1 /* 2 * Implement CPU time clocks for the POSIX clock interface. 3 */ 4 5 #include <linux/sched.h> 6 #include <linux/posix-timers.h> 7 #include <linux/errno.h> 8 #include <linux/math64.h> 9 #include <asm/uaccess.h> 10 #include <linux/kernel_stat.h> 11 #include <trace/events/timer.h> 12 #include <linux/random.h> 13 #include <linux/tick.h> 14 #include <linux/workqueue.h> 15 16 /* 17 * Called after updating RLIMIT_CPU to run cpu timer and update 18 * tsk->signal->cputime_expires expiration cache if necessary. Needs 19 * siglock protection since other code may update expiration cache as 20 * well. 21 */ 22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 23 { 24 cputime_t cputime = secs_to_cputime(rlim_new); 25 26 spin_lock_irq(&task->sighand->siglock); 27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); 28 spin_unlock_irq(&task->sighand->siglock); 29 } 30 31 static int check_clock(const clockid_t which_clock) 32 { 33 int error = 0; 34 struct task_struct *p; 35 const pid_t pid = CPUCLOCK_PID(which_clock); 36 37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 38 return -EINVAL; 39 40 if (pid == 0) 41 return 0; 42 43 rcu_read_lock(); 44 p = find_task_by_vpid(pid); 45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 46 same_thread_group(p, current) : has_group_leader_pid(p))) { 47 error = -EINVAL; 48 } 49 rcu_read_unlock(); 50 51 return error; 52 } 53 54 static inline unsigned long long 55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) 56 { 57 unsigned long long ret; 58 59 ret = 0; /* high half always zero when .cpu used */ 60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; 62 } else { 63 ret = cputime_to_expires(timespec_to_cputime(tp)); 64 } 65 return ret; 66 } 67 68 static void sample_to_timespec(const clockid_t which_clock, 69 unsigned long long expires, 70 struct timespec *tp) 71 { 72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) 73 *tp = ns_to_timespec(expires); 74 else 75 cputime_to_timespec((__force cputime_t)expires, tp); 76 } 77 78 /* 79 * Update expiry time from increment, and increase overrun count, 80 * given the current clock sample. 81 */ 82 static void bump_cpu_timer(struct k_itimer *timer, 83 unsigned long long now) 84 { 85 int i; 86 unsigned long long delta, incr; 87 88 if (timer->it.cpu.incr == 0) 89 return; 90 91 if (now < timer->it.cpu.expires) 92 return; 93 94 incr = timer->it.cpu.incr; 95 delta = now + incr - timer->it.cpu.expires; 96 97 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 98 for (i = 0; incr < delta - incr; i++) 99 incr = incr << 1; 100 101 for (; i >= 0; incr >>= 1, i--) { 102 if (delta < incr) 103 continue; 104 105 timer->it.cpu.expires += incr; 106 timer->it_overrun += 1 << i; 107 delta -= incr; 108 } 109 } 110 111 /** 112 * task_cputime_zero - Check a task_cputime struct for all zero fields. 113 * 114 * @cputime: The struct to compare. 115 * 116 * Checks @cputime to see if all fields are zero. Returns true if all fields 117 * are zero, false if any field is nonzero. 118 */ 119 static inline int task_cputime_zero(const struct task_cputime *cputime) 120 { 121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 122 return 1; 123 return 0; 124 } 125 126 static inline unsigned long long prof_ticks(struct task_struct *p) 127 { 128 cputime_t utime, stime; 129 130 task_cputime(p, &utime, &stime); 131 132 return cputime_to_expires(utime + stime); 133 } 134 static inline unsigned long long virt_ticks(struct task_struct *p) 135 { 136 cputime_t utime; 137 138 task_cputime(p, &utime, NULL); 139 140 return cputime_to_expires(utime); 141 } 142 143 static int 144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) 145 { 146 int error = check_clock(which_clock); 147 if (!error) { 148 tp->tv_sec = 0; 149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 151 /* 152 * If sched_clock is using a cycle counter, we 153 * don't have any idea of its true resolution 154 * exported, but it is much more than 1s/HZ. 155 */ 156 tp->tv_nsec = 1; 157 } 158 } 159 return error; 160 } 161 162 static int 163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) 164 { 165 /* 166 * You can never reset a CPU clock, but we check for other errors 167 * in the call before failing with EPERM. 168 */ 169 int error = check_clock(which_clock); 170 if (error == 0) { 171 error = -EPERM; 172 } 173 return error; 174 } 175 176 177 /* 178 * Sample a per-thread clock for the given task. 179 */ 180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, 181 unsigned long long *sample) 182 { 183 switch (CPUCLOCK_WHICH(which_clock)) { 184 default: 185 return -EINVAL; 186 case CPUCLOCK_PROF: 187 *sample = prof_ticks(p); 188 break; 189 case CPUCLOCK_VIRT: 190 *sample = virt_ticks(p); 191 break; 192 case CPUCLOCK_SCHED: 193 *sample = task_sched_runtime(p); 194 break; 195 } 196 return 0; 197 } 198 199 /* 200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 201 * to avoid race conditions with concurrent updates to cputime. 