1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement CPU time clocks for the POSIX clock interface. 4 */ 5 6 #include <linux/sched/signal.h> 7 #include <linux/sched/cputime.h> 8 #include <linux/posix-timers.h> 9 #include <linux/errno.h> 10 #include <linux/math64.h> 11 #include <linux/uaccess.h> 12 #include <linux/kernel_stat.h> 13 #include <trace/events/timer.h> 14 #include <linux/tick.h> 15 #include <linux/workqueue.h> 16 #include <linux/compat.h> 17 #include <linux/sched/deadline.h> 18 #include <linux/task_work.h> 19 20 #include "posix-timers.h" 21 22 static void posix_cpu_timer_rearm(struct k_itimer *timer); 23 24 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) 25 { 26 posix_cputimers_init(pct); 27 if (cpu_limit != RLIM_INFINITY) { 28 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC; 29 pct->timers_active = true; 30 } 31 } 32 33 /* 34 * Called after updating RLIMIT_CPU to run cpu timer and update 35 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if 36 * necessary. Needs siglock protection since other code may update the 37 * expiration cache as well. 38 * 39 * Returns 0 on success, -ESRCH on failure. Can fail if the task is exiting and 40 * we cannot lock_task_sighand. Cannot fail if task is current. 41 */ 42 int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 43 { 44 u64 nsecs = rlim_new * NSEC_PER_SEC; 45 unsigned long irq_fl; 46 47 if (!lock_task_sighand(task, &irq_fl)) 48 return -ESRCH; 49 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); 50 unlock_task_sighand(task, &irq_fl); 51 return 0; 52 } 53 54 /* 55 * Functions for validating access to tasks. 56 */ 57 static struct pid *pid_for_clock(const clockid_t clock, bool gettime) 58 { 59 const bool thread = !!CPUCLOCK_PERTHREAD(clock); 60 const pid_t upid = CPUCLOCK_PID(clock); 61 struct pid *pid; 62 63 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX) 64 return NULL; 65 66 /* 67 * If the encoded PID is 0, then the timer is targeted at current 68 * or the process to which current belongs. 69 */ 70 if (upid == 0) 71 return thread ? task_pid(current) : task_tgid(current); 72 73 pid = find_vpid(upid); 74 if (!pid) 75 return NULL; 76 77 if (thread) { 78 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID); 79 return (tsk && same_thread_group(tsk, current)) ? pid : NULL; 80 } 81 82 /* 83 * For clock_gettime(PROCESS) allow finding the process by 84 * with the pid of the current task. The code needs the tgid 85 * of the process so that pid_task(pid, PIDTYPE_TGID) can be 86 * used to find the process. 87 */ 88 if (gettime && (pid == task_pid(current))) 89 return task_tgid(current); 90 91 /* 92 * For processes require that pid identifies a process. 93 */ 94 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL; 95 } 96 97 static inline int validate_clock_permissions(const clockid_t clock) 98 { 99 int ret; 100 101 rcu_read_lock(); 102 ret = pid_for_clock(clock, false) ? 0 : -EINVAL; 103 rcu_read_unlock(); 104 105 return ret; 106 } 107 108 static inline enum pid_type clock_pid_type(const clockid_t clock) 109 { 110 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID; 111 } 112 113 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer) 114 { 115 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock)); 116 } 117 118 /* 119 * Update expiry time from increment, and increase overrun count, 120 * given the current clock sample. 121 */ 122 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now) 123 { 124 u64 delta, incr, expires = timer->it.cpu.node.expires; 125 int i; 126 127 if (!timer->it_interval) 128 return expires; 129 130 if (now < expires) 131 return expires; 132 133 incr = timer->it_interval; 134 delta = now + incr - expires; 135 136 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 137 for (i = 0; incr < delta - incr; i++) 138 incr = incr << 1; 139 140 for (; i >= 0; incr >>= 1, i--) { 141 if (delta < incr) 142 continue; 143 144 timer->it.cpu.node.expires += incr; 145 timer->it_overrun += 1LL << i; 146 delta -= incr; 147 } 148 return timer->it.cpu.node.expires; 149 } 150 151 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */ 152 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct) 153 { 154 return !(~pct->bases[CPUCLOCK_PROF].nextevt | 155 ~pct->bases[CPUCLOCK_VIRT].nextevt | 156 ~pct->bases[CPUCLOCK_SCHED].nextevt); 157 } 158 159 static int 160 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 161 { 162 int error = validate_clock_permissions(which_clock); 163 164 if (!error) { 165 tp->tv_sec = 0; 166 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 167 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 168 /* 169 * If sched_clock is using a cycle counter, we 170 * don't have any idea of its true resolution 171 * exported, but it is much more than 1s/HZ. 172 */ 173 tp->tv_nsec = 1; 174 } 175 } 176 return error; 177 } 178 179 static int 180 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp) 181 { 182 int error = validate_clock_permissions(clock); 183 184 /* 185 * You can never reset a CPU clock, but we check for other errors 186 * in the call before failing with EPERM. 