tsk, false);
375 	rcu_read_unlock();
376 
377 	*tp = ns_to_timespec64(t);
378 	return 0;
379 }
380 
381 /*
382  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
383  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
384  * new timer already all-zeros initialized.
385  */
386 static int posix_cpu_timer_create(struct k_itimer *new_timer)
387 {
388 	static struct lock_class_key posix_cpu_timers_key;
389 	struct pid *pid;
390 
391 	rcu_read_lock();
392 	pid = pid_for_clock(new_timer->it_clock, false);
393 	if (!pid) {
394 		rcu_read_unlock();
395 		return -EINVAL;
396 	}
397 
398 	/*
399 	 * If posix timer expiry is handled in task work context then
400 	 * timer::it_lock can be taken without disabling interrupts as all
401 	 * other locking happens in task context. This requires a separate
402 	 * lock class key otherwise regular posix timer expiry would record
403 	 * the lock class being taken in interrupt context and generate a
404 	 * false positive warning.
405 	 */
406 	if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
407 		lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
408 
409 	new_timer->kclock = &clock_posix_cpu;
410 	timerqueue_init(&new_timer->it.cpu.node);
411 	new_timer->it.cpu.pid = get_pid(pid);
412 	rcu_read_unlock();
413 	return 0;
414 }
415 
416 static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
417 					      struct task_struct *tsk)
418 {
419 	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
420 
421 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
422 		return tsk->posix_cputimers.bases + clkidx;
423 	else
424 		return tsk->signal->posix_cputimers.bases + clkidx;
425 }
426 
427 /*
428  * Force recalculating the base earliest expiration on the next tick.
429  * This will also re-evaluate the need to keep around the process wide
430  * cputime counter and tick dependency and eventually shut these down
431  * if necessary.
432  */
433 static void trigger_base_recalc_expires(struct k_itimer *timer,
434 					struct task_struct *tsk)
435 {
436 	struct posix_cputimer_base *base = timer_base(timer, tsk);
437 
438 	base->nextevt = 0;
439 }
440 
441 /*
442  * Dequeue the timer and reset the base if it was its earliest expiration.
443  * It makes sure the next tick recalculates the base next expiration so we
444  * don't keep the costly process wide cputime counter around for a random
445  * amount of time, along with the tick dependency.
446  *
447  * If another timer gets queued between this and the next tick, its
448  * expiration will update the base next event if necessary on the next
449  * tick.
450  */
451 static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
452 {
453 	struct cpu_timer *ctmr = &timer->it.cpu;
454 	struct posix_cputimer_base *base;
455 
456 	timer->it_active = 0;
457 	if (!cpu_timer_dequeue(ctmr))
458 		return;
459 
460 	base = timer_base(timer, p);
461 	if (cpu_timer_getexpires(ctmr) == base->nextevt)
462 		trigger_base_recalc_expires(timer, p);
463 }
464 
465 
466 /*
467  * Clean up a CPU-clock timer that is about to be destroyed.
468  * This is called from timer deletion with the timer already locked.
469  * If we return TIMER_RETRY, it's necessary to release the timer's lock
470  * and try again.  (This happens when the timer is in the middle of firing.)
471  */
472 static int posix_cpu_timer_del(struct k_itimer *timer)
473 {
474 	struct cpu_timer *ctmr = &timer->it.cpu;
475 	struct sighand_struct *sighand;
476 	struct task_struct *p;
477 	unsigned long flags;
478 	int ret = 0;
479 
480 	rcu_read_lock();
481 	p = cpu_timer_task_rcu(timer);
482 	if (!p)
483 		goto out;
484 
485 	/*
486 	 * Protect against sighand release/switch in exit/exec and process/
487 	 * thread timer list entry concurrent read/writes.
488 	 */
489 	sighand = lock_task_sighand(p, &flags);
490 	if (unlikely(sighand == NULL)) {
491 		/*
492 		 * This raced with the reaping of the task. The exit cleanup
493 		 * should have removed this timer from the timer queue.
494 		 */
495 		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
496 	} else {
497 		if (timer->it.cpu.firing)
498 			ret = TIMER_RETRY;
499 		else
500 			disarm_timer(timer, p);
501 
502 		unlock_task_sighand(p, &flags);
503 	}
504 
505 out:
506 	rcu_read_unlock();
507 	if (!ret)
508 		put_pid(ctmr->pid);
509 
510 	return ret;
511 }
512 
513 static void cleanup_timerqueue(struct timerqueue_head *head)
514 {
515 	struct timerqueue_node *node;
516 	struct cpu_timer *ctmr;
517 
518 	while ((node = timerqueue_getnext(head))) {
519 		timerqueue_del(head, node);
520 		ctmr = container_of(node, struct cpu_timer, node);
521 		ctmr->head = NULL;
522 	}
523 }
524 
525 /*
526  * Clean out CPU timers which are still armed when a thread exits. The
527  * timers are only removed from the list. No other updates are done. The
528  * corresponding posix timers are still accessible, but cannot be rearmed.
529  *
530  * This must be called with the siglock held.