202 */ 203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 204 { 205 u64 curr_cputime; 206 retry: 207 curr_cputime = atomic64_read(cputime); 208 if (sum_cputime > curr_cputime) { 209 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 210 goto retry; 211 } 212 } 213 214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 215 { 216 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 217 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 218 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 219 } 220 221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 222 static inline void sample_cputime_atomic(struct task_cputime *times, 223 struct task_cputime_atomic *atomic_times) 224 { 225 times->utime = atomic64_read(&atomic_times->utime); 226 times->stime = atomic64_read(&atomic_times->stime); 227 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 228 } 229 230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 231 { 232 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 233 struct task_cputime sum; 234 235 /* Check if cputimer isn't running. This is accessed without locking. */ 236 if (!READ_ONCE(cputimer->running)) { 237 /* 238 * The POSIX timer interface allows for absolute time expiry 239 * values through the TIMER_ABSTIME flag, therefore we have 240 * to synchronize the timer to the clock every time we start it. 241 */ 242 thread_group_cputime(tsk, &sum); 243 update_gt_cputime(&cputimer->cputime_atomic, &sum); 244 245 /* 246 * We're setting cputimer->running without a lock. Ensure 247 * this only gets written to in one operation. We set 248 * running after update_gt_cputime() as a small optimization, 249 * but barriers are not required because update_gt_cputime() 250 * can handle concurrent updates. 251 */ 252 WRITE_ONCE(cputimer->running, true); 253 } 254 sample_cputime_atomic(times, &cputimer->cputime_atomic); 255 } 256 257 /* 258 * Sample a process (thread group) clock for the given group_leader task. 259 * Must be called with task sighand lock held for safe while_each_thread() 260 * traversal. 261 */ 262 static int cpu_clock_sample_group(const clockid_t which_clock, 263 struct task_struct *p, 264 unsigned long long *sample) 265 { 266 struct task_cputime cputime; 267 268 switch (CPUCLOCK_WHICH(which_clock)) { 269 default: 270 return -EINVAL; 271 case CPUCLOCK_PROF: 272 thread_group_cputime(p, &cputime); 273 *sample = cputime_to_expires(cputime.utime + cputime.stime); 274 break; 275 case CPUCLOCK_VIRT: 276 thread_group_cputime(p, &cputime); 277 *sample = cputime_to_expires(cputime.utime); 278 break; 279 case CPUCLOCK_SCHED: 280 thread_group_cputime(p, &cputime); 281 *sample = cputime.sum_exec_runtime; 282 break; 283 } 284 return 0; 285 } 286 287 static int posix_cpu_clock_get_task(struct task_struct *tsk, 288 const clockid_t which_clock, 289 struct timespec *tp) 290 { 291 int err = -EINVAL; 292 unsigned long long rtn; 293 294 if (CPUCLOCK_PERTHREAD(which_clock)) { 295 if (same_thread_group(tsk, current)) 296 err = cpu_clock_sample(which_clock, tsk, &rtn); 297 } else { 298 if (tsk == current || thread_group_leader(tsk)) 299 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 300 } 301 302 if (!err) 303 sample_to_timespec(which_clock, rtn, tp); 304 305 return err; 306 } 307 308 309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) 310 { 311 const pid_t pid = CPUCLOCK_PID(which_clock); 312 int err = -EINVAL; 313 314 if (pid == 0) { 315 /* 316 * Special case constant value for our own clocks. 317 * We don't have to do any lookup to find ourselves. 318 */ 319 err = posix_cpu_clock_get_task(current, which_clock, tp); 320 } else { 321 /* 322 * Find the given PID, and validate that the caller 323 * should be able to see it. 324 */ 325 struct task_struct *p; 326 rcu_read_lock(); 327 p = find_task_by_vpid(pid); 328 if (p) 329 err = posix_cpu_clock_get_task(p, which_clock, tp); 330 rcu_read_unlock(); 331 } 332 333 return err; 334 } 335 336 337 /* 338 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 339 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 340 * new timer already all-zeros initialized. 341 */ 342 static int posix_cpu_timer_create(struct k_itimer *new_timer) 343 { 344 int ret = 0; 345 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 346 struct task_struct *p; 347 348 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 349 return -EINVAL; 350 351 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 352 353 rcu_read_lock(); 354 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 355 if (pid == 0) { 356 p = current; 357 } else { 358 p = find_task_by_vpid(pid); 359 if (p && !same_thread_group(p, current)) 360 p = NULL; 361 } 362 } else { 363 if (pid == 0) { 364 p = current->group_leader; 365 } else { 366 p = find_task_by_vpid(pid); 367 if (p && !has_group_leader_pid(p)) 368 p = NULL; 369 } 370 } 371 new_timer->it.cpu.task = p; 372 if (p) { 373 get_task_struct(p); 374 } else { 375 ret = -EINVAL; 376 } 377 rcu_read_unlock(); 378 379 return ret; 380 } 381 382 /* 383 * Clean up a CPU-clock timer that is about to be destroyed. 384 * This is called from timer deletion with the timer already locked. 385 * If we return TIMER_RETRY, it's necessary to release the timer's lock 386 * and try again. (This happens when the timer is in the middle of firing.) 387 */ 388 static int posix_cpu_timer_del(struct k_itimer *timer) 389 { 390 int ret = 0; 391 unsigned long flags; 392 struct sighand_struct *sighand; 393 struct task_struct *p = timer->it.cpu.task; 394 395 WARN_ON_ONCE(p == NULL); 396 397 /* 398 * Protect against sighand release/switch in exit/exec and process/ 399 * thread timer list entry concurrent read/writes. 