xref: /linux/kernel/time/posix-cpu-timers.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implement CPU time clocks for the POSIX clock interface.
4  */
5 
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
18 
19 #include "posix-timers.h"
20 
21 static void posix_cpu_timer_rearm(struct k_itimer *timer);
22 
23 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
24 {
25 	posix_cputimers_init(pct);
26 	if (cpu_limit != RLIM_INFINITY) {
27 		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
28 		pct->timers_active = true;
29 	}
30 }
31 
32 /*
33  * Called after updating RLIMIT_CPU to run cpu timer and update
34  * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
35  * necessary. Needs siglock protection since other code may update the
36  * expiration cache as well.
37  */
38 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
39 {
40 	u64 nsecs = rlim_new * NSEC_PER_SEC;
41 
42 	spin_lock_irq(&task->sighand->siglock);
43 	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
44 	spin_unlock_irq(&task->sighand->siglock);
45 }
46 
47 /*
48  * Functions for validating access to tasks.
49  */
50 static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
51 {
52 	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
53 	const pid_t upid = CPUCLOCK_PID(clock);
54 	struct pid *pid;
55 
56 	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
57 		return NULL;
58 
59 	/*
60 	 * If the encoded PID is 0, then the timer is targeted at current
61 	 * or the process to which current belongs.
62 	 */
63 	if (upid == 0)
64 		return thread ? task_pid(current) : task_tgid(current);
65 
66 	pid = find_vpid(upid);
67 	if (!pid)
68 		return NULL;
69 
70 	if (thread) {
71 		struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
72 		return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
73 	}
74 
75 	/*
76 	 * For clock_gettime(PROCESS) allow finding the process by
77 	 * with the pid of the current task.  The code needs the tgid
78 	 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
79 	 * used to find the process.
80 	 */
81 	if (gettime && (pid == task_pid(current)))
82 		return task_tgid(current);
83 
84 	/*
85 	 * For processes require that pid identifies a process.
86 	 */
87 	return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
88 }
89 
90 static inline int validate_clock_permissions(const clockid_t clock)
91 {
92 	int ret;
93 
94 	rcu_read_lock();
95 	ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
96 	rcu_read_unlock();
97 
98 	return ret;
99 }
100 
101 static inline enum pid_type clock_pid_type(const clockid_t clock)
102 {
103 	return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
104 }
105 
106 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
107 {
108 	return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
109 }
110 
111 /*
112  * Update expiry time from increment, and increase overrun count,
113  * given the current clock sample.
114  */
115 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
116 {
117 	u64 delta, incr, expires = timer->it.cpu.node.expires;
118 	int i;
119 
120 	if (!timer->it_interval)
121 		return expires;
122 
123 	if (now < expires)
124 		return expires;
125 
126 	incr = timer->it_interval;
127 	delta = now + incr - expires;
128 
129 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
130 	for (i = 0; incr < delta - incr; i++)
131 		incr = incr << 1;
132 
133 	for (; i >= 0; incr >>= 1, i--) {
134 		if (delta < incr)
135 			continue;
136 
137 		timer->it.cpu.node.expires += incr;
138 		timer->it_overrun += 1LL << i;
139 		delta -= incr;
140 	}
141 	return timer->it.cpu.node.expires;
142 }
143 
144 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
145 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
146 {
147 	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
148 		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
149 		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
150 }
151 
152 static int
153 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
154 {
155 	int error = validate_clock_permissions(which_clock);
156 
157 	if (!error) {
158 		tp->tv_sec = 0;
159 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
160 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
161 			/*
162 			 * If sched_clock is using a cycle counter, we
163 			 * don't have any idea of its true resolution
164 			 * exported, but it is much more than 1s/HZ.
165 			 */
166 			tp->tv_nsec = 1;
167 		}
168 	}
169 	return error;
170 }
171 
172 static int
173 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
174 {
175 	int error = validate_clock_permissions(clock);
176 
177 	/*
178 	 * You can never reset a CPU clock, but we check for other errors
179 	 * in the call before failing with EPERM.
180 	 */
181 	return error ? : -EPERM;
182 }
183 
184 /*
185  * Sample a per-thread clock for the given task. clkid is validated.
186  */
187 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
188 {
189 	u64 utime, stime;
190 
191 	if (clkid == CPUCLOCK_SCHED)
192 		return task_sched_runtime(p);
193 
194 	task_cputime(p, &utime, &stime);
195 
196 	switch (clkid) {
197 	case CPUCLOCK_PROF:
198 		return utime + stime;
199 	case CPUCLOCK_VIRT:
200 		return utime;
201 	default:
202 		WARN_ON_ONCE(1);
203 	}
204 	return 0;
205 }
206 
207 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
208 {
209 	samples[CPUCLOCK_PROF] = stime + utime;
210 	samples[CPUCLOCK_VIRT] = utime;
211 	samples[CPUCLOCK_SCHED] = rtime;
212 }
213 
214 static void task_sample_cputime(struct task_struct *p, u64 *samples)
215 {
216 	u64 stime, utime;
217 
218 	task_cputime(p, &utime, &stime);
219 	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
220 }
221 
222 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
223 				       u64 *samples)
224 {
225 	u64 stime, utime, rtime;
226 
227 	utime = atomic64_read(&at->utime);
228 	stime = atomic64_read(&at->stime);
229 	rtime = atomic64_read(&at->sum_exec_runtime);
230 	store_samples(samples, stime, utime, rtime);
231 }
232 
233 /*
234  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
235  * to avoid race conditions with concurrent updates to cputime.