531  */
532 static void cleanup_timers(struct posix_cputimers *pct)
533 {
534 	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
535 	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
536 	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
537 }
538 
539 /*
540  * These are both called with the siglock held, when the current thread
541  * is being reaped.  When the final (leader) thread in the group is reaped,
542  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
543  */
544 void posix_cpu_timers_exit(struct task_struct *tsk)
545 {
546 	cleanup_timers(&tsk->posix_cputimers);
547 }
548 void posix_cpu_timers_exit_group(struct task_struct *tsk)
549 {
550 	cleanup_timers(&tsk->signal->posix_cputimers);
551 }
552 
553 /*
554  * Insert the timer on the appropriate list before any timers that
555  * expire later.  This must be called with the sighand lock held.
556  */
557 static void arm_timer(struct k_itimer *timer, struct task_struct *p)
558 {
559 	struct posix_cputimer_base *base = timer_base(timer, p);
560 	struct cpu_timer *ctmr = &timer->it.cpu;
561 	u64 newexp = cpu_timer_getexpires(ctmr);
562 
563 	timer->it_active = 1;
564 	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
565 		return;
566 
567 	/*
568 	 * We are the new earliest-expiring POSIX 1.b timer, hence
569 	 * need to update expiration cache. Take into account that
570 	 * for process timers we share expiration cache with itimers
571 	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
572 	 */
573 	if (newexp < base->nextevt)
574 		base->nextevt = newexp;
575 
576 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
577 		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
578 	else
579 		tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
580 }
581 
582 /*
583  * The timer is locked, fire it and arrange for its reload.
584  */
585 static void cpu_timer_fire(struct k_itimer *timer)
586 {
587 	struct cpu_timer *ctmr = &timer->it.cpu;
588 
589 	timer->it_active = 0;
590 	if (unlikely(timer->sigq == NULL)) {
591 		/*
592 		 * This a special case for clock_nanosleep,
593 		 * not a normal timer from sys_timer_create.
594 		 */
595 		wake_up_process(timer->it_process);
596 		cpu_timer_setexpires(ctmr, 0);
597 	} else if (!timer->it_interval) {
598 		/*
599 		 * One-shot timer.  Clear it as soon as it's fired.
600 		 */
601 		posix_timer_queue_signal(timer);
602 		cpu_timer_setexpires(ctmr, 0);
603 	} else if (posix_timer_queue_signal(timer)) {
604 		/*
605 		 * The signal did not get queued because the signal
606 		 * was ignored, so we won't get any callback to
607 		 * reload the timer.  But we need to keep it
608 		 * ticking in case the signal is deliverable next time.
609 		 */
610 		posix_cpu_timer_rearm(timer);
611 		++timer->it_requeue_pending;
612 	}
613 }
614 
615 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now);
616 
617 /*
618  * Guts of sys_timer_settime for CPU timers.
619  * This is called with the timer locked and interrupts disabled.
620  * If we return TIMER_RETRY, it's necessary to release the timer's lock
621  * and try again.  (This happens when the timer is in the middle of firing.)
622  */
623 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
624 			       struct itimerspec64 *new, struct itimerspec64 *old)
625 {
626 	bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
627 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
628 	struct cpu_timer *ctmr = &timer->it.cpu;
629 	u64 old_expires, new_expires, now;
630 	struct sighand_struct *sighand;
631 	struct task_struct *p;
632 	unsigned long flags;
633 	int ret = 0;
634 
635 	rcu_read_lock();
636 	p = cpu_timer_task_rcu(timer);
637 	if (!p) {
638 		/*
639 		 * If p has just been reaped, we can no
640 		 * longer get any information about it at all.
641 		 */
642 		rcu_read_unlock();
643 		return -ESRCH;
644 	}
645 
646 	/*
647 	 * Use the to_ktime conversion because that clamps the maximum
648 	 * value to KTIME_MAX and avoid multiplication overflows.
649 	 */
650 	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
651 
652 	/*
653 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
654 	 * and p->signal->cpu_timers read/write in arm_timer()
655 	 */
656 	sighand = lock_task_sighand(p, &flags);
657 	/*
658 	 * If p has just been reaped, we can no
659 	 * longer get any information about it at all.
660 	 */
661 	if (unlikely(sighand == NULL)) {
662 		rcu_read_unlock();
663 		return -ESRCH;
664 	}
665 
666 	/* Retrieve the current expiry time before disarming the timer */
667 	old_expires = cpu_timer_getexpires(ctmr);
668 
669 	if (unlikely(timer->it.cpu.firing)) {
670 		timer->it.cpu.firing = -1;
671 		ret = TIMER_RETRY;
672 	} else {
673 		cpu_timer_dequeue(ctmr);
674 		timer->it_active = 0;
675 	}
676 
677 	/*
678 	 * Sample the current clock for saving the previous setting
679 	 * and for rearming the timer.
680 	 */
681 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
682 		now = cpu_clock_sample(clkid, p);
683 	else
684 		now = cpu_clock_sample_group(clkid, p, !sigev_none);
685 
686 	/* Retrieve the previous expiry value if requested. */
687 	if (old) {
688 		old->it_value = (struct timespec64){ };
689 		if (old_expires)
690 			__posix_cpu_timer_get(timer, old, now);
691 	}
692 
693 	/* Retry if the timer expiry is running concurrently */
694 	if (unlikely(ret)) {
695 		unlock_task_sighand(p, &flags);
696 		goto out;
697 	}
698 
699 	/* Convert relative expiry time to absolute */
700 	if (new_expires && !(timer_flags & TIMER_ABSTIME))
701 		new_expires += now;
702 
703 	/* Set the new expiry time (might be 0) */
704 	cpu_timer_setexpires(ctmr, new_expires);
705 
706 	/*
707 	 * Arm the timer if it is not disabled, the new expiry value has
708 	 * not yet expired and the timer requires signal delivery.