400 */ 401 sighand = lock_task_sighand(p, &flags); 402 if (unlikely(sighand == NULL)) { 403 /* 404 * We raced with the reaping of the task. 405 * The deletion should have cleared us off the list. 406 */ 407 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 408 } else { 409 if (timer->it.cpu.firing) 410 ret = TIMER_RETRY; 411 else 412 list_del(&timer->it.cpu.entry); 413 414 unlock_task_sighand(p, &flags); 415 } 416 417 if (!ret) 418 put_task_struct(p); 419 420 return ret; 421 } 422 423 static void cleanup_timers_list(struct list_head *head) 424 { 425 struct cpu_timer_list *timer, *next; 426 427 list_for_each_entry_safe(timer, next, head, entry) 428 list_del_init(&timer->entry); 429 } 430 431 /* 432 * Clean out CPU timers still ticking when a thread exited. The task 433 * pointer is cleared, and the expiry time is replaced with the residual 434 * time for later timer_gettime calls to return. 435 * This must be called with the siglock held. 436 */ 437 static void cleanup_timers(struct list_head *head) 438 { 439 cleanup_timers_list(head); 440 cleanup_timers_list(++head); 441 cleanup_timers_list(++head); 442 } 443 444 /* 445 * These are both called with the siglock held, when the current thread 446 * is being reaped. When the final (leader) thread in the group is reaped, 447 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 448 */ 449 void posix_cpu_timers_exit(struct task_struct *tsk) 450 { 451 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 452 sizeof(unsigned long long)); 453 cleanup_timers(tsk->cpu_timers); 454 455 } 456 void posix_cpu_timers_exit_group(struct task_struct *tsk) 457 { 458 cleanup_timers(tsk->signal->cpu_timers); 459 } 460 461 static inline int expires_gt(cputime_t expires, cputime_t new_exp) 462 { 463 return expires == 0 || expires > new_exp; 464 } 465 466 /* 467 * Insert the timer on the appropriate list before any timers that 468 * expire later. This must be called with the sighand lock held. 469 */ 470 static void arm_timer(struct k_itimer *timer) 471 { 472 struct task_struct *p = timer->it.cpu.task; 473 struct list_head *head, *listpos; 474 struct task_cputime *cputime_expires; 475 struct cpu_timer_list *const nt = &timer->it.cpu; 476 struct cpu_timer_list *next; 477 478 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 479 head = p->cpu_timers; 480 cputime_expires = &p->cputime_expires; 481 } else { 482 head = p->signal->cpu_timers; 483 cputime_expires = &p->signal->cputime_expires; 484 } 485 head += CPUCLOCK_WHICH(timer->it_clock); 486 487 listpos = head; 488 list_for_each_entry(next, head, entry) { 489 if (nt->expires < next->expires) 490 break; 491 listpos = &next->entry; 492 } 493 list_add(&nt->entry, listpos); 494 495 if (listpos == head) { 496 unsigned long long exp = nt->expires; 497 498 /* 499 * We are the new earliest-expiring POSIX 1.b timer, hence 500 * need to update expiration cache. Take into account that 501 * for process timers we share expiration cache with itimers 502 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 503 */ 504 505 switch (CPUCLOCK_WHICH(timer->it_clock)) { 506 case CPUCLOCK_PROF: 507 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp))) 508 cputime_expires->prof_exp = expires_to_cputime(exp); 509 break; 510 case CPUCLOCK_VIRT: 511 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp))) 512 cputime_expires->virt_exp = expires_to_cputime(exp); 513 break; 514 case CPUCLOCK_SCHED: 515 if (cputime_expires->sched_exp == 0 || 516 cputime_expires->sched_exp > exp) 517 cputime_expires->sched_exp = exp; 518 break; 519 } 520 } 521 } 522 523 /* 524 * The timer is locked, fire it and arrange for its reload. 525 */ 526 static void cpu_timer_fire(struct k_itimer *timer) 527 { 528 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 529 /* 530 * User don't want any signal. 531 */ 532 timer->it.cpu.expires = 0; 533 } else if (unlikely(timer->sigq == NULL)) { 534 /* 535 * This a special case for clock_nanosleep, 536 * not a normal timer from sys_timer_create. 537 */ 538 wake_up_process(timer->it_process); 539 timer->it.cpu.expires = 0; 540 } else if (timer->it.cpu.incr == 0) { 541 /* 542 * One-shot timer. Clear it as soon as it's fired. 543 */ 544 posix_timer_event(timer, 0); 545 timer->it.cpu.expires = 0; 546 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 547 /* 548 * The signal did not get queued because the signal 549 * was ignored, so we won't get any callback to 550 * reload the timer. But we need to keep it 551 * ticking in case the signal is deliverable next time. 552 */ 553 posix_cpu_timer_schedule(timer); 554 } 555 } 556 557 /* 558 * Sample a process (thread group) timer for the given group_leader task. 559 * Must be called with task sighand lock held for safe while_each_thread() 560 * traversal. 561 */ 562 static int cpu_timer_sample_group(const clockid_t which_clock, 563 struct task_struct *p, 564 unsigned long long *sample) 565 { 566 struct task_cputime cputime; 567 568 thread_group_cputimer(p, &cputime); 569 switch (CPUCLOCK_WHICH(which_clock)) { 570 default: 571 return -EINVAL; 572 case CPUCLOCK_PROF: 573 *sample = cputime_to_expires(cputime.utime + cputime.stime); 574 break; 575 case CPUCLOCK_VIRT: 576 *sample = cputime_to_expires(cputime.utime); 577 break; 578 case CPUCLOCK_SCHED: 579 *sample = cputime.sum_exec_runtime; 580 break; 581 } 582 return 0; 583 } 584 585 #ifdef CONFIG_NO_HZ_FULL 586 static void nohz_kick_work_fn(struct work_struct *work) 587 { 588 tick_nohz_full_kick_all(); 589 } 590 591 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn); 592 593 /* 594 * We need the IPIs to be sent from sane process context. 595 * The posix cpu timers are always set with irqs disabled. 