1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement CPU time clocks for the POSIX clock interface. 4 */ 5 6 #include <linux/sched/signal.h> 7 #include <linux/sched/cputime.h> 8 #include <linux/posix-timers.h> 9 #include <linux/errno.h> 10 #include <linux/math64.h> 11 #include <linux/uaccess.h> 12 #include <linux/kernel_stat.h> 13 #include <trace/events/timer.h> 14 #include <linux/tick.h> 15 #include <linux/workqueue.h> 16 #include <linux/compat.h> 17 #include <linux/sched/deadline.h> 18 #include <linux/task_work.h> 19 20 #include "posix-timers.h" 21 22 static void posix_cpu_timer_rearm(struct k_itimer *timer); 23 24 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) 25 { 26 posix_cputimers_init(pct); 27 if (cpu_limit != RLIM_INFINITY) { 28 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC; 29 pct->timers_active = true; 30 } 31 } 32 33 /* 34 * Called after updating RLIMIT_CPU to run cpu timer and update 35 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if 36 * necessary. Needs siglock protection since other code may update the 37 * expiration cache as well. 38 * 39 * Returns 0 on success, -ESRCH on failure. Can fail if the task is exiting and 40 * we cannot lock_task_sighand. Cannot fail if task is current. 41 */ 42 int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 43 { 44 u64 nsecs = rlim_new * NSEC_PER_SEC; 45 unsigned long irq_fl; 46 47 if (!lock_task_sighand(task, &irq_fl)) 48 return -ESRCH; 49 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); 50 unlock_task_sighand(task, &irq_fl); 51 return 0; 52 } 53 54 /* 55 * Functions for validating access to tasks. 56 */ 57 static struct pid *pid_for_clock(const clockid_t clock, bool gettime) 58 { 59 const bool thread = !!CPUCLOCK_PERTHREAD(clock); 60 const pid_t upid = CPUCLOCK_PID(clock); 61 struct pid *pid; 62 63 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX) 64 return NULL; 65 66 /* 67 * If the encoded PID is 0, then the timer is targeted at current 68 * or the process to which current belongs. 69 */ 70 if (upid == 0) 71 return thread ? task_pid(current) : task_tgid(current); 72 73 pid = find_vpid(upid); 74 if (!pid) 75 return NULL; 76 77 if (thread) { 78 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID); 79 return (tsk && same_thread_group(tsk, current)) ? pid : NULL; 80 } 81 82 /* 83 * For clock_gettime(PROCESS) allow finding the process by 84 * with the pid of the current task. The code needs the tgid 85 * of the process so that pid_task(pid, PIDTYPE_TGID) can be 86 * used to find the process. 87 */ 88 if (gettime && (pid == task_pid(current))) 89 return task_tgid(current); 90 91 /* 92 * For processes require that pid identifies a process. 93 */ 94 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL; 95 } 96 97 static inline int validate_clock_permissions(const clockid_t clock) 98 { 99 int ret; 100 101 rcu_read_lock(); 102 ret = pid_for_clock(clock, false) ? 0 : -EINVAL; 103 rcu_read_unlock(); 104 105 return ret; 106 } 107 108 static inline enum pid_type clock_pid_type(const clockid_t clock) 109 { 110 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID; 111 } 112 113 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer) 114 { 115 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock)); 116 } 117 118 /* 119 * Update expiry time from increment, and increase overrun count, 120 * given the current clock sample. 121 */ 122 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now) 123 { 124 u64 delta, incr, expires = timer->it.cpu.node.expires; 125 int i; 126 127 if (!timer->it_interval) 128 return expires; 129 130 if (now < expires) 131 return expires; 132 133 incr = timer->it_interval; 134 delta = now + incr - expires; 135 136 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 137 for (i = 0; incr < delta - incr; i++) 138 incr = incr << 1; 139 140 for (; i >= 0; incr >>= 1, i--) { 141 if (delta < incr) 142 continue; 143 144 timer->it.cpu.node.expires += incr; 145 timer->it_overrun += 1LL << i; 146 delta -= incr; 147 } 148 return timer->it.cpu.node.expires; 149 } 150 151 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */ 152 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct) 153 { 154 return !(~pct->bases[CPUCLOCK_PROF].nextevt | 155 ~pct->bases[CPUCLOCK_VIRT].nextevt | 156 ~pct->bases[CPUCLOCK_SCHED].nextevt); 157 } 158 159 static int 160 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 161 { 162 int error = validate_clock_permissions(which_clock); 163 164 if (!error) { 165 tp->tv_sec = 0; 166 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 167 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 168 /* 169 * If sched_clock is using a cycle counter, we 170 * don't have any idea of its true resolution 171 * exported, but it is much more than 1s/HZ. 172 */ 173 tp->tv_nsec = 1; 174 } 175 } 176 return error; 177 } 178 179 static int 180 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp) 181 { 182 int error = validate_clock_permissions(clock); 183 184 /* 185 * You can never reset a CPU clock, but we check for other errors 186 * in the call before failing with EPERM. 187 */ 188 return error ? : -EPERM; 189 } 190 191 /* 192 * Sample a per-thread clock for the given task. clkid is validated. 193 */ 194 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p) 195 { 196 u64 utime, stime; 197 198 if (clkid == CPUCLOCK_SCHED) 199 return task_sched_runtime(p); 200 201 task_cputime(p, &utime, &stime); 202 203 switch (clkid) { 204 case CPUCLOCK_PROF: 205 return utime + stime; 206 case CPUCLOCK_VIRT: 207 return utime; 208 default: 209 WARN_ON_ONCE(1); 210 } 211 return 0; 212 } 213 214 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime) 215 { 216 samples[CPUCLOCK_PROF] = stime + utime; 217 samples[CPUCLOCK_VIRT] = utime; 218 samples[CPUCLOCK_SCHED] = rtime; 219 } 220 221 static void task_sample_cputime(struct task_struct *p, u64 *samples) 222 { 223 u64 stime, utime; 224 225 task_cputime(p, &utime, &stime); 226 store_samples(samples, stime, utime, p->se.sum_exec_runtime); 227 } 228 229 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at, 230 u64 *samples) 231 { 232 u64 stime, utime, rtime; 233 234 utime = atomic64_read(&at->utime); 235 stime = atomic64_read(&at->stime); 236 rtime = atomic64_read(&at->sum_exec_runtime); 237 store_samples(samples, stime, utime, rtime); 238 } 239 240 /* 241 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 242 * to avoid race conditions with concurrent updates to cputime. 