709 	 * SIGEV_NONE timers are never armed. In case the timer is not
710 	 * armed, enforce the reevaluation of the timer base so that the
711 	 * process wide cputime counter can be disabled eventually.
712 	 */
713 	if (likely(!sigev_none)) {
714 		if (new_expires && now < new_expires)
715 			arm_timer(timer, p);
716 		else
717 			trigger_base_recalc_expires(timer, p);
718 	}
719 
720 	unlock_task_sighand(p, &flags);
721 
722 	posix_timer_set_common(timer, new);
723 
724 	/*
725 	 * If the new expiry time was already in the past the timer was not
726 	 * queued. Fire it immediately even if the thread never runs to
727 	 * accumulate more time on this clock.
728 	 */
729 	if (!sigev_none && new_expires && now >= new_expires)
730 		cpu_timer_fire(timer);
731 out:
732 	rcu_read_unlock();
733 	return ret;
734 }
735 
736 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now)
737 {
738 	bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
739 	u64 expires, iv = timer->it_interval;
740 
741 	/*
742 	 * Make sure that interval timers are moved forward for the
743 	 * following cases:
744 	 *  - SIGEV_NONE timers which are never armed
745 	 *  - Timers which expired, but the signal has not yet been
746 	 *    delivered
747 	 */
748 	if (iv && ((timer->it_requeue_pending & REQUEUE_PENDING) || sigev_none))
749 		expires = bump_cpu_timer(timer, now);
750 	else
751 		expires = cpu_timer_getexpires(&timer->it.cpu);
752 
753 	/*
754 	 * Expired interval timers cannot have a remaining time <= 0.
755 	 * The kernel has to move them forward so that the next
756 	 * timer expiry is > @now.
757 	 */
758 	if (now < expires) {
759 		itp->it_value = ns_to_timespec64(expires - now);
760 	} else {
761 		/*
762 		 * A single shot SIGEV_NONE timer must return 0, when it is
763 		 * expired! Timers which have a real signal delivery mode
764 		 * must return a remaining time greater than 0 because the
765 		 * signal has not yet been delivered.
766 		 */
767 		if (!sigev_none)
768 			itp->it_value.tv_nsec = 1;
769 	}
770 }
771 
772 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
773 {
774 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
775 	struct task_struct *p;
776 	u64 now;
777 
778 	rcu_read_lock();
779 	p = cpu_timer_task_rcu(timer);
780 	if (p && cpu_timer_getexpires(&timer->it.cpu)) {
781 		itp->it_interval = ktime_to_timespec64(timer->it_interval);
782 
783 		if (CPUCLOCK_PERTHREAD(timer->it_clock))
784 			now = cpu_clock_sample(clkid, p);
785 		else
786 			now = cpu_clock_sample_group(clkid, p, false);
787 
788 		__posix_cpu_timer_get(timer, itp, now);
789 	}
790 	rcu_read_unlock();
791 }
792 
793 #define MAX_COLLECTED	20
794 
795 static u64 collect_timerqueue(struct timerqueue_head *head,
796 			      struct list_head *firing, u64 now)
797 {
798 	struct timerqueue_node *next;
799 	int i = 0;
800 
801 	while ((next = timerqueue_getnext(head))) {
802 		struct cpu_timer *ctmr;
803 		u64 expires;
804 
805 		ctmr = container_of(next, struct cpu_timer, node);
806 		expires = cpu_timer_getexpires(ctmr);
807 		/* Limit the number of timers to expire at once */
808 		if (++i == MAX_COLLECTED || now < expires)
809 			return expires;
810 
811 		ctmr->firing = 1;
812 		/* See posix_cpu_timer_wait_running() */
813 		rcu_assign_pointer(ctmr->handling, current);
814 		cpu_timer_dequeue(ctmr);
815 		list_add_tail(&ctmr->elist, firing);
816 	}
817 
818 	return U64_MAX;
819 }
820 
821 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
822 				    struct list_head *firing)
823 {
824 	struct posix_cputimer_base *base = pct->bases;
825 	int i;
826 
827 	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
828 		base->nextevt = collect_timerqueue(&base->tqhead, firing,
829 						    samples[i]);
830 	}
831 }
832 
833 static inline void check_dl_overrun(struct task_struct *tsk)
834 {
835 	if (tsk->dl.dl_overrun) {
836 		tsk->dl.dl_overrun = 0;
837 		send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
838 	}
839 }
840 
841 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
842 {
843 	if (time < limit)
844 		return false;
845 
846 	if (print_fatal_signals) {
847 		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
848 			rt ? "RT" : "CPU", hard ? "hard" : "soft",
849 			current->comm, task_pid_nr(current));
850 	}
851 	send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID);
852 	return true;
853 }
854 
855 /*
856  * Check for any per-thread CPU timers that have fired and move them off
857  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
858  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
859  */
860 static void check_thread_timers(struct task_struct *tsk,
861 				struct list_head *firing)
862 {
863 	struct posix_cputimers *pct = &tsk->posix_cputimers;
864 	u64 samples[CPUCLOCK_MAX];
865 	unsigned long soft;
866 
867 	if (dl_task(tsk))
868 		check_dl_overrun(tsk);
869 
870 	if (expiry_cache_is_inactive(pct))
871 		return;
872 
873 	task_sample_cputime(tsk, samples);
874 	collect_posix_cputimers(pct, samples, firing);
875 
876 	/*
877 	 * Check for the special case thread timers.