596 */ 597 static void posix_cpu_timer_kick_nohz(void) 598 { 599 if (context_tracking_is_enabled()) 600 schedule_work(&nohz_kick_work); 601 } 602 603 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk) 604 { 605 if (!task_cputime_zero(&tsk->cputime_expires)) 606 return false; 607 608 /* Check if cputimer is running. This is accessed without locking. */ 609 if (READ_ONCE(tsk->signal->cputimer.running)) 610 return false; 611 612 return true; 613 } 614 #else 615 static inline void posix_cpu_timer_kick_nohz(void) { } 616 #endif 617 618 /* 619 * Guts of sys_timer_settime for CPU timers. 620 * This is called with the timer locked and interrupts disabled. 621 * If we return TIMER_RETRY, it's necessary to release the timer's lock 622 * and try again. (This happens when the timer is in the middle of firing.) 623 */ 624 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 625 struct itimerspec *new, struct itimerspec *old) 626 { 627 unsigned long flags; 628 struct sighand_struct *sighand; 629 struct task_struct *p = timer->it.cpu.task; 630 unsigned long long old_expires, new_expires, old_incr, val; 631 int ret; 632 633 WARN_ON_ONCE(p == NULL); 634 635 new_expires = timespec_to_sample(timer->it_clock, &new->it_value); 636 637 /* 638 * Protect against sighand release/switch in exit/exec and p->cpu_timers 639 * and p->signal->cpu_timers read/write in arm_timer() 640 */ 641 sighand = lock_task_sighand(p, &flags); 642 /* 643 * If p has just been reaped, we can no 644 * longer get any information about it at all. 645 */ 646 if (unlikely(sighand == NULL)) { 647 return -ESRCH; 648 } 649 650 /* 651 * Disarm any old timer after extracting its expiry time. 652 */ 653 WARN_ON_ONCE(!irqs_disabled()); 654 655 ret = 0; 656 old_incr = timer->it.cpu.incr; 657 old_expires = timer->it.cpu.expires; 658 if (unlikely(timer->it.cpu.firing)) { 659 timer->it.cpu.firing = -1; 660 ret = TIMER_RETRY; 661 } else 662 list_del_init(&timer->it.cpu.entry); 663 664 /* 665 * We need to sample the current value to convert the new 666 * value from to relative and absolute, and to convert the 667 * old value from absolute to relative. To set a process 668 * timer, we need a sample to balance the thread expiry 669 * times (in arm_timer). With an absolute time, we must 670 * check if it's already passed. In short, we need a sample. 671 */ 672 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 673 cpu_clock_sample(timer->it_clock, p, &val); 674 } else { 675 cpu_timer_sample_group(timer->it_clock, p, &val); 676 } 677 678 if (old) { 679 if (old_expires == 0) { 680 old->it_value.tv_sec = 0; 681 old->it_value.tv_nsec = 0; 682 } else { 683 /* 684 * Update the timer in case it has 685 * overrun already. If it has, 686 * we'll report it as having overrun 687 * and with the next reloaded timer 688 * already ticking, though we are 689 * swallowing that pending 690 * notification here to install the 691 * new setting. 692 */ 693 bump_cpu_timer(timer, val); 694 if (val < timer->it.cpu.expires) { 695 old_expires = timer->it.cpu.expires - val; 696 sample_to_timespec(timer->it_clock, 697 old_expires, 698 &old->it_value); 699 } else { 700 old->it_value.tv_nsec = 1; 701 old->it_value.tv_sec = 0; 702 } 703 } 704 } 705 706 if (unlikely(ret)) { 707 /* 708 * We are colliding with the timer actually firing. 709 * Punt after filling in the timer's old value, and 710 * disable this firing since we are already reporting 711 * it as an overrun (thanks to bump_cpu_timer above). 712 */ 713 unlock_task_sighand(p, &flags); 714 goto out; 715 } 716 717 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 718 new_expires += val; 719 } 720 721 /* 722 * Install the new expiry time (or zero). 723 * For a timer with no notification action, we don't actually 724 * arm the timer (we'll just fake it for timer_gettime). 725 */ 726 timer->it.cpu.expires = new_expires; 727 if (new_expires != 0 && val < new_expires) { 728 arm_timer(timer); 729 } 730 731 unlock_task_sighand(p, &flags); 732 /* 733 * Install the new reload setting, and 734 * set up the signal and overrun bookkeeping. 735 */ 736 timer->it.cpu.incr = timespec_to_sample(timer->it_clock, 737 &new->it_interval); 738 739 /* 740 * This acts as a modification timestamp for the timer, 741 * so any automatic reload attempt will punt on seeing 742 * that we have reset the timer manually. 743 */ 744 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 745 ~REQUEUE_PENDING; 746 timer->it_overrun_last = 0; 747 timer->it_overrun = -1; 748 749 if (new_expires != 0 && !(val < new_expires)) { 750 /* 751 * The designated time already passed, so we notify 752 * immediately, even if the thread never runs to 753 * accumulate more time on this clock. 754 */ 755 cpu_timer_fire(timer); 756 } 757 758 ret = 0; 759 out: 760 if (old) { 761 sample_to_timespec(timer->it_clock, 762 old_incr, &old->it_interval); 763 } 764 if (!ret) 765 posix_cpu_timer_kick_nohz(); 766 return ret; 767 } 768 769 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) 770 { 771 unsigned long long now; 772 struct task_struct *p = timer->it.cpu.task; 773 774 WARN_ON_ONCE(p == NULL); 775 776 /* 777 * Easy part: convert the reload time. 778 */ 779 sample_to_timespec(timer->it_clock, 780 timer->it.cpu.incr, &itp->it_interval); 781 782 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ 783 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; 784 return; 785 } 786 787 /* 788 * Sample the clock to take the difference with the expiry time. 789 */ 790 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 791 cpu_clock_sample(timer->it_clock, p, &now); 792 } else { 793 struct sighand_struct *sighand; 794 unsigned long flags; 795 796 /* 797 * Protect against sighand release/switch in exit/exec and 798 * also make timer sampling safe if it ends up calling 799 * thread_group_cputime(). 