243 */ 244 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 245 { 246 u64 curr_cputime = atomic64_read(cputime); 247 248 do { 249 if (sum_cputime <= curr_cputime) 250 return; 251 } while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime)); 252 } 253 254 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, 255 struct task_cputime *sum) 256 { 257 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 258 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 259 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 260 } 261 262 /** 263 * thread_group_sample_cputime - Sample cputime for a given task 264 * @tsk: Task for which cputime needs to be started 265 * @samples: Storage for time samples 266 * 267 * Called from sys_getitimer() to calculate the expiry time of an active 268 * timer. That means group cputime accounting is already active. Called 269 * with task sighand lock held. 270 * 271 * Updates @times with an uptodate sample of the thread group cputimes. 272 */ 273 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples) 274 { 275 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 276 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 277 278 WARN_ON_ONCE(!pct->timers_active); 279 280 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 281 } 282 283 /** 284 * thread_group_start_cputime - Start cputime and return a sample 285 * @tsk: Task for which cputime needs to be started 286 * @samples: Storage for time samples 287 * 288 * The thread group cputime accounting is avoided when there are no posix 289 * CPU timers armed. Before starting a timer it's required to check whether 290 * the time accounting is active. If not, a full update of the atomic 291 * accounting store needs to be done and the accounting enabled. 292 * 293 * Updates @times with an uptodate sample of the thread group cputimes. 294 */ 295 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples) 296 { 297 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 298 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 299 300 lockdep_assert_task_sighand_held(tsk); 301 302 /* Check if cputimer isn't running. This is accessed without locking. */ 303 if (!READ_ONCE(pct->timers_active)) { 304 struct task_cputime sum; 305 306 /* 307 * The POSIX timer interface allows for absolute time expiry 308 * values through the TIMER_ABSTIME flag, therefore we have 309 * to synchronize the timer to the clock every time we start it. 310 */ 311 thread_group_cputime(tsk, &sum); 312 update_gt_cputime(&cputimer->cputime_atomic, &sum); 313 314 /* 315 * We're setting timers_active without a lock. Ensure this 316 * only gets written to in one operation. We set it after 317 * update_gt_cputime() as a small optimization, but 318 * barriers are not required because update_gt_cputime() 319 * can handle concurrent updates. 320 */ 321 WRITE_ONCE(pct->timers_active, true); 322 } 323 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 324 } 325 326 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples) 327 { 328 struct task_cputime ct; 329 330 thread_group_cputime(tsk, &ct); 331 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime); 332 } 333 334 /* 335 * Sample a process (thread group) clock for the given task clkid. If the 336 * group's cputime accounting is already enabled, read the atomic 337 * store. Otherwise a full update is required. clkid is already validated. 338 */ 339 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p, 340 bool start) 341 { 342 struct thread_group_cputimer *cputimer = &p->signal->cputimer; 343 struct posix_cputimers *pct = &p->signal->posix_cputimers; 344 u64 samples[CPUCLOCK_MAX]; 345 346 if (!READ_ONCE(pct->timers_active)) { 347 if (start) 348 thread_group_start_cputime(p, samples); 349 else 350 __thread_group_cputime(p, samples); 351 } else { 352 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 353 } 354 355 return samples[clkid]; 356 } 357 358 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp) 359 { 360 const clockid_t clkid = CPUCLOCK_WHICH(clock); 361 struct task_struct *tsk; 362 u64 t; 363 364 rcu_read_lock(); 365 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock)); 366 if (!tsk) { 367 rcu_read_unlock(); 368 return -EINVAL; 369 } 370 371 if (CPUCLOCK_PERTHREAD(clock)) 372 t = cpu_clock_sample(clkid, tsk); 373 else 374 t = cpu_clock_sample_group(clkid, tsk, false); 375 rcu_read_unlock(); 376 377 *tp = ns_to_timespec64(t); 378 return 0; 379 } 380 381 /* 382 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 383 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 384 * new timer already all-zeros initialized. 385 */ 386 static int posix_cpu_timer_create(struct k_itimer *new_timer) 387 { 388 static struct lock_class_key posix_cpu_timers_key; 389 struct pid *pid; 390 391 rcu_read_lock(); 392 pid = pid_for_clock(new_timer->it_clock, false); 393 if (!pid) { 394 rcu_read_unlock(); 395 return -EINVAL; 396 } 397 398 /* 399 * If posix timer expiry is handled in task work context then 400 * timer::it_lock can be taken without disabling interrupts as all 401 * other locking happens in task context. This requires a separate 402 * lock class key otherwise regular posix timer expiry would record 403 * the lock class being taken in interrupt context and generate a 404 * false positive warning. 405 */ 406 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK)) 407 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key); 408 409 new_timer->kclock = &clock_posix_cpu; 410 timerqueue_init(&new_timer->it.cpu.node); 411 new_timer->it.cpu.pid = get_pid(pid); 412 rcu_read_unlock(); 413 return 0; 414 } 415 416 static struct posix_cputimer_base *timer_base(struct k_itimer *timer, 417 struct task_struct *tsk) 418 { 419 int clkidx = CPUCLOCK_WHICH(timer->it_clock); 420 421 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 422 return tsk->posix_cputimers.bases + clkidx; 423 else 424 return tsk->signal->posix_cputimers.bases + clkidx; 425 } 426 427 /* 428 * Force recalculating the base earliest expiration on the next tick. 429 * This will also re-evaluate the need to keep around the process wide 430 * cputime counter and tick dependency and eventually shut these down 431 * if necessary. 432 */ 433 static void trigger_base_recalc_expires(struct k_itimer *timer, 434 struct task_struct *tsk) 435 { 436 struct posix_cputimer_base *base = timer_base(timer, tsk); 437 438 base->nextevt = 0; 439 } 440 441 /* 442 * Dequeue the timer and reset the base if it was its earliest expiration. 