878 	 */
879 	soft = task_rlimit(tsk, RLIMIT_RTTIME);
880 	if (soft != RLIM_INFINITY) {
881 		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
882 		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
883 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
884 
885 		/* At the hard limit, send SIGKILL. No further action. */
886 		if (hard != RLIM_INFINITY &&
887 		    check_rlimit(rttime, hard, SIGKILL, true, true))
888 			return;
889 
890 		/* At the soft limit, send a SIGXCPU every second */
891 		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
892 			soft += USEC_PER_SEC;
893 			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
894 		}
895 	}
896 
897 	if (expiry_cache_is_inactive(pct))
898 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
899 }
900 
901 static inline void stop_process_timers(struct signal_struct *sig)
902 {
903 	struct posix_cputimers *pct = &sig->posix_cputimers;
904 
905 	/* Turn off the active flag. This is done without locking. */
906 	WRITE_ONCE(pct->timers_active, false);
907 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
908 }
909 
910 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
911 			     u64 *expires, u64 cur_time, int signo)
912 {
913 	if (!it->expires)
914 		return;
915 
916 	if (cur_time >= it->expires) {
917 		if (it->incr)
918 			it->expires += it->incr;
919 		else
920 			it->expires = 0;
921 
922 		trace_itimer_expire(signo == SIGPROF ?
923 				    ITIMER_PROF : ITIMER_VIRTUAL,
924 				    task_tgid(tsk), cur_time);
925 		send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
926 	}
927 
928 	if (it->expires && it->expires < *expires)
929 		*expires = it->expires;
930 }
931 
932 /*
933  * Check for any per-thread CPU timers that have fired and move them
934  * off the tsk->*_timers list onto the firing list.  Per-thread timers
935  * have already been taken off.
936  */
937 static void check_process_timers(struct task_struct *tsk,
938 				 struct list_head *firing)
939 {
940 	struct signal_struct *const sig = tsk->signal;
941 	struct posix_cputimers *pct = &sig->posix_cputimers;
942 	u64 samples[CPUCLOCK_MAX];
943 	unsigned long soft;
944 
945 	/*
946 	 * If there are no active process wide timers (POSIX 1.b, itimers,
947 	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
948 	 * processing when there is already another task handling them.
949 	 */
950 	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
951 		return;
952 
953 	/*
954 	 * Signify that a thread is checking for process timers.
955 	 * Write access to this field is protected by the sighand lock.
956 	 */
957 	pct->expiry_active = true;
958 
959 	/*
960 	 * Collect the current process totals. Group accounting is active
961 	 * so the sample can be taken directly.
962 	 */
963 	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
964 	collect_posix_cputimers(pct, samples, firing);
965 
966 	/*
967 	 * Check for the special case process timers.
968 	 */
969 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
970 			 &pct->bases[CPUCLOCK_PROF].nextevt,
971 			 samples[CPUCLOCK_PROF], SIGPROF);
972 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
973 			 &pct->bases[CPUCLOCK_VIRT].nextevt,
974 			 samples[CPUCLOCK_VIRT], SIGVTALRM);
975 
976 	soft = task_rlimit(tsk, RLIMIT_CPU);
977 	if (soft != RLIM_INFINITY) {
978 		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
979 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
980 		u64 ptime = samples[CPUCLOCK_PROF];
981 		u64 softns = (u64)soft * NSEC_PER_SEC;
982 		u64 hardns = (u64)hard * NSEC_PER_SEC;
983 
984 		/* At the hard limit, send SIGKILL. No further action. */
985 		if (hard != RLIM_INFINITY &&
986 		    check_rlimit(ptime, hardns, SIGKILL, false, true))
987 			return;
988 
989 		/* At the soft limit, send a SIGXCPU every second */
990 		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
991 			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
992 			softns += NSEC_PER_SEC;
993 		}
994 
995 		/* Update the expiry cache */
996 		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
997 			pct->bases[CPUCLOCK_PROF].nextevt = softns;
998 	}
999 
1000 	if (expiry_cache_is_inactive(pct))
1001 		stop_process_timers(sig);
1002 
1003 	pct->expiry_active = false;
1004 }
1005 
1006 /*
1007  * This is called from the signal code (via posixtimer_rearm)
1008  * when the last timer signal was delivered and we have to reload the timer.
1009  */
1010 static void posix_cpu_timer_rearm(struct k_itimer *timer)
1011 {
1012 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
1013 	struct task_struct *p;
1014 	struct sighand_struct *sighand;
1015 	unsigned long flags;
1016 	u64 now;
1017 
1018 	rcu_read_lock();
1019 	p = cpu_timer_task_rcu(timer);
1020 	if (!p)
1021 		goto out;
1022 
1023 	/* Protect timer list r/w in arm_timer() */
1024 	sighand = lock_task_sighand(p, &flags);
1025 	if (unlikely(sighand == NULL))
1026 		goto out;
1027 
1028 	/*
1029 	 * Fetch the current sample and update the timer's expiry time.
1030 	 */
1031 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
1032 		now = cpu_clock_sample(clkid, p);
1033 	else
1034 		now = cpu_clock_sample_group(clkid, p, true);
1035 
1036 	bump_cpu_timer(timer, now);
1037 
1038 	/*
1039 	 * Now re-arm for the new expiry time.