236  */
237 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
238 {
239 	u64 curr_cputime;
240 retry:
241 	curr_cputime = atomic64_read(cputime);
242 	if (sum_cputime > curr_cputime) {
243 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
244 			goto retry;
245 	}
246 }
247 
248 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
249 			      struct task_cputime *sum)
250 {
251 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
252 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
253 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
254 }
255 
256 /**
257  * thread_group_sample_cputime - Sample cputime for a given task
258  * @tsk:	Task for which cputime needs to be started
259  * @samples:	Storage for time samples
260  *
261  * Called from sys_getitimer() to calculate the expiry time of an active
262  * timer. That means group cputime accounting is already active. Called
263  * with task sighand lock held.
264  *
265  * Updates @times with an uptodate sample of the thread group cputimes.
266  */
267 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
268 {
269 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
270 	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
271 
272 	WARN_ON_ONCE(!pct->timers_active);
273 
274 	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
275 }
276 
277 /**
278  * thread_group_start_cputime - Start cputime and return a sample
279  * @tsk:	Task for which cputime needs to be started
280  * @samples:	Storage for time samples
281  *
282  * The thread group cputime accouting is avoided when there are no posix
283  * CPU timers armed. Before starting a timer it's required to check whether
284  * the time accounting is active. If not, a full update of the atomic
285  * accounting store needs to be done and the accounting enabled.
286  *
287  * Updates @times with an uptodate sample of the thread group cputimes.
288  */
289 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
290 {
291 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
292 	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
293 
294 	/* Check if cputimer isn't running. This is accessed without locking. */
295 	if (!READ_ONCE(pct->timers_active)) {
296 		struct task_cputime sum;
297 
298 		/*
299 		 * The POSIX timer interface allows for absolute time expiry
300 		 * values through the TIMER_ABSTIME flag, therefore we have
301 		 * to synchronize the timer to the clock every time we start it.
302 		 */
303 		thread_group_cputime(tsk, &sum);
304 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
305 
306 		/*
307 		 * We're setting timers_active without a lock. Ensure this
308 		 * only gets written to in one operation. We set it after
309 		 * update_gt_cputime() as a small optimization, but
310 		 * barriers are not required because update_gt_cputime()
311 		 * can handle concurrent updates.
312 		 */
313 		WRITE_ONCE(pct->timers_active, true);
314 	}
315 	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
316 }
317 
318 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
319 {
320 	struct task_cputime ct;
321 
322 	thread_group_cputime(tsk, &ct);
323 	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
324 }
325 
326 /*
327  * Sample a process (thread group) clock for the given task clkid. If the
328  * group's cputime accounting is already enabled, read the atomic
329  * store. Otherwise a full update is required.  clkid is already validated.
330  */
331 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
332 				  bool start)
333 {
334 	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
335 	struct posix_cputimers *pct = &p->signal->posix_cputimers;
336 	u64 samples[CPUCLOCK_MAX];
337 
338 	if (!READ_ONCE(pct->timers_active)) {
339 		if (start)
340 			thread_group_start_cputime(p, samples);
341 		else
342 			__thread_group_cputime(p, samples);
343 	} else {
344 		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
345 	}
346 
347 	return samples[clkid];
348 }
349 
350 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
351 {
352 	const clockid_t clkid = CPUCLOCK_WHICH(clock);
353 	struct task_struct *tsk;
354 	u64 t;
355 
356 	rcu_read_lock();
357 	tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
358 	if (!tsk) {
359 		rcu_read_unlock();
360 		return -EINVAL;
361 	}
362 
363 	if (CPUCLOCK_PERTHREAD(clock))
364 		t = cpu_clock_sample(clkid, tsk);
365 	else
366 		t = cpu_clock_sample_group(clkid, tsk, false);
367 	rcu_read_unlock();
368 
369 	*tp = ns_to_timespec64(t);
370 	return 0;
371 }
372 
373 /*
374  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
375  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
376  * new timer already all-zeros initialized.
377  */
378 static int posix_cpu_timer_create(struct k_itimer *new_timer)
379 {
380 	struct pid *pid;
381 
382 	rcu_read_lock();
383 	pid = pid_for_clock(new_timer->it_clock, false);
384 	if (!pid) {
385 		rcu_read_unlock();
386 		return -EINVAL;
387 	}
388 
389 	new_timer->kclock = &clock_posix_cpu;
390 	timerqueue_init(&new_timer->it.cpu.node);
391 	new_timer->it.cpu.pid = get_pid(pid);
392 	rcu_read_unlock();
393 	return 0;
394 }
395 
396 /*
397  * Clean up a CPU-clock timer that is about to be destroyed.
398  * This is called from timer deletion with the timer already locked.
399  * If we return TIMER_RETRY, it's necessary to release the timer's lock
400  * and try again.  (This happens when the timer is in the middle of firing.)
401  */
402 static int posix_cpu_timer_del(struct k_itimer *timer)
403 {
404 	struct cpu_timer *ctmr = &timer->it.cpu;
405 	struct sighand_struct *sighand;
406 	struct task_struct *p;
407 	unsigned long flags;
408 	int ret = 0;
409 
410 	rcu_read_lock();
411 	p = cpu_timer_task_rcu(timer);
412 	if (!p)
413 		goto out;
414 
415 	/*
416 	 * Protect against sighand release/switch in exit/exec and process/
417 	 * thread timer list entry concurrent read/writes.