443 * It makes sure the next tick recalculates the base next expiration so we 444 * don't keep the costly process wide cputime counter around for a random 445 * amount of time, along with the tick dependency. 446 * 447 * If another timer gets queued between this and the next tick, its 448 * expiration will update the base next event if necessary on the next 449 * tick. 450 */ 451 static void disarm_timer(struct k_itimer *timer, struct task_struct *p) 452 { 453 struct cpu_timer *ctmr = &timer->it.cpu; 454 struct posix_cputimer_base *base; 455 456 if (!cpu_timer_dequeue(ctmr)) 457 return; 458 459 base = timer_base(timer, p); 460 if (cpu_timer_getexpires(ctmr) == base->nextevt) 461 trigger_base_recalc_expires(timer, p); 462 } 463 464 465 /* 466 * Clean up a CPU-clock timer that is about to be destroyed. 467 * This is called from timer deletion with the timer already locked. 468 * If we return TIMER_RETRY, it's necessary to release the timer's lock 469 * and try again. (This happens when the timer is in the middle of firing.) 470 */ 471 static int posix_cpu_timer_del(struct k_itimer *timer) 472 { 473 struct cpu_timer *ctmr = &timer->it.cpu; 474 struct sighand_struct *sighand; 475 struct task_struct *p; 476 unsigned long flags; 477 int ret = 0; 478 479 rcu_read_lock(); 480 p = cpu_timer_task_rcu(timer); 481 if (!p) 482 goto out; 483 484 /* 485 * Protect against sighand release/switch in exit/exec and process/ 486 * thread timer list entry concurrent read/writes. 487 */ 488 sighand = lock_task_sighand(p, &flags); 489 if (unlikely(sighand == NULL)) { 490 /* 491 * This raced with the reaping of the task. The exit cleanup 492 * should have removed this timer from the timer queue. 493 */ 494 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node)); 495 } else { 496 if (timer->it.cpu.firing) 497 ret = TIMER_RETRY; 498 else 499 disarm_timer(timer, p); 500 501 unlock_task_sighand(p, &flags); 502 } 503 504 out: 505 rcu_read_unlock(); 506 if (!ret) 507 put_pid(ctmr->pid); 508 509 return ret; 510 } 511 512 static void cleanup_timerqueue(struct timerqueue_head *head) 513 { 514 struct timerqueue_node *node; 515 struct cpu_timer *ctmr; 516 517 while ((node = timerqueue_getnext(head))) { 518 timerqueue_del(head, node); 519 ctmr = container_of(node, struct cpu_timer, node); 520 ctmr->head = NULL; 521 } 522 } 523 524 /* 525 * Clean out CPU timers which are still armed when a thread exits. The 526 * timers are only removed from the list. No other updates are done. The 527 * corresponding posix timers are still accessible, but cannot be rearmed. 528 * 529 * This must be called with the siglock held. 530 */ 531 static void cleanup_timers(struct posix_cputimers *pct) 532 { 533 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead); 534 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead); 535 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead); 536 } 537 538 /* 539 * These are both called with the siglock held, when the current thread 540 * is being reaped. When the final (leader) thread in the group is reaped, 541 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 542 */ 543 void posix_cpu_timers_exit(struct task_struct *tsk) 544 { 545 cleanup_timers(&tsk->posix_cputimers); 546 } 547 void posix_cpu_timers_exit_group(struct task_struct *tsk) 548 { 549 cleanup_timers(&tsk->signal->posix_cputimers); 550 } 551 552 /* 553 * Insert the timer on the appropriate list before any timers that 554 * expire later. This must be called with the sighand lock held. 555 */ 556 static void arm_timer(struct k_itimer *timer, struct task_struct *p) 557 { 558 struct posix_cputimer_base *base = timer_base(timer, p); 559 struct cpu_timer *ctmr = &timer->it.cpu; 560 u64 newexp = cpu_timer_getexpires(ctmr); 561 562 if (!cpu_timer_enqueue(&base->tqhead, ctmr)) 563 return; 564 565 /* 566 * We are the new earliest-expiring POSIX 1.b timer, hence 567 * need to update expiration cache. Take into account that 568 * for process timers we share expiration cache with itimers 569 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 570 */ 571 if (newexp < base->nextevt) 572 base->nextevt = newexp; 573 574 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 575 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 576 else 577 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER); 578 } 579 580 /* 581 * The timer is locked, fire it and arrange for its reload. 582 */ 583 static void cpu_timer_fire(struct k_itimer *timer) 584 { 585 struct cpu_timer *ctmr = &timer->it.cpu; 586 587 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 588 /* 589 * User don't want any signal. 590 */ 591 cpu_timer_setexpires(ctmr, 0); 592 } else if (unlikely(timer->sigq == NULL)) { 593 /* 594 * This a special case for clock_nanosleep, 595 * not a normal timer from sys_timer_create. 596 */ 597 wake_up_process(timer->it_process); 598 cpu_timer_setexpires(ctmr, 0); 599 } else if (!timer->it_interval) { 600 /* 601 * One-shot timer. Clear it as soon as it's fired. 602 */ 603 posix_timer_event(timer, 0); 604 cpu_timer_setexpires(ctmr, 0); 605 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 606 /* 607 * The signal did not get queued because the signal 608 * was ignored, so we won't get any callback to 609 * reload the timer. But we need to keep it 610 * ticking in case the signal is deliverable next time. 611 */ 612 posix_cpu_timer_rearm(timer); 613 ++timer->it_requeue_pending; 614 } 615 } 616 617 /* 618 * Guts of sys_timer_settime for CPU timers. 619 * This is called with the timer locked and interrupts disabled. 620 * If we return TIMER_RETRY, it's necessary to release the timer's lock 621 * and try again. (This happens when the timer is in the middle of firing.) 622 */ 623 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 624 struct itimerspec64 *new, struct itimerspec64 *old) 625 { 626 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 627 u64 old_expires, new_expires, old_incr, val; 628 struct cpu_timer *ctmr = &timer->it.cpu; 629 struct sighand_struct *sighand; 630 struct task_struct *p; 631 unsigned long flags; 632 int ret = 0; 633 634 rcu_read_lock(); 635 p = cpu_timer_task_rcu(timer); 636 if (!p) { 637 /* 638 * If p has just been reaped, we can no 639 * longer get any information about it at all. 640 */ 641 rcu_read_unlock(); 642 return -ESRCH; 643 } 644 645 /* 646 * Use the to_ktime conversion because that clamps the maximum 647 * value to KTIME_MAX and avoid multiplication overflows. 