1040 	 */
1041 	arm_timer(timer, p);
1042 	unlock_task_sighand(p, &flags);
1043 out:
1044 	rcu_read_unlock();
1045 }
1046 
1047 /**
1048  * task_cputimers_expired - Check whether posix CPU timers are expired
1049  *
1050  * @samples:	Array of current samples for the CPUCLOCK clocks
1051  * @pct:	Pointer to a posix_cputimers container
1052  *
1053  * Returns true if any member of @samples is greater than the corresponding
1054  * member of @pct->bases[CLK].nextevt. False otherwise
1055  */
1056 static inline bool
1057 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1058 {
1059 	int i;
1060 
1061 	for (i = 0; i < CPUCLOCK_MAX; i++) {
1062 		if (samples[i] >= pct->bases[i].nextevt)
1063 			return true;
1064 	}
1065 	return false;
1066 }
1067 
1068 /**
1069  * fastpath_timer_check - POSIX CPU timers fast path.
1070  *
1071  * @tsk:	The task (thread) being checked.
1072  *
1073  * Check the task and thread group timers.  If both are zero (there are no
1074  * timers set) return false.  Otherwise snapshot the task and thread group
1075  * timers and compare them with the corresponding expiration times.  Return
1076  * true if a timer has expired, else return false.
1077  */
1078 static inline bool fastpath_timer_check(struct task_struct *tsk)
1079 {
1080 	struct posix_cputimers *pct = &tsk->posix_cputimers;
1081 	struct signal_struct *sig;
1082 
1083 	if (!expiry_cache_is_inactive(pct)) {
1084 		u64 samples[CPUCLOCK_MAX];
1085 
1086 		task_sample_cputime(tsk, samples);
1087 		if (task_cputimers_expired(samples, pct))
1088 			return true;
1089 	}
1090 
1091 	sig = tsk->signal;
1092 	pct = &sig->posix_cputimers;
1093 	/*
1094 	 * Check if thread group timers expired when timers are active and
1095 	 * no other thread in the group is already handling expiry for
1096 	 * thread group cputimers. These fields are read without the
1097 	 * sighand lock. However, this is fine because this is meant to be
1098 	 * a fastpath heuristic to determine whether we should try to
1099 	 * acquire the sighand lock to handle timer expiry.
1100 	 *
1101 	 * In the worst case scenario, if concurrently timers_active is set
1102 	 * or expiry_active is cleared, but the current thread doesn't see
1103 	 * the change yet, the timer checks are delayed until the next
1104 	 * thread in the group gets a scheduler interrupt to handle the
1105 	 * timer. This isn't an issue in practice because these types of
1106 	 * delays with signals actually getting sent are expected.
1107 	 */
1108 	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1109 		u64 samples[CPUCLOCK_MAX];
1110 
1111 		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1112 					   samples);
1113 
1114 		if (task_cputimers_expired(samples, pct))
1115 			return true;
1116 	}
1117 
1118 	if (dl_task(tsk) && tsk->dl.dl_overrun)
1119 		return true;
1120 
1121 	return false;
1122 }
1123 
1124 static void handle_posix_cpu_timers(struct task_struct *tsk);
1125 
1126 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1127 static void posix_cpu_timers_work(struct callback_head *work)
1128 {
1129 	struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work);
1130 
1131 	mutex_lock(&cw->mutex);
1132 	handle_posix_cpu_timers(current);
1133 	mutex_unlock(&cw->mutex);
1134 }
1135 
1136 /*
1137  * Invoked from the posix-timer core when a cancel operation failed because
1138  * the timer is marked firing. The caller holds rcu_read_lock(), which
1139  * protects the timer and the task which is expiring it from being freed.
1140  */
1141 static void posix_cpu_timer_wait_running(struct k_itimer *timr)
1142 {
1143 	struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling);
1144 
1145 	/* Has the handling task completed expiry already? */
1146 	if (!tsk)
1147 		return;
1148 
1149 	/* Ensure that the task cannot go away */
1150 	get_task_struct(tsk);
1151 	/* Now drop the RCU protection so the mutex can be locked */
1152 	rcu_read_unlock();
1153 	/* Wait on the expiry mutex */
1154 	mutex_lock(&tsk->posix_cputimers_work.mutex);
1155 	/* Release it immediately again. */
1156 	mutex_unlock(&tsk->posix_cputimers_work.mutex);
1157 	/* Drop the task reference. */
1158 	put_task_struct(tsk);
1159 	/* Relock RCU so the callsite is balanced */
1160 	rcu_read_lock();
1161 }
1162 
1163 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
1164 {
1165 	/* Ensure that timr->it.cpu.handling task cannot go away */
1166 	rcu_read_lock();
1167 	spin_unlock_irq(&timr->it_lock);
1168 	posix_cpu_timer_wait_running(timr);
1169 	rcu_read_unlock();
1170 	/* @timr is on stack and is valid */
1171 	spin_lock_irq(&timr->it_lock);
1172 }
1173 
1174 /*
1175  * Clear existing posix CPU timers task work.
1176  */
1177 void clear_posix_cputimers_work(struct task_struct *p)
1178 {
1179 	/*
1180 	 * A copied work entry from the old task is not meaningful, clear it.
1181 	 * N.B. init_task_work will not do this.