418 	 */
419 	sighand = lock_task_sighand(p, &flags);
420 	if (unlikely(sighand == NULL)) {
421 		/*
422 		 * This raced with the reaping of the task. The exit cleanup
423 		 * should have removed this timer from the timer queue.
424 		 */
425 		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
426 	} else {
427 		if (timer->it.cpu.firing)
428 			ret = TIMER_RETRY;
429 		else
430 			cpu_timer_dequeue(ctmr);
431 
432 		unlock_task_sighand(p, &flags);
433 	}
434 
435 out:
436 	rcu_read_unlock();
437 	if (!ret)
438 		put_pid(ctmr->pid);
439 
440 	return ret;
441 }
442 
443 static void cleanup_timerqueue(struct timerqueue_head *head)
444 {
445 	struct timerqueue_node *node;
446 	struct cpu_timer *ctmr;
447 
448 	while ((node = timerqueue_getnext(head))) {
449 		timerqueue_del(head, node);
450 		ctmr = container_of(node, struct cpu_timer, node);
451 		ctmr->head = NULL;
452 	}
453 }
454 
455 /*
456  * Clean out CPU timers which are still armed when a thread exits. The
457  * timers are only removed from the list. No other updates are done. The
458  * corresponding posix timers are still accessible, but cannot be rearmed.
459  *
460  * This must be called with the siglock held.
461  */
462 static void cleanup_timers(struct posix_cputimers *pct)
463 {
464 	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
465 	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
466 	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
467 }
468 
469 /*
470  * These are both called with the siglock held, when the current thread
471  * is being reaped.  When the final (leader) thread in the group is reaped,
472  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
473  */
474 void posix_cpu_timers_exit(struct task_struct *tsk)
475 {
476 	cleanup_timers(&tsk->posix_cputimers);
477 }
478 void posix_cpu_timers_exit_group(struct task_struct *tsk)
479 {
480 	cleanup_timers(&tsk->signal->posix_cputimers);
481 }
482 
483 /*
484  * Insert the timer on the appropriate list before any timers that
485  * expire later.  This must be called with the sighand lock held.
486  */
487 static void arm_timer(struct k_itimer *timer, struct task_struct *p)
488 {
489 	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
490 	struct cpu_timer *ctmr = &timer->it.cpu;
491 	u64 newexp = cpu_timer_getexpires(ctmr);
492 	struct posix_cputimer_base *base;
493 
494 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
495 		base = p->posix_cputimers.bases + clkidx;
496 	else
497 		base = p->signal->posix_cputimers.bases + clkidx;
498 
499 	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
500 		return;
501 
502 	/*
503 	 * We are the new earliest-expiring POSIX 1.b timer, hence
504 	 * need to update expiration cache. Take into account that
505 	 * for process timers we share expiration cache with itimers
506 	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
507 	 */
508 	if (newexp < base->nextevt)
509 		base->nextevt = newexp;
510 
511 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
512 		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
513 	else
514 		tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
515 }
516 
517 /*
518  * The timer is locked, fire it and arrange for its reload.
519  */
520 static void cpu_timer_fire(struct k_itimer *timer)
521 {
522 	struct cpu_timer *ctmr = &timer->it.cpu;
523 
524 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
525 		/*
526 		 * User don't want any signal.
527 		 */
528 		cpu_timer_setexpires(ctmr, 0);
529 	} else if (unlikely(timer->sigq == NULL)) {
530 		/*
531 		 * This a special case for clock_nanosleep,
532 		 * not a normal timer from sys_timer_create.
533 		 */
534 		wake_up_process(timer->it_process);
535 		cpu_timer_setexpires(ctmr, 0);
536 	} else if (!timer->it_interval) {
537 		/*
538 		 * One-shot timer.  Clear it as soon as it's fired.
539 		 */
540 		posix_timer_event(timer, 0);
541 		cpu_timer_setexpires(ctmr, 0);
542 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
543 		/*
544 		 * The signal did not get queued because the signal
545 		 * was ignored, so we won't get any callback to
546 		 * reload the timer.  But we need to keep it
547 		 * ticking in case the signal is deliverable next time.
548 		 */
549 		posix_cpu_timer_rearm(timer);
550 		++timer->it_requeue_pending;
551 	}
552 }
553 
554 /*
555  * Guts of sys_timer_settime for CPU timers.
556  * This is called with the timer locked and interrupts disabled.
557  * If we return TIMER_RETRY, it's necessary to release the timer's lock
558  * and try again.  (This happens when the timer is in the middle of firing.)
559  */
560 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
561 			       struct itimerspec64 *new, struct itimerspec64 *old)
562 {
563 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
564 	u64 old_expires, new_expires, old_incr, val;
565 	struct cpu_timer *ctmr = &timer->it.cpu;
566 	struct sighand_struct *sighand;
567 	struct task_struct *p;
568 	unsigned long flags;
569 	int ret = 0;
570 
571 	rcu_read_lock();
572 	p = cpu_timer_task_rcu(timer);
573 	if (!p) {
574 		/*
575 		 * If p has just been reaped, we can no
576 		 * longer get any information about it at all.