648 */ 649 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); 650 651 /* 652 * Protect against sighand release/switch in exit/exec and p->cpu_timers 653 * and p->signal->cpu_timers read/write in arm_timer() 654 */ 655 sighand = lock_task_sighand(p, &flags); 656 /* 657 * If p has just been reaped, we can no 658 * longer get any information about it at all. 659 */ 660 if (unlikely(sighand == NULL)) { 661 rcu_read_unlock(); 662 return -ESRCH; 663 } 664 665 /* 666 * Disarm any old timer after extracting its expiry time. 667 */ 668 old_incr = timer->it_interval; 669 old_expires = cpu_timer_getexpires(ctmr); 670 671 if (unlikely(timer->it.cpu.firing)) { 672 timer->it.cpu.firing = -1; 673 ret = TIMER_RETRY; 674 } else { 675 cpu_timer_dequeue(ctmr); 676 } 677 678 /* 679 * We need to sample the current value to convert the new 680 * value from to relative and absolute, and to convert the 681 * old value from absolute to relative. To set a process 682 * timer, we need a sample to balance the thread expiry 683 * times (in arm_timer). With an absolute time, we must 684 * check if it's already passed. In short, we need a sample. 685 */ 686 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 687 val = cpu_clock_sample(clkid, p); 688 else 689 val = cpu_clock_sample_group(clkid, p, true); 690 691 if (old) { 692 if (old_expires == 0) { 693 old->it_value.tv_sec = 0; 694 old->it_value.tv_nsec = 0; 695 } else { 696 /* 697 * Update the timer in case it has overrun already. 698 * If it has, we'll report it as having overrun and 699 * with the next reloaded timer already ticking, 700 * though we are swallowing that pending 701 * notification here to install the new setting. 702 */ 703 u64 exp = bump_cpu_timer(timer, val); 704 705 if (val < exp) { 706 old_expires = exp - val; 707 old->it_value = ns_to_timespec64(old_expires); 708 } else { 709 old->it_value.tv_nsec = 1; 710 old->it_value.tv_sec = 0; 711 } 712 } 713 } 714 715 if (unlikely(ret)) { 716 /* 717 * We are colliding with the timer actually firing. 718 * Punt after filling in the timer's old value, and 719 * disable this firing since we are already reporting 720 * it as an overrun (thanks to bump_cpu_timer above). 721 */ 722 unlock_task_sighand(p, &flags); 723 goto out; 724 } 725 726 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 727 new_expires += val; 728 } 729 730 /* 731 * Install the new expiry time (or zero). 732 * For a timer with no notification action, we don't actually 733 * arm the timer (we'll just fake it for timer_gettime). 734 */ 735 cpu_timer_setexpires(ctmr, new_expires); 736 if (new_expires != 0 && val < new_expires) { 737 arm_timer(timer, p); 738 } 739 740 unlock_task_sighand(p, &flags); 741 /* 742 * Install the new reload setting, and 743 * set up the signal and overrun bookkeeping. 744 */ 745 timer->it_interval = timespec64_to_ktime(new->it_interval); 746 747 /* 748 * This acts as a modification timestamp for the timer, 749 * so any automatic reload attempt will punt on seeing 750 * that we have reset the timer manually. 751 */ 752 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 753 ~REQUEUE_PENDING; 754 timer->it_overrun_last = 0; 755 timer->it_overrun = -1; 756 757 if (val >= new_expires) { 758 if (new_expires != 0) { 759 /* 760 * The designated time already passed, so we notify 761 * immediately, even if the thread never runs to 762 * accumulate more time on this clock. 763 */ 764 cpu_timer_fire(timer); 765 } 766 767 /* 768 * Make sure we don't keep around the process wide cputime 769 * counter or the tick dependency if they are not necessary. 770 */ 771 sighand = lock_task_sighand(p, &flags); 772 if (!sighand) 773 goto out; 774 775 if (!cpu_timer_queued(ctmr)) 776 trigger_base_recalc_expires(timer, p); 777 778 unlock_task_sighand(p, &flags); 779 } 780 out: 781 rcu_read_unlock(); 782 if (old) 783 old->it_interval = ns_to_timespec64(old_incr); 784 785 return ret; 786 } 787 788 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) 789 { 790 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 791 struct cpu_timer *ctmr = &timer->it.cpu; 792 u64 now, expires = cpu_timer_getexpires(ctmr); 793 struct task_struct *p; 794 795 rcu_read_lock(); 796 p = cpu_timer_task_rcu(timer); 797 if (!p) 798 goto out; 799 800 /* 801 * Easy part: convert the reload time. 802 */ 803 itp->it_interval = ktime_to_timespec64(timer->it_interval); 804 805 if (!expires) 806 goto out; 807 808 /* 809 * Sample the clock to take the difference with the expiry time. 810 */ 811 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 812 now = cpu_clock_sample(clkid, p); 813 else 814 now = cpu_clock_sample_group(clkid, p, false); 815 816 if (now < expires) { 817 itp->it_value = ns_to_timespec64(expires - now); 818 } else { 819 /* 820 * The timer should have expired already, but the firing 821 * hasn't taken place yet. Say it's just about to expire. 822 */ 823 itp->it_value.tv_nsec = 1; 824 itp->it_value.tv_sec = 0; 825 } 826 out: 827 rcu_read_unlock(); 828 } 829 830 #define MAX_COLLECTED 20 831 832 static u64 collect_timerqueue(struct timerqueue_head *head, 833 struct list_head *firing, u64 now) 834 { 835 struct timerqueue_node *next; 836 int i = 0; 837 838 while ((next = timerqueue_getnext(head))) { 839 struct cpu_timer *ctmr; 840 u64 expires; 841 842 ctmr = container_of(next, struct cpu_timer, node); 843 expires = cpu_timer_getexpires(ctmr); 844 /* Limit the number of timers to expire at once */ 845 if (++i == MAX_COLLECTED || now < expires) 846 return expires; 847 848 ctmr->firing = 1; 849 /* See posix_cpu_timer_wait_running() */ 850 rcu_assign_pointer(ctmr->handling, current); 851 cpu_timer_dequeue(ctmr); 852 list_add_tail(&ctmr->elist, firing); 853 } 854 855 return U64_MAX; 856 } 857 858 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples, 859 struct list_head *firing) 860 { 861 struct posix_cputimer_base *base = pct->bases; 862 int i; 863 864 for (i = 0; i < CPUCLOCK_MAX; i++, base++) { 865 base->nextevt = collect_timerqueue(&base->tqhead, firing, 866 samples[i]); 867 } 868 } 869 870 static inline void check_dl_overrun(struct task_struct *tsk) 871 { 872 if (tsk->dl.dl_overrun) { 873 tsk->dl.dl_overrun = 0; 874 send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID); 875 } 876 } 877 878 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard) 879 { 880 if (time < limit) 881 return false; 882 883 if (print_fatal_signals) { 884 pr_info("%s Watchdog Timeout (%s): %s[%d]\n", 885 rt ? "RT" : "CPU", hard ? "hard" : "soft", 886 current->comm, task_pid_nr(current)); 887 } 888 send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID); 889 return true; 890 } 891 892 /* 893 * Check for any per-thread CPU timers that have fired and move them off 894 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 895 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 896 */ 897 static void check_thread_timers(struct task_struct *tsk, 898 struct list_head *firing) 899 { 900 struct posix_cputimers *pct = &tsk->posix_cputimers; 901 u64 samples[CPUCLOCK_MAX]; 902 unsigned long soft; 903 904 if (dl_task(tsk)) 905 check_dl_overrun(tsk); 906 907 if (expiry_cache_is_inactive(pct)) 908 return; 909 910 task_sample_cputime(tsk, samples); 911 collect_posix_cputimers(pct, samples, firing); 912 913 /* 914 * Check for the special case thread timers. 915 */ 916 soft = task_rlimit(tsk, RLIMIT_RTTIME); 917 if (soft != RLIM_INFINITY) { 918 /* Task RT timeout is accounted in jiffies. RTTIME is usec */ 919 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ); 920 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); 921 922 /* At the hard limit, send SIGKILL. No further action. */ 923 if (hard != RLIM_INFINITY && 924 check_rlimit(rttime, hard, SIGKILL, true, true)) 925 return; 926 927 /* At the soft limit, send a SIGXCPU every second */ 928 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) { 929 soft += USEC_PER_SEC; 930 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft; 931 } 932 } 933 934 if (expiry_cache_is_inactive(pct)) 935 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 936 } 937 938 static inline void stop_process_timers(struct signal_struct *sig) 939 { 940 struct posix_cputimers *pct = &sig->posix_cputimers; 941 942 /* Turn off the active flag. This is done without locking. */ 943 WRITE_ONCE(pct->timers_active, false); 944 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 945 } 946 947 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 948 u64 *expires, u64 cur_time, int signo) 949 { 950 if (!it->expires) 951 return; 952 953 if (cur_time >= it->expires) { 954 if (it->incr) 955 it->expires += it->incr; 956 else 957 it->expires = 0; 958 959 trace_itimer_expire(signo == SIGPROF ? 960 ITIMER_PROF : ITIMER_VIRTUAL, 961 task_tgid(tsk), cur_time); 962 send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID); 963 } 964 965 if (it->expires && it->expires < *expires) 966 *expires = it->expires; 967 } 968 969 /* 970 * Check for any per-thread CPU timers that have fired and move them 971 * off the tsk->*_timers list onto the firing list. Per-thread timers 972 * have already been taken off. 973 */ 974 static void check_process_timers(struct task_struct *tsk, 975 struct list_head *firing) 976 { 977 struct signal_struct *const sig = tsk->signal; 978 struct posix_cputimers *pct = &sig->posix_cputimers; 979 u64 samples[CPUCLOCK_MAX]; 980 unsigned long soft; 981 982 /* 983 * If there are no active process wide timers (POSIX 1.b, itimers, 984 * RLIMIT_CPU) nothing to check. Also skip the process wide timer 985 * processing when there is already another task handling them. 986 */ 987 if (!READ_ONCE(pct->timers_active) || pct->expiry_active) 988 return; 989 990 /* 991 * Signify that a thread is checking for process timers. 992 * Write access to this field is protected by the sighand lock. 993 */ 994 pct->expiry_active = true; 995 996 /* 997 * Collect the current process totals. Group accounting is active 998 * so the sample can be taken directly. 999 */ 1000 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples); 1001 collect_posix_cputimers(pct, samples, firing); 1002 1003 /* 1004 * Check for the special case process timers. 1005 */ 1006 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], 1007 &pct->bases[CPUCLOCK_PROF].nextevt, 1008 samples[CPUCLOCK_PROF], SIGPROF); 1009 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], 1010 &pct->bases[CPUCLOCK_VIRT].nextevt, 1011 samples[CPUCLOCK_VIRT], SIGVTALRM); 1012 1013 soft = task_rlimit(tsk, RLIMIT_CPU); 1014 if (soft != RLIM_INFINITY) { 1015 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */ 1016 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); 1017 u64 ptime = samples[CPUCLOCK_PROF]; 1018 u64 softns = (u64)soft * NSEC_PER_SEC; 1019 u64 hardns = (u64)hard * NSEC_PER_SEC; 1020 1021 /* At the hard limit, send SIGKILL. No further action. */ 1022 if (hard != RLIM_INFINITY && 1023 check_rlimit(ptime, hardns, SIGKILL, false, true)) 1024 return; 1025 1026 /* At the soft limit, send a SIGXCPU every second */ 1027 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) { 1028 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1; 1029 softns += NSEC_PER_SEC; 1030 } 1031 1032 /* Update the expiry cache */ 1033 if (softns < pct->bases[CPUCLOCK_PROF].nextevt) 1034 pct->bases[CPUCLOCK_PROF].nextevt = softns; 1035 } 1036 1037 if (expiry_cache_is_inactive(pct)) 1038 stop_process_timers(sig); 1039 1040 pct->expiry_active = false; 1041 } 1042 1043 /* 1044 * This is called from the signal code (via posixtimer_rearm) 1045 * when the last timer signal was delivered and we have to reload the timer. 1046 */ 1047 static void posix_cpu_timer_rearm(struct k_itimer *timer) 1048 { 1049 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 1050 struct task_struct *p; 1051 struct sighand_struct *sighand; 1052 unsigned long flags; 1053 u64 now; 1054 1055 rcu_read_lock(); 1056 p = cpu_timer_task_rcu(timer); 1057 if (!p) 1058 goto out; 1059 1060 /* Protect timer list r/w in arm_timer() */ 1061 sighand = lock_task_sighand(p, &flags); 1062 if (unlikely(sighand == NULL)) 1063 goto out; 1064 1065 /* 1066 * Fetch the current sample and update the timer's expiry time. 1067 */ 1068 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 1069 now = cpu_clock_sample(clkid, p); 1070 else 1071 now = cpu_clock_sample_group(clkid, p, true); 1072 1073 bump_cpu_timer(timer, now); 1074 1075 /* 1076 * Now re-arm for the new expiry time. 1077 */ 1078 arm_timer(timer, p); 1079 unlock_task_sighand(p, &flags); 1080 out: 1081 rcu_read_unlock(); 1082 } 1083 1084 /** 1085 * task_cputimers_expired - Check whether posix CPU timers are expired 1086 * 1087 * @samples: Array of current samples for the CPUCLOCK clocks 1088 * @pct: Pointer to a posix_cputimers container 1089 * 1090 * Returns true if any member of @samples is greater than the corresponding 1091 * member of @pct->bases[CLK].nextevt. False otherwise 1092 */ 1093 static inline bool 1094 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct) 1095 { 1096 int i; 1097 1098 for (i = 0; i < CPUCLOCK_MAX; i++) { 1099 if (samples[i] >= pct->bases[i].nextevt) 1100 return true; 1101 } 1102 return false; 1103 } 1104 1105 /** 1106 * fastpath_timer_check - POSIX CPU timers fast path. 1107 * 1108 * @tsk: The task (thread) being checked. 