1182 	 */
1183 	memset(&p->posix_cputimers_work.work, 0,
1184 	       sizeof(p->posix_cputimers_work.work));
1185 	init_task_work(&p->posix_cputimers_work.work,
1186 		       posix_cpu_timers_work);
1187 	mutex_init(&p->posix_cputimers_work.mutex);
1188 	p->posix_cputimers_work.scheduled = false;
1189 }
1190 
1191 /*
1192  * Initialize posix CPU timers task work in init task. Out of line to
1193  * keep the callback static and to avoid header recursion hell.
1194  */
1195 void __init posix_cputimers_init_work(void)
1196 {
1197 	clear_posix_cputimers_work(current);
1198 }
1199 
1200 /*
1201  * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1202  * in hard interrupt context or in task context with interrupts
1203  * disabled. Aside of that the writer/reader interaction is always in the
1204  * context of the current task, which means they are strict per CPU.
1205  */
1206 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1207 {
1208 	return tsk->posix_cputimers_work.scheduled;
1209 }
1210 
1211 static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1212 {
1213 	if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1214 		return;
1215 
1216 	/* Schedule task work to actually expire the timers */
1217 	tsk->posix_cputimers_work.scheduled = true;
1218 	task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1219 }
1220 
1221 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1222 						unsigned long start)
1223 {
1224 	bool ret = true;
1225 
1226 	/*
1227 	 * On !RT kernels interrupts are disabled while collecting expired
1228 	 * timers, so no tick can happen and the fast path check can be
1229 	 * reenabled without further checks.
1230 	 */
1231 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1232 		tsk->posix_cputimers_work.scheduled = false;
1233 		return true;
1234 	}
1235 
1236 	/*
1237 	 * On RT enabled kernels ticks can happen while the expired timers
1238 	 * are collected under sighand lock. But any tick which observes
1239 	 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1240 	 * checks. So reenabling the tick work has do be done carefully:
1241 	 *
1242 	 * Disable interrupts and run the fast path check if jiffies have
1243 	 * advanced since the collecting of expired timers started. If
1244 	 * jiffies have not advanced or the fast path check did not find
1245 	 * newly expired timers, reenable the fast path check in the timer
1246 	 * interrupt. If there are newly expired timers, return false and
1247 	 * let the collection loop repeat.
1248 	 */
1249 	local_irq_disable();
1250 	if (start != jiffies && fastpath_timer_check(tsk))
1251 		ret = false;
1252 	else
1253 		tsk->posix_cputimers_work.scheduled = false;
1254 	local_irq_enable();
1255 
1256 	return ret;
1257 }
1258 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1259 static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1260 {
1261 	lockdep_posixtimer_enter();
1262 	handle_posix_cpu_timers(tsk);
1263 	lockdep_posixtimer_exit();
1264 }
1265 
1266 static void posix_cpu_timer_wait_running(struct k_itimer *timr)
1267 {
1268 	cpu_relax();
1269 }
1270 
1271 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
1272 {
1273 	spin_unlock_irq(&timr->it_lock);
1274 	cpu_relax();
1275 	spin_lock_irq(&timr->it_lock);
1276 }
1277 
1278 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1279 {
1280 	return false;
1281 }
1282 
1283 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1284 						unsigned long start)
1285 {
1286 	return true;
1287 }
1288 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1289 
1290 static void handle_posix_cpu_timers(struct task_struct *tsk)
1291 {
1292 	struct k_itimer *timer, *next;
1293 	unsigned long flags, start;
1294 	LIST_HEAD(firing);
1295 
1296 	if (!lock_task_sighand(tsk, &flags))
1297 		return;
1298 
1299 	do {
1300 		/*
1301 		 * On RT locking sighand lock does not disable interrupts,
1302 		 * so this needs to be careful vs. ticks. Store the current
1303 		 * jiffies value.
1304 		 */
1305 		start = READ_ONCE(jiffies);
1306 		barrier();
1307 
1308 		/*
1309 		 * Here we take off tsk->signal->cpu_timers[N] and
1310 		 * tsk->cpu_timers[N] all the timers that are firing, and
1311 		 * put them on the firing list.
1312 		 */
1313 		check_thread_timers(tsk, &firing);
1314 
1315 		check_process_timers(tsk, &firing);
1316 
1317 		/*
1318 		 * The above timer checks have updated the expiry cache and
1319 		 * because nothing can have queued or modified timers after
1320 		 * sighand lock was taken above it is guaranteed to be
1321 		 * consistent. So the next timer interrupt fastpath check
1322 		 * will find valid data.
1323 		 *
1324 		 * If timer expiry runs in the timer interrupt context then
1325 		 * the loop is not relevant as timers will be directly
1326 		 * expired in interrupt context. The stub function below
1327 		 * returns always true which allows the compiler to
1328 		 * optimize the loop out.
1329 		 *
1330 		 * If timer expiry is deferred to task work context then
1331 		 * the following rules apply:
1332 		 *
1333 		 * - On !RT kernels no tick can have happened on this CPU
1334 		 *   after sighand lock was acquired because interrupts are
1335 		 *   disabled. So reenabling task work before dropping
1336 		 *   sighand lock and reenabling interrupts is race free.