800 */ 801 sighand = lock_task_sighand(p, &flags); 802 if (unlikely(sighand == NULL)) { 803 /* 804 * The process has been reaped. 805 * We can't even collect a sample any more. 806 * Call the timer disarmed, nothing else to do. 807 */ 808 timer->it.cpu.expires = 0; 809 sample_to_timespec(timer->it_clock, timer->it.cpu.expires, 810 &itp->it_value); 811 } else { 812 cpu_timer_sample_group(timer->it_clock, p, &now); 813 unlock_task_sighand(p, &flags); 814 } 815 } 816 817 if (now < timer->it.cpu.expires) { 818 sample_to_timespec(timer->it_clock, 819 timer->it.cpu.expires - now, 820 &itp->it_value); 821 } else { 822 /* 823 * The timer should have expired already, but the firing 824 * hasn't taken place yet. Say it's just about to expire. 825 */ 826 itp->it_value.tv_nsec = 1; 827 itp->it_value.tv_sec = 0; 828 } 829 } 830 831 static unsigned long long 832 check_timers_list(struct list_head *timers, 833 struct list_head *firing, 834 unsigned long long curr) 835 { 836 int maxfire = 20; 837 838 while (!list_empty(timers)) { 839 struct cpu_timer_list *t; 840 841 t = list_first_entry(timers, struct cpu_timer_list, entry); 842 843 if (!--maxfire || curr < t->expires) 844 return t->expires; 845 846 t->firing = 1; 847 list_move_tail(&t->entry, firing); 848 } 849 850 return 0; 851 } 852 853 /* 854 * Check for any per-thread CPU timers that have fired and move them off 855 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 856 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 857 */ 858 static void check_thread_timers(struct task_struct *tsk, 859 struct list_head *firing) 860 { 861 struct list_head *timers = tsk->cpu_timers; 862 struct signal_struct *const sig = tsk->signal; 863 struct task_cputime *tsk_expires = &tsk->cputime_expires; 864 unsigned long long expires; 865 unsigned long soft; 866 867 /* 868 * If cputime_expires is zero, then there are no active 869 * per thread CPU timers. 870 */ 871 if (task_cputime_zero(&tsk->cputime_expires)) 872 return; 873 874 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 875 tsk_expires->prof_exp = expires_to_cputime(expires); 876 877 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 878 tsk_expires->virt_exp = expires_to_cputime(expires); 879 880 tsk_expires->sched_exp = check_timers_list(++timers, firing, 881 tsk->se.sum_exec_runtime); 882 883 /* 884 * Check for the special case thread timers. 885 */ 886 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); 887 if (soft != RLIM_INFINITY) { 888 unsigned long hard = 889 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); 890 891 if (hard != RLIM_INFINITY && 892 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 893 /* 894 * At the hard limit, we just die. 895 * No need to calculate anything else now. 896 */ 897 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 898 return; 899 } 900 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 901 /* 902 * At the soft limit, send a SIGXCPU every second. 903 */ 904 if (soft < hard) { 905 soft += USEC_PER_SEC; 906 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; 907 } 908 printk(KERN_INFO 909 "RT Watchdog Timeout: %s[%d]\n", 910 tsk->comm, task_pid_nr(tsk)); 911 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 912 } 913 } 914 } 915 916 static inline void stop_process_timers(struct signal_struct *sig) 917 { 918 struct thread_group_cputimer *cputimer = &sig->cputimer; 919 920 /* Turn off cputimer->running. This is done without locking. */ 921 WRITE_ONCE(cputimer->running, false); 922 } 923 924 static u32 onecputick; 925 926 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 927 unsigned long long *expires, 928 unsigned long long cur_time, int signo) 929 { 930 if (!it->expires) 931 return; 932 933 if (cur_time >= it->expires) { 934 if (it->incr) { 935 it->expires += it->incr; 936 it->error += it->incr_error; 937 if (it->error >= onecputick) { 938 it->expires -= cputime_one_jiffy; 939 it->error -= onecputick; 940 } 941 } else { 942 it->expires = 0; 943 } 944 945 trace_itimer_expire(signo == SIGPROF ? 946 ITIMER_PROF : ITIMER_VIRTUAL, 947 tsk->signal->leader_pid, cur_time); 948 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 949 } 950 951 if (it->expires && (!*expires || it->expires < *expires)) { 952 *expires = it->expires; 953 } 954 } 955 956 /* 957 * Check for any per-thread CPU timers that have fired and move them 958 * off the tsk->*_timers list onto the firing list. Per-thread timers 959 * have already been taken off. 960 */ 961 static void check_process_timers(struct task_struct *tsk, 962 struct list_head *firing) 963 { 964 struct signal_struct *const sig = tsk->signal; 965 unsigned long long utime, ptime, virt_expires, prof_expires; 966 unsigned long long sum_sched_runtime, sched_expires; 967 struct list_head *timers = sig->cpu_timers; 968 struct task_cputime cputime; 969 unsigned long soft; 970 971 /* 972 * If cputimer is not running, then there are no active 973 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). 974 */ 975 if (!READ_ONCE(tsk->signal->cputimer.running)) 976 return; 977 978 /* 979 * Signify that a thread is checking for process timers. 980 * Write access to this field is protected by the sighand lock. 981 */ 982 sig->cputimer.checking_timer = true; 983 984 /* 985 * Collect the current process totals. 