1109 * 1110 * Check the task and thread group timers. If both are zero (there are no 1111 * timers set) return false. Otherwise snapshot the task and thread group 1112 * timers and compare them with the corresponding expiration times. Return 1113 * true if a timer has expired, else return false. 1114 */ 1115 static inline bool fastpath_timer_check(struct task_struct *tsk) 1116 { 1117 struct posix_cputimers *pct = &tsk->posix_cputimers; 1118 struct signal_struct *sig; 1119 1120 if (!expiry_cache_is_inactive(pct)) { 1121 u64 samples[CPUCLOCK_MAX]; 1122 1123 task_sample_cputime(tsk, samples); 1124 if (task_cputimers_expired(samples, pct)) 1125 return true; 1126 } 1127 1128 sig = tsk->signal; 1129 pct = &sig->posix_cputimers; 1130 /* 1131 * Check if thread group timers expired when timers are active and 1132 * no other thread in the group is already handling expiry for 1133 * thread group cputimers. These fields are read without the 1134 * sighand lock. However, this is fine because this is meant to be 1135 * a fastpath heuristic to determine whether we should try to 1136 * acquire the sighand lock to handle timer expiry. 1137 * 1138 * In the worst case scenario, if concurrently timers_active is set 1139 * or expiry_active is cleared, but the current thread doesn't see 1140 * the change yet, the timer checks are delayed until the next 1141 * thread in the group gets a scheduler interrupt to handle the 1142 * timer. This isn't an issue in practice because these types of 1143 * delays with signals actually getting sent are expected. 1144 */ 1145 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) { 1146 u64 samples[CPUCLOCK_MAX]; 1147 1148 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, 1149 samples); 1150 1151 if (task_cputimers_expired(samples, pct)) 1152 return true; 1153 } 1154 1155 if (dl_task(tsk) && tsk->dl.dl_overrun) 1156 return true; 1157 1158 return false; 1159 } 1160 1161 static void handle_posix_cpu_timers(struct task_struct *tsk); 1162 1163 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 1164 static void posix_cpu_timers_work(struct callback_head *work) 1165 { 1166 struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work); 1167 1168 mutex_lock(&cw->mutex); 1169 handle_posix_cpu_timers(current); 1170 mutex_unlock(&cw->mutex); 1171 } 1172 1173 /* 1174 * Invoked from the posix-timer core when a cancel operation failed because 1175 * the timer is marked firing. The caller holds rcu_read_lock(), which 1176 * protects the timer and the task which is expiring it from being freed. 1177 */ 1178 static void posix_cpu_timer_wait_running(struct k_itimer *timr) 1179 { 1180 struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling); 1181 1182 /* Has the handling task completed expiry already? */ 1183 if (!tsk) 1184 return; 1185 1186 /* Ensure that the task cannot go away */ 1187 get_task_struct(tsk); 1188 /* Now drop the RCU protection so the mutex can be locked */ 1189 rcu_read_unlock(); 1190 /* Wait on the expiry mutex */ 1191 mutex_lock(&tsk->posix_cputimers_work.mutex); 1192 /* Release it immediately again. */ 1193 mutex_unlock(&tsk->posix_cputimers_work.mutex); 1194 /* Drop the task reference. */ 1195 put_task_struct(tsk); 1196 /* Relock RCU so the callsite is balanced */ 1197 rcu_read_lock(); 1198 } 1199 1200 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) 1201 { 1202 /* Ensure that timr->it.cpu.handling task cannot go away */ 1203 rcu_read_lock(); 1204 spin_unlock_irq(&timr->it_lock); 1205 posix_cpu_timer_wait_running(timr); 1206 rcu_read_unlock(); 1207 /* @timr is on stack and is valid */ 1208 spin_lock_irq(&timr->it_lock); 1209 } 1210 1211 /* 1212 * Clear existing posix CPU timers task work. 1213 */ 1214 void clear_posix_cputimers_work(struct task_struct *p) 1215 { 1216 /* 1217 * A copied work entry from the old task is not meaningful, clear it. 1218 * N.B. init_task_work will not do this. 1219 */ 1220 memset(&p->posix_cputimers_work.work, 0, 1221 sizeof(p->posix_cputimers_work.work)); 1222 init_task_work(&p->posix_cputimers_work.work, 1223 posix_cpu_timers_work); 1224 mutex_init(&p->posix_cputimers_work.mutex); 1225 p->posix_cputimers_work.scheduled = false; 1226 } 1227 1228 /* 1229 * Initialize posix CPU timers task work in init task. Out of line to 1230 * keep the callback static and to avoid header recursion hell. 1231 */ 1232 void __init posix_cputimers_init_work(void) 1233 { 1234 clear_posix_cputimers_work(current); 1235 } 1236 1237 /* 1238 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either 1239 * in hard interrupt context or in task context with interrupts 1240 * disabled. Aside of that the writer/reader interaction is always in the 1241 * context of the current task, which means they are strict per CPU. 1242 */ 1243 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1244 { 1245 return tsk->posix_cputimers_work.scheduled; 1246 } 1247 1248 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1249 { 1250 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) 1251 return; 1252 1253 /* Schedule task work to actually expire the timers */ 1254 tsk->posix_cputimers_work.scheduled = true; 1255 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); 1256 } 1257 1258 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1259 unsigned long start) 1260 { 1261 bool ret = true; 1262 1263 /* 1264 * On !RT kernels interrupts are disabled while collecting expired 1265 * timers, so no tick can happen and the fast path check can be 1266 * reenabled without further checks. 