1337 		 *
1338 		 * - On RT kernels ticks might have happened but the tick
1339 		 *   work ignored posix CPU timer handling because the
1340 		 *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1341 		 *   must be done very carefully including a check whether
1342 		 *   ticks have happened since the start of the timer
1343 		 *   expiry checks. posix_cpu_timers_enable_work() takes
1344 		 *   care of that and eventually lets the expiry checks
1345 		 *   run again.
1346 		 */
1347 	} while (!posix_cpu_timers_enable_work(tsk, start));
1348 
1349 	/*
1350 	 * We must release sighand lock before taking any timer's lock.
1351 	 * There is a potential race with timer deletion here, as the
1352 	 * siglock now protects our private firing list.  We have set
1353 	 * the firing flag in each timer, so that a deletion attempt
1354 	 * that gets the timer lock before we do will give it up and
1355 	 * spin until we've taken care of that timer below.
1356 	 */
1357 	unlock_task_sighand(tsk, &flags);
1358 
1359 	/*
1360 	 * Now that all the timers on our list have the firing flag,
1361 	 * no one will touch their list entries but us.  We'll take
1362 	 * each timer's lock before clearing its firing flag, so no
1363 	 * timer call will interfere.
1364 	 */
1365 	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1366 		int cpu_firing;
1367 
1368 		/*
1369 		 * spin_lock() is sufficient here even independent of the
1370 		 * expiry context. If expiry happens in hard interrupt
1371 		 * context it's obvious. For task work context it's safe
1372 		 * because all other operations on timer::it_lock happen in
1373 		 * task context (syscall or exit).
1374 		 */
1375 		spin_lock(&timer->it_lock);
1376 		list_del_init(&timer->it.cpu.elist);
1377 		cpu_firing = timer->it.cpu.firing;
1378 		timer->it.cpu.firing = 0;
1379 		/*
1380 		 * The firing flag is -1 if we collided with a reset
1381 		 * of the timer, which already reported this
1382 		 * almost-firing as an overrun.  So don't generate an event.
1383 		 */
1384 		if (likely(cpu_firing >= 0))
1385 			cpu_timer_fire(timer);
1386 		/* See posix_cpu_timer_wait_running() */
1387 		rcu_assign_pointer(timer->it.cpu.handling, NULL);
1388 		spin_unlock(&timer->it_lock);
1389 	}
1390 }
1391 
1392 /*
1393  * This is called from the timer interrupt handler.  The irq handler has
1394  * already updated our counts.  We need to check if any timers fire now.
1395  * Interrupts are disabled.
1396  */
1397 void run_posix_cpu_timers(void)
1398 {
1399 	struct task_struct *tsk = current;
1400 
1401 	lockdep_assert_irqs_disabled();
1402 
1403 	/*
1404 	 * If the actual expiry is deferred to task work context and the
1405 	 * work is already scheduled there is no point to do anything here.
1406 	 */
1407 	if (posix_cpu_timers_work_scheduled(tsk))
1408 		return;
1409 
1410 	/*
1411 	 * The fast path checks that there are no expired thread or thread
1412 	 * group timers.  If that's so, just return.
1413 	 */
1414 	if (!fastpath_timer_check(tsk))
1415 		return;
1416 
1417 	__run_posix_cpu_timers(tsk);
1418 }
1419 
1420 /*
1421  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1422  * The tsk->sighand->siglock must be held by the caller.
1423  */
1424 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1425 			   u64 *newval, u64 *oldval)
1426 {
1427 	u64 now, *nextevt;
1428 
1429 	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1430 		return;
1431 
1432 	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1433 	now = cpu_clock_sample_group(clkid, tsk, true);
1434 
1435 	if (oldval) {
1436 		/*
1437 		 * We are setting itimer. The *oldval is absolute and we update
1438 		 * it to be relative, *newval argument is relative and we update
1439 		 * it to be absolute.
1440 		 */
1441 		if (*oldval) {
1442 			if (*oldval <= now) {
1443 				/* Just about to fire. */
1444 				*oldval = TICK_NSEC;
1445 			} else {
1446 				*oldval -= now;
1447 			}
1448 		}
1449 
1450 		if (*newval)
1451 			*newval += now;
1452 	}
1453 
1454 	/*
1455 	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1456 	 * expiry cache is also used by RLIMIT_CPU!.
1457 	 */
1458 	if (*newval < *nextevt)
1459 		*nextevt = *newval;
1460 
1461 	tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
1462 }
1463 
1464 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1465 			    const struct timespec64 *rqtp)
1466 {
1467 	struct itimerspec64 it;
1468 	struct k_itimer timer;
1469 	u64 expires;
1470 	int error;
1471 
1472 	/*
1473 	 * Set up a temporary timer and then wait for it to go off.
1474 	 */
1475 	memset(&timer, 0, sizeof timer);
1476 	spin_lock_init(&timer.it_lock);
1477 	timer.it_clock = which_clock;
1478 	timer.it_overrun = -1;
1479 	error = posix_cpu_timer_create(&timer);
1480 	timer.it_process = current;
1481 
1482 	if (!error) {
1483 		static struct itimerspec64 zero_it;
1484 		struct restart_block *restart;
1485 
1486 		memset(&it, 0, sizeof(it));
1487 		it.it_value = *rqtp;
1488 
1489 		spin_lock_irq(&timer.it_lock);
1490 		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1491 		if (error) {
1492 			spin_unlock_irq(&timer.it_lock);
1493 			return error;
1494 		}
1495 
1496 		while (!signal_pending(current)) {
1497 			if (!cpu_timer_getexpires(&timer.it.cpu)) {
1498 				/*
1499 				 * Our timer fired and was reset, below
1500 				 * deletion can not fail.