577 		 */
578 		rcu_read_unlock();
579 		return -ESRCH;
580 	}
581 
582 	/*
583 	 * Use the to_ktime conversion because that clamps the maximum
584 	 * value to KTIME_MAX and avoid multiplication overflows.
585 	 */
586 	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
587 
588 	/*
589 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
590 	 * and p->signal->cpu_timers read/write in arm_timer()
591 	 */
592 	sighand = lock_task_sighand(p, &flags);
593 	/*
594 	 * If p has just been reaped, we can no
595 	 * longer get any information about it at all.
596 	 */
597 	if (unlikely(sighand == NULL)) {
598 		rcu_read_unlock();
599 		return -ESRCH;
600 	}
601 
602 	/*
603 	 * Disarm any old timer after extracting its expiry time.
604 	 */
605 	old_incr = timer->it_interval;
606 	old_expires = cpu_timer_getexpires(ctmr);
607 
608 	if (unlikely(timer->it.cpu.firing)) {
609 		timer->it.cpu.firing = -1;
610 		ret = TIMER_RETRY;
611 	} else {
612 		cpu_timer_dequeue(ctmr);
613 	}
614 
615 	/*
616 	 * We need to sample the current value to convert the new
617 	 * value from to relative and absolute, and to convert the
618 	 * old value from absolute to relative.  To set a process
619 	 * timer, we need a sample to balance the thread expiry
620 	 * times (in arm_timer).  With an absolute time, we must
621 	 * check if it's already passed.  In short, we need a sample.
622 	 */
623 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
624 		val = cpu_clock_sample(clkid, p);
625 	else
626 		val = cpu_clock_sample_group(clkid, p, true);
627 
628 	if (old) {
629 		if (old_expires == 0) {
630 			old->it_value.tv_sec = 0;
631 			old->it_value.tv_nsec = 0;
632 		} else {
633 			/*
634 			 * Update the timer in case it has overrun already.
635 			 * If it has, we'll report it as having overrun and
636 			 * with the next reloaded timer already ticking,
637 			 * though we are swallowing that pending
638 			 * notification here to install the new setting.
639 			 */
640 			u64 exp = bump_cpu_timer(timer, val);
641 
642 			if (val < exp) {
643 				old_expires = exp - val;
644 				old->it_value = ns_to_timespec64(old_expires);
645 			} else {
646 				old->it_value.tv_nsec = 1;
647 				old->it_value.tv_sec = 0;
648 			}
649 		}
650 	}
651 
652 	if (unlikely(ret)) {
653 		/*
654 		 * We are colliding with the timer actually firing.
655 		 * Punt after filling in the timer's old value, and
656 		 * disable this firing since we are already reporting
657 		 * it as an overrun (thanks to bump_cpu_timer above).
658 		 */
659 		unlock_task_sighand(p, &flags);
660 		goto out;
661 	}
662 
663 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
664 		new_expires += val;
665 	}
666 
667 	/*
668 	 * Install the new expiry time (or zero).
669 	 * For a timer with no notification action, we don't actually
670 	 * arm the timer (we'll just fake it for timer_gettime).
671 	 */
672 	cpu_timer_setexpires(ctmr, new_expires);
673 	if (new_expires != 0 && val < new_expires) {
674 		arm_timer(timer, p);
675 	}
676 
677 	unlock_task_sighand(p, &flags);
678 	/*
679 	 * Install the new reload setting, and
680 	 * set up the signal and overrun bookkeeping.
681 	 */
682 	timer->it_interval = timespec64_to_ktime(new->it_interval);
683 
684 	/*
685 	 * This acts as a modification timestamp for the timer,
686 	 * so any automatic reload attempt will punt on seeing
687 	 * that we have reset the timer manually.
688 	 */
689 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
690 		~REQUEUE_PENDING;
691 	timer->it_overrun_last = 0;
692 	timer->it_overrun = -1;
693 
694 	if (new_expires != 0 && !(val < new_expires)) {
695 		/*
696 		 * The designated time already passed, so we notify
697 		 * immediately, even if the thread never runs to
698 		 * accumulate more time on this clock.
699 		 */
700 		cpu_timer_fire(timer);
701 	}
702 
703 	ret = 0;
704  out:
705 	rcu_read_unlock();
706 	if (old)
707 		old->it_interval = ns_to_timespec64(old_incr);
708 
709 	return ret;
710 }
711 
712 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
713 {
714 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
715 	struct cpu_timer *ctmr = &timer->it.cpu;
716 	u64 now, expires = cpu_timer_getexpires(ctmr);
717 	struct task_struct *p;
718 
719 	rcu_read_lock();
720 	p = cpu_timer_task_rcu(timer);
721 	if (!p)
722 		goto out;
723 
724 	/*
725 	 * Easy part: convert the reload time.
726 	 */
727 	itp->it_interval = ktime_to_timespec64(timer->it_interval);
728 
729 	if (!expires)
730 		goto out;
731 
732 	/*
733 	 * Sample the clock to take the difference with the expiry time.
734 	 */
735 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
736 		now = cpu_clock_sample(clkid, p);
737 	else
738 		now = cpu_clock_sample_group(clkid, p, false);
739 
740 	if (now < expires) {
741 		itp->it_value = ns_to_timespec64(expires - now);
742 	} else {
743 		/*
744 		 * The timer should have expired already, but the firing
745 		 * hasn't taken place yet.  Say it's just about to expire.