986 */ 987 thread_group_cputimer(tsk, &cputime); 988 utime = cputime_to_expires(cputime.utime); 989 ptime = utime + cputime_to_expires(cputime.stime); 990 sum_sched_runtime = cputime.sum_exec_runtime; 991 992 prof_expires = check_timers_list(timers, firing, ptime); 993 virt_expires = check_timers_list(++timers, firing, utime); 994 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 995 996 /* 997 * Check for the special case process timers. 998 */ 999 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 1000 SIGPROF); 1001 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 1002 SIGVTALRM); 1003 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1004 if (soft != RLIM_INFINITY) { 1005 unsigned long psecs = cputime_to_secs(ptime); 1006 unsigned long hard = 1007 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); 1008 cputime_t x; 1009 if (psecs >= hard) { 1010 /* 1011 * At the hard limit, we just die. 1012 * No need to calculate anything else now. 1013 */ 1014 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 1015 return; 1016 } 1017 if (psecs >= soft) { 1018 /* 1019 * At the soft limit, send a SIGXCPU every second. 1020 */ 1021 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 1022 if (soft < hard) { 1023 soft++; 1024 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 1025 } 1026 } 1027 x = secs_to_cputime(soft); 1028 if (!prof_expires || x < prof_expires) { 1029 prof_expires = x; 1030 } 1031 } 1032 1033 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires); 1034 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires); 1035 sig->cputime_expires.sched_exp = sched_expires; 1036 if (task_cputime_zero(&sig->cputime_expires)) 1037 stop_process_timers(sig); 1038 1039 sig->cputimer.checking_timer = false; 1040 } 1041 1042 /* 1043 * This is called from the signal code (via do_schedule_next_timer) 1044 * when the last timer signal was delivered and we have to reload the timer. 1045 */ 1046 void posix_cpu_timer_schedule(struct k_itimer *timer) 1047 { 1048 struct sighand_struct *sighand; 1049 unsigned long flags; 1050 struct task_struct *p = timer->it.cpu.task; 1051 unsigned long long now; 1052 1053 WARN_ON_ONCE(p == NULL); 1054 1055 /* 1056 * Fetch the current sample and update the timer's expiry time. 1057 */ 1058 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 1059 cpu_clock_sample(timer->it_clock, p, &now); 1060 bump_cpu_timer(timer, now); 1061 if (unlikely(p->exit_state)) 1062 goto out; 1063 1064 /* Protect timer list r/w in arm_timer() */ 1065 sighand = lock_task_sighand(p, &flags); 1066 if (!sighand) 1067 goto out; 1068 } else { 1069 /* 1070 * Protect arm_timer() and timer sampling in case of call to 1071 * thread_group_cputime(). 1072 */ 1073 sighand = lock_task_sighand(p, &flags); 1074 if (unlikely(sighand == NULL)) { 1075 /* 1076 * The process has been reaped. 1077 * We can't even collect a sample any more. 1078 */ 1079 timer->it.cpu.expires = 0; 1080 goto out; 1081 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1082 unlock_task_sighand(p, &flags); 1083 /* Optimizations: if the process is dying, no need to rearm */ 1084 goto out; 1085 } 1086 cpu_timer_sample_group(timer->it_clock, p, &now); 1087 bump_cpu_timer(timer, now); 1088 /* Leave the sighand locked for the call below. */ 1089 } 1090 1091 /* 1092 * Now re-arm for the new expiry time. 1093 */ 1094 WARN_ON_ONCE(!irqs_disabled()); 1095 arm_timer(timer); 1096 unlock_task_sighand(p, &flags); 1097 1098 /* Kick full dynticks CPUs in case they need to tick on the new timer */ 1099 posix_cpu_timer_kick_nohz(); 1100 out: 1101 timer->it_overrun_last = timer->it_overrun; 1102 timer->it_overrun = -1; 1103 ++timer->it_requeue_pending; 1104 } 1105 1106 /** 1107 * task_cputime_expired - Compare two task_cputime entities. 1108 * 1109 * @sample: The task_cputime structure to be checked for expiration. 1110 * @expires: Expiration times, against which @sample will be checked. 1111 * 1112 * Checks @sample against @expires to see if any field of @sample has expired. 1113 * Returns true if any field of the former is greater than the corresponding 1114 * field of the latter if the latter field is set. Otherwise returns false. 1115 */ 1116 static inline int task_cputime_expired(const struct task_cputime *sample, 1117 const struct task_cputime *expires) 1118 { 1119 if (expires->utime && sample->utime >= expires->utime) 1120 return 1; 1121 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1122 return 1; 1123 if (expires->sum_exec_runtime != 0 && 1124 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1125 return 1; 1126 return 0; 1127 } 1128 1129 /** 1130 * fastpath_timer_check - POSIX CPU timers fast path. 1131 * 1132 * @tsk: The task (thread) being checked. 1133 * 1134 * Check the task and thread group timers. If both are zero (there are no 1135 * timers set) return false. Otherwise snapshot the task and thread group 1136 * timers and compare them with the corresponding expiration times. Return 1137 * true if a timer has expired, else return false. 1138 */ 1139 static inline int fastpath_timer_check(struct task_struct *tsk) 1140 { 1141 struct signal_struct *sig; 1142 1143 if (!task_cputime_zero(&tsk->cputime_expires)) { 1144 struct task_cputime task_sample; 1145 1146 task_cputime(tsk, &task_sample.utime, &task_sample.stime); 1147 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; 1148 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1149 return 1; 1150 } 1151 1152 sig = tsk->signal; 1153 /* 1154 * Check if thread group timers expired when the cputimer is 1155 * running and no other thread in the group is already checking 1156 * for thread group cputimers. These fields are read without the 1157 * sighand lock. However, this is fine because this is meant to 1158 * be a fastpath heuristic to determine whether we should try to 1159 * acquire the sighand lock to check/handle timers. 