1501 				 */
1502 				posix_cpu_timer_del(&timer);
1503 				spin_unlock_irq(&timer.it_lock);
1504 				return 0;
1505 			}
1506 
1507 			/*
1508 			 * Block until cpu_timer_fire (or a signal) wakes us.
1509 			 */
1510 			__set_current_state(TASK_INTERRUPTIBLE);
1511 			spin_unlock_irq(&timer.it_lock);
1512 			schedule();
1513 			spin_lock_irq(&timer.it_lock);
1514 		}
1515 
1516 		/*
1517 		 * We were interrupted by a signal.
1518 		 */
1519 		expires = cpu_timer_getexpires(&timer.it.cpu);
1520 		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1521 		if (!error) {
1522 			/* Timer is now unarmed, deletion can not fail. */
1523 			posix_cpu_timer_del(&timer);
1524 		} else {
1525 			while (error == TIMER_RETRY) {
1526 				posix_cpu_timer_wait_running_nsleep(&timer);
1527 				error = posix_cpu_timer_del(&timer);
1528 			}
1529 		}
1530 
1531 		spin_unlock_irq(&timer.it_lock);
1532 
1533 		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1534 			/*
1535 			 * It actually did fire already.
1536 			 */
1537 			return 0;
1538 		}
1539 
1540 		error = -ERESTART_RESTARTBLOCK;
1541 		/*
1542 		 * Report back to the user the time still remaining.
1543 		 */
1544 		restart = &current->restart_block;
1545 		restart->nanosleep.expires = expires;
1546 		if (restart->nanosleep.type != TT_NONE)
1547 			error = nanosleep_copyout(restart, &it.it_value);
1548 	}
1549 
1550 	return error;
1551 }
1552 
1553 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1554 
1555 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1556 			    const struct timespec64 *rqtp)
1557 {
1558 	struct restart_block *restart_block = &current->restart_block;
1559 	int error;
1560 
1561 	/*
1562 	 * Diagnose required errors first.
1563 	 */
1564 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1565 	    (CPUCLOCK_PID(which_clock) == 0 ||
1566 	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1567 		return -EINVAL;
1568 
1569 	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1570 
1571 	if (error == -ERESTART_RESTARTBLOCK) {
1572 
1573 		if (flags & TIMER_ABSTIME)
1574 			return -ERESTARTNOHAND;
1575 
1576 		restart_block->nanosleep.clockid = which_clock;
1577 		set_restart_fn(restart_block, posix_cpu_nsleep_restart);
1578 	}
1579 	return error;
1580 }
1581 
1582 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1583 {
1584 	clockid_t which_clock = restart_block->nanosleep.clockid;
1585 	struct timespec64 t;
1586 
1587 	t = ns_to_timespec64(restart_block->nanosleep.expires);
1588 
1589 	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1590 }
1591 
1592 #define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
1593 #define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
1594 
1595 static int process_cpu_clock_getres(const clockid_t which_clock,
1596 				    struct timespec64 *tp)
1597 {
1598 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1599 }
1600 static int process_cpu_clock_get(const clockid_t which_clock,
1601 				 struct timespec64 *tp)
1602 {
1603 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1604 }
1605 static int process_cpu_timer_create(struct k_itimer *timer)
1606 {
1607 	timer->it_clock = PROCESS_CLOCK;
1608 	return posix_cpu_timer_create(timer);
1609 }
1610 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1611 			      const struct timespec64 *rqtp)
1612 {
1613 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1614 }
1615 static int thread_cpu_clock_getres(const clockid_t which_clock,
1616 				   struct timespec64 *tp)
1617 {
1618 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1619 }
1620 static int thread_cpu_clock_get(const clockid_t which_clock,
1621 				struct timespec64 *tp)
1622 {
1623 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1624 }
1625 static int thread_cpu_timer_create(struct k_itimer *timer)
1626 {
1627 	timer->it_clock = THREAD_CLOCK;
1628 	return posix_cpu_timer_create(timer);
1629 }
1630 
1631 const struct k_clock clock_posix_cpu = {
1632 	.clock_getres		= posix_cpu_clock_getres,
1633 	.clock_set		= posix_cpu_clock_set,
1634 	.clock_get_timespec	= posix_cpu_clock_get,
1635 	.timer_create		= posix_cpu_timer_create,
1636 	.nsleep			= posix_cpu_nsleep,
1637 	.timer_set		= posix_cpu_timer_set,
1638 	.timer_del		= posix_cpu_timer_del,
1639 	.timer_get		= posix_cpu_timer_get,
1640 	.timer_rearm		= posix_cpu_timer_rearm,
1641 	.timer_wait_running	= posix_cpu_timer_wait_running,
1642 };
1643 
1644 const struct k_clock clock_process = {
1645 	.clock_getres		= process_cpu_clock_getres,
1646 	.clock_get_timespec	= process_cpu_clock_get,
1647 	.timer_create		= process_cpu_timer_create,
1648 	.nsleep			= process_cpu_nsleep,
1649 };
1650 
1651 const struct k_clock clock_thread = {
1652 	.clock_getres		= thread_cpu_clock_getres,
1653 	.clock_get_timespec	= thread_cpu_clock_get,
1654 	.timer_create		= thread_cpu_timer_create,
1655 };
1656