746 		 */
747 		itp->it_value.tv_nsec = 1;
748 		itp->it_value.tv_sec = 0;
749 	}
750 out:
751 	rcu_read_unlock();
752 }
753 
754 #define MAX_COLLECTED	20
755 
756 static u64 collect_timerqueue(struct timerqueue_head *head,
757 			      struct list_head *firing, u64 now)
758 {
759 	struct timerqueue_node *next;
760 	int i = 0;
761 
762 	while ((next = timerqueue_getnext(head))) {
763 		struct cpu_timer *ctmr;
764 		u64 expires;
765 
766 		ctmr = container_of(next, struct cpu_timer, node);
767 		expires = cpu_timer_getexpires(ctmr);
768 		/* Limit the number of timers to expire at once */
769 		if (++i == MAX_COLLECTED || now < expires)
770 			return expires;
771 
772 		ctmr->firing = 1;
773 		cpu_timer_dequeue(ctmr);
774 		list_add_tail(&ctmr->elist, firing);
775 	}
776 
777 	return U64_MAX;
778 }
779 
780 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
781 				    struct list_head *firing)
782 {
783 	struct posix_cputimer_base *base = pct->bases;
784 	int i;
785 
786 	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
787 		base->nextevt = collect_timerqueue(&base->tqhead, firing,
788 						    samples[i]);
789 	}
790 }
791 
792 static inline void check_dl_overrun(struct task_struct *tsk)
793 {
794 	if (tsk->dl.dl_overrun) {
795 		tsk->dl.dl_overrun = 0;
796 		__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
797 	}
798 }
799 
800 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
801 {
802 	if (time < limit)
803 		return false;
804 
805 	if (print_fatal_signals) {
806 		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
807 			rt ? "RT" : "CPU", hard ? "hard" : "soft",
808 			current->comm, task_pid_nr(current));
809 	}
810 	__group_send_sig_info(signo, SEND_SIG_PRIV, current);
811 	return true;
812 }
813 
814 /*
815  * Check for any per-thread CPU timers that have fired and move them off
816  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
817  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
818  */
819 static void check_thread_timers(struct task_struct *tsk,
820 				struct list_head *firing)
821 {
822 	struct posix_cputimers *pct = &tsk->posix_cputimers;
823 	u64 samples[CPUCLOCK_MAX];
824 	unsigned long soft;
825 
826 	if (dl_task(tsk))
827 		check_dl_overrun(tsk);
828 
829 	if (expiry_cache_is_inactive(pct))
830 		return;
831 
832 	task_sample_cputime(tsk, samples);
833 	collect_posix_cputimers(pct, samples, firing);
834 
835 	/*
836 	 * Check for the special case thread timers.
837 	 */
838 	soft = task_rlimit(tsk, RLIMIT_RTTIME);
839 	if (soft != RLIM_INFINITY) {
840 		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
841 		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
842 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
843 
844 		/* At the hard limit, send SIGKILL. No further action. */
845 		if (hard != RLIM_INFINITY &&
846 		    check_rlimit(rttime, hard, SIGKILL, true, true))
847 			return;
848 
849 		/* At the soft limit, send a SIGXCPU every second */
850 		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
851 			soft += USEC_PER_SEC;
852 			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
853 		}
854 	}
855 
856 	if (expiry_cache_is_inactive(pct))
857 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
858 }
859 
860 static inline void stop_process_timers(struct signal_struct *sig)
861 {
862 	struct posix_cputimers *pct = &sig->posix_cputimers;
863 
864 	/* Turn off the active flag. This is done without locking. */
865 	WRITE_ONCE(pct->timers_active, false);
866 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
867 }
868 
869 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
870 			     u64 *expires, u64 cur_time, int signo)
871 {
872 	if (!it->expires)
873 		return;
874 
875 	if (cur_time >= it->expires) {
876 		if (it->incr)
877 			it->expires += it->incr;
878 		else
879 			it->expires = 0;
880 
881 		trace_itimer_expire(signo == SIGPROF ?
882 				    ITIMER_PROF : ITIMER_VIRTUAL,
883 				    task_tgid(tsk), cur_time);
884 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
885 	}
886 
887 	if (it->expires && it->expires < *expires)
888 		*expires = it->expires;
889 }
890 
891 /*
892  * Check for any per-thread CPU timers that have fired and move them
893  * off the tsk->*_timers list onto the firing list.  Per-thread timers
894  * have already been taken off.
895  */
896 static void check_process_timers(struct task_struct *tsk,
897 				 struct list_head *firing)
898 {
899 	struct signal_struct *const sig = tsk->signal;
900 	struct posix_cputimers *pct = &sig->posix_cputimers;
901 	u64 samples[CPUCLOCK_MAX];
902 	unsigned long soft;
903 
904 	/*
905 	 * If there are no active process wide timers (POSIX 1.b, itimers,
906 	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
907 	 * processing when there is already another task handling them.
908 	 */
909 	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
910 		return;
911 
912 	/*
913 	 * Signify that a thread is checking for process timers.
914 	 * Write access to this field is protected by the sighand lock.
915 	 */
916 	pct->expiry_active = true;
917 
918 	/*
919 	 * Collect the current process totals. Group accounting is active
920 	 * so the sample can be taken directly.
921 	 */
922 	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
923 	collect_posix_cputimers(pct, samples, firing);
924 
925 	/*
926 	 * Check for the special case process timers.