1160 * 1161 * In the worst case scenario, if 'running' or 'checking_timer' gets 1162 * set but the current thread doesn't see the change yet, we'll wait 1163 * until the next thread in the group gets a scheduler interrupt to 1164 * handle the timer. This isn't an issue in practice because these 1165 * types of delays with signals actually getting sent are expected. 1166 */ 1167 if (READ_ONCE(sig->cputimer.running) && 1168 !READ_ONCE(sig->cputimer.checking_timer)) { 1169 struct task_cputime group_sample; 1170 1171 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1172 1173 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1174 return 1; 1175 } 1176 1177 return 0; 1178 } 1179 1180 /* 1181 * This is called from the timer interrupt handler. The irq handler has 1182 * already updated our counts. We need to check if any timers fire now. 1183 * Interrupts are disabled. 1184 */ 1185 void run_posix_cpu_timers(struct task_struct *tsk) 1186 { 1187 LIST_HEAD(firing); 1188 struct k_itimer *timer, *next; 1189 unsigned long flags; 1190 1191 WARN_ON_ONCE(!irqs_disabled()); 1192 1193 /* 1194 * The fast path checks that there are no expired thread or thread 1195 * group timers. If that's so, just return. 1196 */ 1197 if (!fastpath_timer_check(tsk)) 1198 return; 1199 1200 if (!lock_task_sighand(tsk, &flags)) 1201 return; 1202 /* 1203 * Here we take off tsk->signal->cpu_timers[N] and 1204 * tsk->cpu_timers[N] all the timers that are firing, and 1205 * put them on the firing list. 1206 */ 1207 check_thread_timers(tsk, &firing); 1208 1209 check_process_timers(tsk, &firing); 1210 1211 /* 1212 * We must release these locks before taking any timer's lock. 1213 * There is a potential race with timer deletion here, as the 1214 * siglock now protects our private firing list. We have set 1215 * the firing flag in each timer, so that a deletion attempt 1216 * that gets the timer lock before we do will give it up and 1217 * spin until we've taken care of that timer below. 1218 */ 1219 unlock_task_sighand(tsk, &flags); 1220 1221 /* 1222 * Now that all the timers on our list have the firing flag, 1223 * no one will touch their list entries but us. We'll take 1224 * each timer's lock before clearing its firing flag, so no 1225 * timer call will interfere. 1226 */ 1227 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1228 int cpu_firing; 1229 1230 spin_lock(&timer->it_lock); 1231 list_del_init(&timer->it.cpu.entry); 1232 cpu_firing = timer->it.cpu.firing; 1233 timer->it.cpu.firing = 0; 1234 /* 1235 * The firing flag is -1 if we collided with a reset 1236 * of the timer, which already reported this 1237 * almost-firing as an overrun. So don't generate an event. 1238 */ 1239 if (likely(cpu_firing >= 0)) 1240 cpu_timer_fire(timer); 1241 spin_unlock(&timer->it_lock); 1242 } 1243 } 1244 1245 /* 1246 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1247 * The tsk->sighand->siglock must be held by the caller. 1248 */ 1249 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1250 cputime_t *newval, cputime_t *oldval) 1251 { 1252 unsigned long long now; 1253 1254 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1255 cpu_timer_sample_group(clock_idx, tsk, &now); 1256 1257 if (oldval) { 1258 /* 1259 * We are setting itimer. The *oldval is absolute and we update 1260 * it to be relative, *newval argument is relative and we update 1261 * it to be absolute. 1262 */ 1263 if (*oldval) { 1264 if (*oldval <= now) { 1265 /* Just about to fire. */ 1266 *oldval = cputime_one_jiffy; 1267 } else { 1268 *oldval -= now; 1269 } 1270 } 1271 1272 if (!*newval) 1273 goto out; 1274 *newval += now; 1275 } 1276 1277 /* 1278 * Update expiration cache if we are the earliest timer, or eventually 1279 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1280 */ 1281 switch (clock_idx) { 1282 case CPUCLOCK_PROF: 1283 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1284 tsk->signal->cputime_expires.prof_exp = *newval; 1285 break; 1286 case CPUCLOCK_VIRT: 1287 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1288 tsk->signal->cputime_expires.virt_exp = *newval; 1289 break; 1290 } 1291 out: 1292 posix_cpu_timer_kick_nohz(); 1293 } 1294 1295 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1296 struct timespec *rqtp, struct itimerspec *it) 1297 { 1298 struct k_itimer timer; 1299 int error; 1300 1301 /* 1302 * Set up a temporary timer and then wait for it to go off. 1303 */ 1304 memset(&timer, 0, sizeof timer); 1305 spin_lock_init(&timer.it_lock); 1306 timer.it_clock = which_clock; 1307 timer.it_overrun = -1; 1308 error = posix_cpu_timer_create(&timer); 1309 timer.it_process = current; 1310 if (!error) { 1311 static struct itimerspec zero_it; 1312 1313 memset(it, 0, sizeof *it); 1314 it->it_value = *rqtp; 1315 1316 spin_lock_irq(&timer.it_lock); 1317 error = posix_cpu_timer_set(&timer, flags, it, NULL); 1318 if (error) { 1319 spin_unlock_irq(&timer.it_lock); 1320 return error; 1321 } 1322 1323 while (!signal_pending(current)) { 1324 if (timer.it.cpu.expires == 0) { 1325 /* 1326 * Our timer fired and was reset, below 1327 * deletion can not fail. 1328 */ 1329 posix_cpu_timer_del(&timer); 1330 spin_unlock_irq(&timer.it_lock); 1331 return 0; 1332 } 1333 1334 /* 1335 * Block until cpu_timer_fire (or a signal) wakes us. 1336 */ 1337 __set_current_state(TASK_INTERRUPTIBLE); 1338 spin_unlock_irq(&timer.it_lock); 1339 schedule(); 1340 spin_lock_irq(&timer.it_lock); 1341 } 1342 1343 /* 1344 * We were interrupted by a signal. 