1267 */ 1268 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 1269 tsk->posix_cputimers_work.scheduled = false; 1270 return true; 1271 } 1272 1273 /* 1274 * On RT enabled kernels ticks can happen while the expired timers 1275 * are collected under sighand lock. But any tick which observes 1276 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath 1277 * checks. So reenabling the tick work has do be done carefully: 1278 * 1279 * Disable interrupts and run the fast path check if jiffies have 1280 * advanced since the collecting of expired timers started. If 1281 * jiffies have not advanced or the fast path check did not find 1282 * newly expired timers, reenable the fast path check in the timer 1283 * interrupt. If there are newly expired timers, return false and 1284 * let the collection loop repeat. 1285 */ 1286 local_irq_disable(); 1287 if (start != jiffies && fastpath_timer_check(tsk)) 1288 ret = false; 1289 else 1290 tsk->posix_cputimers_work.scheduled = false; 1291 local_irq_enable(); 1292 1293 return ret; 1294 } 1295 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1296 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1297 { 1298 lockdep_posixtimer_enter(); 1299 handle_posix_cpu_timers(tsk); 1300 lockdep_posixtimer_exit(); 1301 } 1302 1303 static void posix_cpu_timer_wait_running(struct k_itimer *timr) 1304 { 1305 cpu_relax(); 1306 } 1307 1308 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) 1309 { 1310 spin_unlock_irq(&timr->it_lock); 1311 cpu_relax(); 1312 spin_lock_irq(&timr->it_lock); 1313 } 1314 1315 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1316 { 1317 return false; 1318 } 1319 1320 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1321 unsigned long start) 1322 { 1323 return true; 1324 } 1325 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1326 1327 static void handle_posix_cpu_timers(struct task_struct *tsk) 1328 { 1329 struct k_itimer *timer, *next; 1330 unsigned long flags, start; 1331 LIST_HEAD(firing); 1332 1333 if (!lock_task_sighand(tsk, &flags)) 1334 return; 1335 1336 do { 1337 /* 1338 * On RT locking sighand lock does not disable interrupts, 1339 * so this needs to be careful vs. ticks. Store the current 1340 * jiffies value. 1341 */ 1342 start = READ_ONCE(jiffies); 1343 barrier(); 1344 1345 /* 1346 * Here we take off tsk->signal->cpu_timers[N] and 1347 * tsk->cpu_timers[N] all the timers that are firing, and 1348 * put them on the firing list. 1349 */ 1350 check_thread_timers(tsk, &firing); 1351 1352 check_process_timers(tsk, &firing); 1353 1354 /* 1355 * The above timer checks have updated the expiry cache and 1356 * because nothing can have queued or modified timers after 1357 * sighand lock was taken above it is guaranteed to be 1358 * consistent. So the next timer interrupt fastpath check 1359 * will find valid data. 1360 * 1361 * If timer expiry runs in the timer interrupt context then 1362 * the loop is not relevant as timers will be directly 1363 * expired in interrupt context. The stub function below 1364 * returns always true which allows the compiler to 1365 * optimize the loop out. 1366 * 1367 * If timer expiry is deferred to task work context then 1368 * the following rules apply: 1369 * 1370 * - On !RT kernels no tick can have happened on this CPU 1371 * after sighand lock was acquired because interrupts are 1372 * disabled. So reenabling task work before dropping 1373 * sighand lock and reenabling interrupts is race free. 1374 * 1375 * - On RT kernels ticks might have happened but the tick 1376 * work ignored posix CPU timer handling because the 1377 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work 1378 * must be done very carefully including a check whether 1379 * ticks have happened since the start of the timer 1380 * expiry checks. posix_cpu_timers_enable_work() takes 1381 * care of that and eventually lets the expiry checks 1382 * run again. 1383 */ 1384 } while (!posix_cpu_timers_enable_work(tsk, start)); 1385 1386 /* 1387 * We must release sighand lock before taking any timer's lock. 1388 * There is a potential race with timer deletion here, as the 1389 * siglock now protects our private firing list. We have set 1390 * the firing flag in each timer, so that a deletion attempt 1391 * that gets the timer lock before we do will give it up and 1392 * spin until we've taken care of that timer below. 1393 */ 1394 unlock_task_sighand(tsk, &flags); 1395 1396 /* 1397 * Now that all the timers on our list have the firing flag, 1398 * no one will touch their list entries but us. We'll take 1399 * each timer's lock before clearing its firing flag, so no 1400 * timer call will interfere. 1401 */ 1402 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { 1403 int cpu_firing; 1404 1405 /* 1406 * spin_lock() is sufficient here even independent of the 1407 * expiry context. If expiry happens in hard interrupt 1408 * context it's obvious. For task work context it's safe 1409 * because all other operations on timer::it_lock happen in 1410 * task context (syscall or exit). 1411 */ 1412 spin_lock(&timer->it_lock); 1413 list_del_init(&timer->it.cpu.elist); 1414 cpu_firing = timer->it.cpu.firing; 1415 timer->it.cpu.firing = 0; 1416 /* 1417 * The firing flag is -1 if we collided with a reset 1418 * of the timer, which already reported this 1419 * almost-firing as an overrun. So don't generate an event. 1420 */ 1421 if (likely(cpu_firing >= 0)) 1422 cpu_timer_fire(timer); 1423 /* See posix_cpu_timer_wait_running() */ 1424 rcu_assign_pointer(timer->it.cpu.handling, NULL); 1425 spin_unlock(&timer->it_lock); 1426 } 1427 } 1428 1429 /* 1430 * This is called from the timer interrupt handler. The irq handler has 1431 * already updated our counts. We need to check if any timers fire now. 1432 * Interrupts are disabled. 1433 */ 1434 void run_posix_cpu_timers(void) 1435 { 1436 struct task_struct *tsk = current; 1437 1438 lockdep_assert_irqs_disabled(); 1439 1440 /* 1441 * If the actual expiry is deferred to task work context and the 1442 * work is already scheduled there is no point to do anything here. 1443 */ 1444 if (posix_cpu_timers_work_scheduled(tsk)) 1445 return; 1446 1447 /* 1448 * The fast path checks that there are no expired thread or thread 1449 * group timers. If that's so, just return. 1450 */ 1451 if (!fastpath_timer_check(tsk)) 1452 return; 1453 1454 __run_posix_cpu_timers(tsk); 1455 } 1456 1457 /* 1458 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1459 * The tsk->sighand->siglock must be held by the caller. 