927 	 */
928 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
929 			 &pct->bases[CPUCLOCK_PROF].nextevt,
930 			 samples[CPUCLOCK_PROF], SIGPROF);
931 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
932 			 &pct->bases[CPUCLOCK_VIRT].nextevt,
933 			 samples[CPUCLOCK_VIRT], SIGVTALRM);
934 
935 	soft = task_rlimit(tsk, RLIMIT_CPU);
936 	if (soft != RLIM_INFINITY) {
937 		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
938 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
939 		u64 ptime = samples[CPUCLOCK_PROF];
940 		u64 softns = (u64)soft * NSEC_PER_SEC;
941 		u64 hardns = (u64)hard * NSEC_PER_SEC;
942 
943 		/* At the hard limit, send SIGKILL. No further action. */
944 		if (hard != RLIM_INFINITY &&
945 		    check_rlimit(ptime, hardns, SIGKILL, false, true))
946 			return;
947 
948 		/* At the soft limit, send a SIGXCPU every second */
949 		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
950 			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
951 			softns += NSEC_PER_SEC;
952 		}
953 
954 		/* Update the expiry cache */
955 		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
956 			pct->bases[CPUCLOCK_PROF].nextevt = softns;
957 	}
958 
959 	if (expiry_cache_is_inactive(pct))
960 		stop_process_timers(sig);
961 
962 	pct->expiry_active = false;
963 }
964 
965 /*
966  * This is called from the signal code (via posixtimer_rearm)
967  * when the last timer signal was delivered and we have to reload the timer.
968  */
969 static void posix_cpu_timer_rearm(struct k_itimer *timer)
970 {
971 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
972 	struct task_struct *p;
973 	struct sighand_struct *sighand;
974 	unsigned long flags;
975 	u64 now;
976 
977 	rcu_read_lock();
978 	p = cpu_timer_task_rcu(timer);
979 	if (!p)
980 		goto out;
981 
982 	/*
983 	 * Fetch the current sample and update the timer's expiry time.
984 	 */
985 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
986 		now = cpu_clock_sample(clkid, p);
987 	else
988 		now = cpu_clock_sample_group(clkid, p, true);
989 
990 	bump_cpu_timer(timer, now);
991 
992 	/* Protect timer list r/w in arm_timer() */
993 	sighand = lock_task_sighand(p, &flags);
994 	if (unlikely(sighand == NULL))
995 		goto out;
996 
997 	/*
998 	 * Now re-arm for the new expiry time.
999 	 */
1000 	arm_timer(timer, p);
1001 	unlock_task_sighand(p, &flags);
1002 out:
1003 	rcu_read_unlock();
1004 }
1005 
1006 /**
1007  * task_cputimers_expired - Check whether posix CPU timers are expired
1008  *
1009  * @samples:	Array of current samples for the CPUCLOCK clocks
1010  * @pct:	Pointer to a posix_cputimers container
1011  *
1012  * Returns true if any member of @samples is greater than the corresponding
1013  * member of @pct->bases[CLK].nextevt. False otherwise
1014  */
1015 static inline bool
1016 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1017 {
1018 	int i;
1019 
1020 	for (i = 0; i < CPUCLOCK_MAX; i++) {
1021 		if (samples[i] >= pct->bases[i].nextevt)
1022 			return true;
1023 	}
1024 	return false;
1025 }
1026 
1027 /**
1028  * fastpath_timer_check - POSIX CPU timers fast path.
1029  *
1030  * @tsk:	The task (thread) being checked.
1031  *
1032  * Check the task and thread group timers.  If both are zero (there are no
1033  * timers set) return false.  Otherwise snapshot the task and thread group
1034  * timers and compare them with the corresponding expiration times.  Return
1035  * true if a timer has expired, else return false.
1036  */
1037 static inline bool fastpath_timer_check(struct task_struct *tsk)
1038 {
1039 	struct posix_cputimers *pct = &tsk->posix_cputimers;
1040 	struct signal_struct *sig;
1041 
1042 	if (!expiry_cache_is_inactive(pct)) {
1043 		u64 samples[CPUCLOCK_MAX];
1044 
1045 		task_sample_cputime(tsk, samples);
1046 		if (task_cputimers_expired(samples, pct))
1047 			return true;
1048 	}
1049 
1050 	sig = tsk->signal;
1051 	pct = &sig->posix_cputimers;
1052 	/*
1053 	 * Check if thread group timers expired when timers are active and
1054 	 * no other thread in the group is already handling expiry for
1055 	 * thread group cputimers. These fields are read without the
1056 	 * sighand lock. However, this is fine because this is meant to be
1057 	 * a fastpath heuristic to determine whether we should try to
1058 	 * acquire the sighand lock to handle timer expiry.
1059 	 *
1060 	 * In the worst case scenario, if concurrently timers_active is set
1061 	 * or expiry_active is cleared, but the current thread doesn't see
1062 	 * the change yet, the timer checks are delayed until the next
1063 	 * thread in the group gets a scheduler interrupt to handle the
1064 	 * timer. This isn't an issue in practice because these types of
1065 	 * delays with signals actually getting sent are expected.