1345 */ 1346 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); 1347 error = posix_cpu_timer_set(&timer, 0, &zero_it, it); 1348 if (!error) { 1349 /* 1350 * Timer is now unarmed, deletion can not fail. 1351 */ 1352 posix_cpu_timer_del(&timer); 1353 } 1354 spin_unlock_irq(&timer.it_lock); 1355 1356 while (error == TIMER_RETRY) { 1357 /* 1358 * We need to handle case when timer was or is in the 1359 * middle of firing. In other cases we already freed 1360 * resources. 1361 */ 1362 spin_lock_irq(&timer.it_lock); 1363 error = posix_cpu_timer_del(&timer); 1364 spin_unlock_irq(&timer.it_lock); 1365 } 1366 1367 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { 1368 /* 1369 * It actually did fire already. 1370 */ 1371 return 0; 1372 } 1373 1374 error = -ERESTART_RESTARTBLOCK; 1375 } 1376 1377 return error; 1378 } 1379 1380 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1381 1382 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1383 struct timespec *rqtp, struct timespec __user *rmtp) 1384 { 1385 struct restart_block *restart_block = ¤t->restart_block; 1386 struct itimerspec it; 1387 int error; 1388 1389 /* 1390 * Diagnose required errors first. 1391 */ 1392 if (CPUCLOCK_PERTHREAD(which_clock) && 1393 (CPUCLOCK_PID(which_clock) == 0 || 1394 CPUCLOCK_PID(which_clock) == current->pid)) 1395 return -EINVAL; 1396 1397 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); 1398 1399 if (error == -ERESTART_RESTARTBLOCK) { 1400 1401 if (flags & TIMER_ABSTIME) 1402 return -ERESTARTNOHAND; 1403 /* 1404 * Report back to the user the time still remaining. 1405 */ 1406 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1407 return -EFAULT; 1408 1409 restart_block->fn = posix_cpu_nsleep_restart; 1410 restart_block->nanosleep.clockid = which_clock; 1411 restart_block->nanosleep.rmtp = rmtp; 1412 restart_block->nanosleep.expires = timespec_to_ns(rqtp); 1413 } 1414 return error; 1415 } 1416 1417 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1418 { 1419 clockid_t which_clock = restart_block->nanosleep.clockid; 1420 struct timespec t; 1421 struct itimerspec it; 1422 int error; 1423 1424 t = ns_to_timespec(restart_block->nanosleep.expires); 1425 1426 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); 1427 1428 if (error == -ERESTART_RESTARTBLOCK) { 1429 struct timespec __user *rmtp = restart_block->nanosleep.rmtp; 1430 /* 1431 * Report back to the user the time still remaining. 1432 */ 1433 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1434 return -EFAULT; 1435 1436 restart_block->nanosleep.expires = timespec_to_ns(&t); 1437 } 1438 return error; 1439 1440 } 1441 1442 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1443 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1444 1445 static int process_cpu_clock_getres(const clockid_t which_clock, 1446 struct timespec *tp) 1447 { 1448 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1449 } 1450 static int process_cpu_clock_get(const clockid_t which_clock, 1451 struct timespec *tp) 1452 { 1453 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1454 } 1455 static int process_cpu_timer_create(struct k_itimer *timer) 1456 { 1457 timer->it_clock = PROCESS_CLOCK; 1458 return posix_cpu_timer_create(timer); 1459 } 1460 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1461 struct timespec *rqtp, 1462 struct timespec __user *rmtp) 1463 { 1464 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); 1465 } 1466 static long process_cpu_nsleep_restart(struct restart_block *restart_block) 1467 { 1468 return -EINVAL; 1469 } 1470 static int thread_cpu_clock_getres(const clockid_t which_clock, 1471 struct timespec *tp) 1472 { 1473 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1474 } 1475 static int thread_cpu_clock_get(const clockid_t which_clock, 1476 struct timespec *tp) 1477 { 1478 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1479 } 1480 static int thread_cpu_timer_create(struct k_itimer *timer) 1481 { 1482 timer->it_clock = THREAD_CLOCK; 1483 return posix_cpu_timer_create(timer); 1484 } 1485 1486 struct k_clock clock_posix_cpu = { 1487 .clock_getres = posix_cpu_clock_getres, 1488 .clock_set = posix_cpu_clock_set, 1489 .clock_get = posix_cpu_clock_get, 1490 .timer_create = posix_cpu_timer_create, 1491 .nsleep = posix_cpu_nsleep, 1492 .nsleep_restart = posix_cpu_nsleep_restart, 1493 .timer_set = posix_cpu_timer_set, 1494 .timer_del = posix_cpu_timer_del, 1495 .timer_get = posix_cpu_timer_get, 1496 }; 1497 1498 static __init int init_posix_cpu_timers(void) 1499 { 1500 struct k_clock process = { 1501 .clock_getres = process_cpu_clock_getres, 1502 .clock_get = process_cpu_clock_get, 1503 .timer_create = process_cpu_timer_create, 1504 .nsleep = process_cpu_nsleep, 1505 .nsleep_restart = process_cpu_nsleep_restart, 1506 }; 1507 struct k_clock thread = { 1508 .clock_getres = thread_cpu_clock_getres, 1509 .clock_get = thread_cpu_clock_get, 1510 .timer_create = thread_cpu_timer_create, 1511 }; 1512 struct timespec ts; 1513 1514 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1515 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1516 1517 cputime_to_timespec(cputime_one_jiffy, &ts); 1518 onecputick = ts.tv_nsec; 1519 WARN_ON(ts.tv_sec != 0); 1520 1521 return 0; 1522 } 1523 __initcall(init_posix_cpu_timers); 1524