1460 */ 1461 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid, 1462 u64 *newval, u64 *oldval) 1463 { 1464 u64 now, *nextevt; 1465 1466 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED)) 1467 return; 1468 1469 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt; 1470 now = cpu_clock_sample_group(clkid, tsk, true); 1471 1472 if (oldval) { 1473 /* 1474 * We are setting itimer. The *oldval is absolute and we update 1475 * it to be relative, *newval argument is relative and we update 1476 * it to be absolute. 1477 */ 1478 if (*oldval) { 1479 if (*oldval <= now) { 1480 /* Just about to fire. */ 1481 *oldval = TICK_NSEC; 1482 } else { 1483 *oldval -= now; 1484 } 1485 } 1486 1487 if (*newval) 1488 *newval += now; 1489 } 1490 1491 /* 1492 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF 1493 * expiry cache is also used by RLIMIT_CPU!. 1494 */ 1495 if (*newval < *nextevt) 1496 *nextevt = *newval; 1497 1498 tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER); 1499 } 1500 1501 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1502 const struct timespec64 *rqtp) 1503 { 1504 struct itimerspec64 it; 1505 struct k_itimer timer; 1506 u64 expires; 1507 int error; 1508 1509 /* 1510 * Set up a temporary timer and then wait for it to go off. 1511 */ 1512 memset(&timer, 0, sizeof timer); 1513 spin_lock_init(&timer.it_lock); 1514 timer.it_clock = which_clock; 1515 timer.it_overrun = -1; 1516 error = posix_cpu_timer_create(&timer); 1517 timer.it_process = current; 1518 1519 if (!error) { 1520 static struct itimerspec64 zero_it; 1521 struct restart_block *restart; 1522 1523 memset(&it, 0, sizeof(it)); 1524 it.it_value = *rqtp; 1525 1526 spin_lock_irq(&timer.it_lock); 1527 error = posix_cpu_timer_set(&timer, flags, &it, NULL); 1528 if (error) { 1529 spin_unlock_irq(&timer.it_lock); 1530 return error; 1531 } 1532 1533 while (!signal_pending(current)) { 1534 if (!cpu_timer_getexpires(&timer.it.cpu)) { 1535 /* 1536 * Our timer fired and was reset, below 1537 * deletion can not fail. 1538 */ 1539 posix_cpu_timer_del(&timer); 1540 spin_unlock_irq(&timer.it_lock); 1541 return 0; 1542 } 1543 1544 /* 1545 * Block until cpu_timer_fire (or a signal) wakes us. 1546 */ 1547 __set_current_state(TASK_INTERRUPTIBLE); 1548 spin_unlock_irq(&timer.it_lock); 1549 schedule(); 1550 spin_lock_irq(&timer.it_lock); 1551 } 1552 1553 /* 1554 * We were interrupted by a signal. 1555 */ 1556 expires = cpu_timer_getexpires(&timer.it.cpu); 1557 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); 1558 if (!error) { 1559 /* Timer is now unarmed, deletion can not fail. */ 1560 posix_cpu_timer_del(&timer); 1561 } else { 1562 while (error == TIMER_RETRY) { 1563 posix_cpu_timer_wait_running_nsleep(&timer); 1564 error = posix_cpu_timer_del(&timer); 1565 } 1566 } 1567 1568 spin_unlock_irq(&timer.it_lock); 1569 1570 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { 1571 /* 1572 * It actually did fire already. 1573 */ 1574 return 0; 1575 } 1576 1577 error = -ERESTART_RESTARTBLOCK; 1578 /* 1579 * Report back to the user the time still remaining. 1580 */ 1581 restart = ¤t->restart_block; 1582 restart->nanosleep.expires = expires; 1583 if (restart->nanosleep.type != TT_NONE) 1584 error = nanosleep_copyout(restart, &it.it_value); 1585 } 1586 1587 return error; 1588 } 1589 1590 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1591 1592 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1593 const struct timespec64 *rqtp) 1594 { 1595 struct restart_block *restart_block = ¤t->restart_block; 1596 int error; 1597 1598 /* 1599 * Diagnose required errors first. 1600 */ 1601 if (CPUCLOCK_PERTHREAD(which_clock) && 1602 (CPUCLOCK_PID(which_clock) == 0 || 1603 CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) 1604 return -EINVAL; 1605 1606 error = do_cpu_nanosleep(which_clock, flags, rqtp); 1607 1608 if (error == -ERESTART_RESTARTBLOCK) { 1609 1610 if (flags & TIMER_ABSTIME) 1611 return -ERESTARTNOHAND; 1612 1613 restart_block->nanosleep.clockid = which_clock; 1614 set_restart_fn(restart_block, posix_cpu_nsleep_restart); 1615 } 1616 return error; 1617 } 1618 1619 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1620 { 1621 clockid_t which_clock = restart_block->nanosleep.clockid; 1622 struct timespec64 t; 1623 1624 t = ns_to_timespec64(restart_block->nanosleep.expires); 1625 1626 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); 1627 } 1628 1629 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED) 1630 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED) 1631 1632 static int process_cpu_clock_getres(const clockid_t which_clock, 1633 struct timespec64 *tp) 1634 { 1635 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1636 } 1637 static int process_cpu_clock_get(const clockid_t which_clock, 1638 struct timespec64 *tp) 1639 { 1640 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1641 } 1642 static int process_cpu_timer_create(struct k_itimer *timer) 1643 { 1644 timer->it_clock = PROCESS_CLOCK; 1645 return posix_cpu_timer_create(timer); 1646 } 1647 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1648 const struct timespec64 *rqtp) 1649 { 1650 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); 1651 } 1652 static int thread_cpu_clock_getres(const clockid_t which_clock, 1653 struct timespec64 *tp) 1654 { 1655 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1656 } 1657 static int thread_cpu_clock_get(const clockid_t which_clock, 1658 struct timespec64 *tp) 1659 { 1660 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1661 } 1662 static int thread_cpu_timer_create(struct k_itimer *timer) 1663 { 1664 timer->it_clock = THREAD_CLOCK; 1665 return posix_cpu_timer_create(timer); 1666 } 1667 1668 const struct k_clock clock_posix_cpu = { 1669 .clock_getres = posix_cpu_clock_getres, 1670 .clock_set = posix_cpu_clock_set, 1671 .clock_get_timespec = posix_cpu_clock_get, 1672 .timer_create = posix_cpu_timer_create, 1673 .nsleep = posix_cpu_nsleep, 1674 .timer_set = posix_cpu_timer_set, 1675 .timer_del = posix_cpu_timer_del, 1676 .timer_get = posix_cpu_timer_get, 1677 .timer_rearm = posix_cpu_timer_rearm, 1678 .timer_wait_running = posix_cpu_timer_wait_running, 1679 }; 1680 1681 const struct k_clock clock_process = { 1682 .clock_getres = process_cpu_clock_getres, 1683 .clock_get_timespec = process_cpu_clock_get, 1684 .timer_create = process_cpu_timer_create, 1685 .nsleep = process_cpu_nsleep, 1686 }; 1687 1688 const struct k_clock clock_thread = { 1689 .clock_getres = thread_cpu_clock_getres, 1690 .clock_get_timespec = thread_cpu_clock_get, 1691 .timer_create = thread_cpu_timer_create, 1692 }; 1693