1066 	 */
1067 	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1068 		u64 samples[CPUCLOCK_MAX];
1069 
1070 		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1071 					   samples);
1072 
1073 		if (task_cputimers_expired(samples, pct))
1074 			return true;
1075 	}
1076 
1077 	if (dl_task(tsk) && tsk->dl.dl_overrun)
1078 		return true;
1079 
1080 	return false;
1081 }
1082 
1083 /*
1084  * This is called from the timer interrupt handler.  The irq handler has
1085  * already updated our counts.  We need to check if any timers fire now.
1086  * Interrupts are disabled.
1087  */
1088 void run_posix_cpu_timers(void)
1089 {
1090 	struct task_struct *tsk = current;
1091 	struct k_itimer *timer, *next;
1092 	unsigned long flags;
1093 	LIST_HEAD(firing);
1094 
1095 	lockdep_assert_irqs_disabled();
1096 
1097 	/*
1098 	 * The fast path checks that there are no expired thread or thread
1099 	 * group timers.  If that's so, just return.
1100 	 */
1101 	if (!fastpath_timer_check(tsk))
1102 		return;
1103 
1104 	lockdep_posixtimer_enter();
1105 	if (!lock_task_sighand(tsk, &flags)) {
1106 		lockdep_posixtimer_exit();
1107 		return;
1108 	}
1109 	/*
1110 	 * Here we take off tsk->signal->cpu_timers[N] and
1111 	 * tsk->cpu_timers[N] all the timers that are firing, and
1112 	 * put them on the firing list.
1113 	 */
1114 	check_thread_timers(tsk, &firing);
1115 
1116 	check_process_timers(tsk, &firing);
1117 
1118 	/*
1119 	 * We must release these locks before taking any timer's lock.
1120 	 * There is a potential race with timer deletion here, as the
1121 	 * siglock now protects our private firing list.  We have set
1122 	 * the firing flag in each timer, so that a deletion attempt
1123 	 * that gets the timer lock before we do will give it up and
1124 	 * spin until we've taken care of that timer below.
1125 	 */
1126 	unlock_task_sighand(tsk, &flags);
1127 
1128 	/*
1129 	 * Now that all the timers on our list have the firing flag,
1130 	 * no one will touch their list entries but us.  We'll take
1131 	 * each timer's lock before clearing its firing flag, so no
1132 	 * timer call will interfere.
1133 	 */
1134 	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1135 		int cpu_firing;
1136 
1137 		spin_lock(&timer->it_lock);
1138 		list_del_init(&timer->it.cpu.elist);
1139 		cpu_firing = timer->it.cpu.firing;
1140 		timer->it.cpu.firing = 0;
1141 		/*
1142 		 * The firing flag is -1 if we collided with a reset
1143 		 * of the timer, which already reported this
1144 		 * almost-firing as an overrun.  So don't generate an event.
1145 		 */
1146 		if (likely(cpu_firing >= 0))
1147 			cpu_timer_fire(timer);
1148 		spin_unlock(&timer->it_lock);
1149 	}
1150 	lockdep_posixtimer_exit();
1151 }
1152 
1153 /*
1154  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1155  * The tsk->sighand->siglock must be held by the caller.
1156  */
1157 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1158 			   u64 *newval, u64 *oldval)
1159 {
1160 	u64 now, *nextevt;
1161 
1162 	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1163 		return;
1164 
1165 	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1166 	now = cpu_clock_sample_group(clkid, tsk, true);
1167 
1168 	if (oldval) {
1169 		/*
1170 		 * We are setting itimer. The *oldval is absolute and we update
1171 		 * it to be relative, *newval argument is relative and we update
1172 		 * it to be absolute.
1173 		 */
1174 		if (*oldval) {
1175 			if (*oldval <= now) {
1176 				/* Just about to fire. */
1177 				*oldval = TICK_NSEC;
1178 			} else {
1179 				*oldval -= now;
1180 			}
1181 		}
1182 
1183 		if (!*newval)
1184 			return;
1185 		*newval += now;
1186 	}
1187 
1188 	/*
1189 	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1190 	 * expiry cache is also used by RLIMIT_CPU!.
1191 	 */
1192 	if (*newval < *nextevt)
1193 		*nextevt = *newval;
1194 
1195 	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1196 }
1197 
1198 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1199 			    const struct timespec64 *rqtp)
1200 {
1201 	struct itimerspec64 it;
1202 	struct k_itimer timer;
1203 	u64 expires;
1204 	int error;
1205 
1206 	/*
1207 	 * Set up a temporary timer and then wait for it to go off.
1208 	 */
1209 	memset(&timer, 0, sizeof timer);
1210 	spin_lock_init(&timer.it_lock);
1211 	timer.it_clock = which_clock;
1212 	timer.it_overrun = -1;
1213 	error = posix_cpu_timer_create(&timer);
1214 	timer.it_process = current;
1215 
1216 	if (!error) {
1217 		static struct itimerspec64 zero_it;
1218 		struct restart_block *restart;
1219 
1220 		memset(&it, 0, sizeof(it));
1221 		it.it_value = *rqtp;
1222 
1223 		spin_lock_irq(&timer.it_lock);
1224 		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1225 		if (error) {
1226 			spin_unlock_irq(&timer.it_lock);
1227 			return error;
1228 		}
1229 
1230 		while (!signal_pending(current)) {
1231 			if (!cpu_timer_getexpires(&timer.it.cpu)) {
1232 				/*
1233 				 * Our timer fired and was reset, below
1234 				 * deletion can not fail.
1235 				 */
1236 				posix_cpu_timer_del(&timer);
1237 				spin_unlock_irq(&timer.it_lock);
1238 				return 0;
1239 			}
1240 
1241 			/*
1242 			 * Block until cpu_timer_fire (or a signal) wakes us.
1243 			 */
1244 			__set_current_state(TASK_INTERRUPTIBLE);
1245 			spin_unlock_irq(&timer.it_lock);
1246 			schedule();
1247 			spin_lock_irq(&timer.it_lock);
1248 		}
1249 
1250 		/*
1251 		 * We were interrupted by a signal.
1252 		 */
1253 		expires = cpu_timer_getexpires(&timer.it.cpu);
1254 		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1255 		if (!error) {
1256 			/*
1257 			 * Timer is now unarmed, deletion can not fail.
1258 			 */
1259 			posix_cpu_timer_del(&timer);
1260 		}
1261 		spin_unlock_irq(&timer.it_lock);
1262 
1263 		while (error == TIMER_RETRY) {
1264 			/*
1265 			 * We need to handle case when timer was or is in the
1266 			 * middle of firing. In other cases we already freed
1267 			 * resources.
1268 			 */
1269 			spin_lock_irq(&timer.it_lock);
1270 			error = posix_cpu_timer_del(&timer);
1271 			spin_unlock_irq(&timer.it_lock);
1272 		}
1273 
1274 		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1275 			/*
1276 			 * It actually did fire already.
1277 			 */
1278 			return 0;
1279 		}
1280 
1281 		error = -ERESTART_RESTARTBLOCK;
1282 		/*
1283 		 * Report back to the user the time still remaining.
1284 		 */
1285 		restart = &current->restart_block;
1286 		restart->nanosleep.expires = expires;
1287 		if (restart->nanosleep.type != TT_NONE)
1288 			error = nanosleep_copyout(restart, &it.it_value);
1289 	}
1290 
1291 	return error;
1292 }
1293 
1294 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1295 
1296 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1297 			    const struct timespec64 *rqtp)
1298 {
1299 	struct restart_block *restart_block = &current->restart_block;
1300 	int error;
1301 
1302 	/*
1303 	 * Diagnose required errors first.
1304 	 */
1305 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1306 	    (CPUCLOCK_PID(which_clock) == 0 ||
1307 	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1308 		return -EINVAL;
1309 
1310 	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1311 
1312 	if (error == -ERESTART_RESTARTBLOCK) {
1313 
1314 		if (flags & TIMER_ABSTIME)
1315 			return -ERESTARTNOHAND;
1316 
1317 		restart_block->fn = posix_cpu_nsleep_restart;
1318 		restart_block->nanosleep.clockid = which_clock;
1319 	}
1320 	return error;
1321 }
1322 
1323 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1324 {
1325 	clockid_t which_clock = restart_block->nanosleep.clockid;
1326 	struct timespec64 t;
1327 
1328 	t = ns_to_timespec64(restart_block->nanosleep.expires);
1329 
1330 	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1331 }
1332 
1333 #define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
1334 #define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
1335 
1336 static int process_cpu_clock_getres(const clockid_t which_clock,
1337 				    struct timespec64 *tp)
1338 {
1339 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1340 }
1341 static int process_cpu_clock_get(const clockid_t which_clock,
1342 				 struct timespec64 *tp)
1343 {
1344 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1345 }
1346 static int process_cpu_timer_create(struct k_itimer *timer)
1347 {
1348 	timer->it_clock = PROCESS_CLOCK;
1349 	return posix_cpu_timer_create(timer);
1350 }
1351 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1352 			      const struct timespec64 *rqtp)
1353 {
1354 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1355 }
1356 static int thread_cpu_clock_getres(const clockid_t which_clock,
1357 				   struct timespec64 *tp)
1358 {
1359 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1360 }
1361 static int thread_cpu_clock_get(const clockid_t which_clock,
1362 				struct timespec64 *tp)
1363 {
1364 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1365 }
1366 static int thread_cpu_timer_create(struct k_itimer *timer)
1367 {
1368 	timer->it_clock = THREAD_CLOCK;
1369 	return posix_cpu_timer_create(timer);
1370 }
1371 
1372 const struct k_clock clock_posix_cpu = {
1373 	.clock_getres		= posix_cpu_clock_getres,
1374 	.clock_set		= posix_cpu_clock_set,
1375 	.clock_get_timespec	= posix_cpu_clock_get,
1376 	.timer_create		= posix_cpu_timer_create,
1377 	.nsleep			= posix_cpu_nsleep,
1378 	.timer_set		= posix_cpu_timer_set,
1379 	.timer_del		= posix_cpu_timer_del,
1380 	.timer_get		= posix_cpu_timer_get,
1381 	.timer_rearm		= posix_cpu_timer_rearm,
1382 };
1383 
1384 const struct k_clock clock_process = {
1385 	.clock_getres		= process_cpu_clock_getres,
1386 	.clock_get_timespec	= process_cpu_clock_get,
1387 	.timer_create		= process_cpu_timer_create,
1388 	.nsleep			= process_cpu_nsleep,
1389 };
1390 
1391 const struct k_clock clock_thread = {
1392 	.clock_getres		= thread_cpu_clock_getres,
1393 	.clock_get_timespec	= thread_cpu_clock_get,
1394 	.timer_create		= thread_cpu_timer_create,
1395 };
1396