187 */ 188 return error ? : -EPERM; 189 } 190 191 /* 192 * Sample a per-thread clock for the given task. clkid is validated. 193 */ 194 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p) 195 { 196 u64 utime, stime; 197 198 if (clkid == CPUCLOCK_SCHED) 199 return task_sched_runtime(p); 200 201 task_cputime(p, &utime, &stime); 202 203 switch (clkid) { 204 case CPUCLOCK_PROF: 205 return utime + stime; 206 case CPUCLOCK_VIRT: 207 return utime; 208 default: 209 WARN_ON_ONCE(1); 210 } 211 return 0; 212 } 213 214 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime) 215 { 216 samples[CPUCLOCK_PROF] = stime + utime; 217 samples[CPUCLOCK_VIRT] = utime; 218 samples[CPUCLOCK_SCHED] = rtime; 219 } 220 221 static void task_sample_cputime(struct task_struct *p, u64 *samples) 222 { 223 u64 stime, utime; 224 225 task_cputime(p, &utime, &stime); 226 store_samples(samples, stime, utime, p->se.sum_exec_runtime); 227 } 228 229 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at, 230 u64 *samples) 231 { 232 u64 stime, utime, rtime; 233 234 utime = atomic64_read(&at->utime); 235 stime = atomic64_read(&at->stime); 236 rtime = atomic64_read(&at->sum_exec_runtime); 237 store_samples(samples, stime, utime, rtime); 238 } 239 240 /* 241 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 242 * to avoid race conditions with concurrent updates to cputime. 243 */ 244 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 245 { 246 u64 curr_cputime = atomic64_read(cputime); 247 248 do { 249 if (sum_cputime <= curr_cputime) 250 return; 251 } while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime)); 252 } 253 254 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, 255 struct task_cputime *sum) 256 { 257 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 258 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 259 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 260 } 261 262 /** 263 * thread_group_sample_cputime - Sample cputime for a given task 264 * @tsk: Task for which cputime needs to be started 265 * @samples: Storage for time samples 266 * 267 * Called from sys_getitimer() to calculate the expiry time of an active 268 * timer. That means group cputime accounting is already active. Called 269 * with task sighand lock held. 270 * 271 * Updates @times with an uptodate sample of the thread group cputimes. 272 */ 273 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples) 274 { 275 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 276 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 277 278 WARN_ON_ONCE(!pct->timers_active); 279 280 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 281 } 282 283 /** 284 * thread_group_start_cputime - Start cputime and return a sample 285 * @tsk: Task for which cputime needs to be started 286 * @samples: Storage for time samples 287 * 288 * The thread group cputime accounting is avoided when there are no posix 289 * CPU timers armed. Before starting a timer it's required to check whether 290 * the time accounting is active. If not, a full update of the atomic 291 * accounting store needs to be done and the accounting enabled. 292 * 293 * Updates @times with an uptodate sample of the thread group cputimes. 294 */ 295 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples) 296 { 297 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 298 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 299 300 lockdep_assert_task_sighand_held(tsk); 301 302 /* Check if cputimer isn't running. This is accessed without locking. */ 303 if (!READ_ONCE(pct->timers_active)) { 304 struct task_cputime sum; 305 306 /* 307 * The POSIX timer interface allows for absolute time expiry 308 * values through the TIMER_ABSTIME flag, therefore we have 309 * to synchronize the timer to the clock every time we start it. 310 */ 311 thread_group_cputime(tsk, &sum); 312 update_gt_cputime(&cputimer->cputime_atomic, &sum); 313 314 /* 315 * We're setting timers_active without a lock. Ensure this 316 * only gets written to in one operation. We set it after 317 * update_gt_cputime() as a small optimization, but 318 * barriers are not required because update_gt_cputime() 319 * can handle concurrent updates. 320 */ 321 WRITE_ONCE(pct->timers_active, true); 322 } 323 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 324 } 325 326 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples) 327 { 328 struct task_cputime ct; 329 330 thread_group_cputime(tsk, &ct); 331 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime); 332 } 333 334 /* 335 * Sample a process (thread group) clock for the given task clkid. If the 336 * group's cputime accounting is already enabled, read the atomic 337 * store. Otherwise a full update is required. clkid is already validated. 338 */ 339 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p, 340 bool start) 341 { 342 struct thread_group_cputimer *cputimer = &p->signal->cputimer; 343 struct posix_cputimers *pct = &p->signal->posix_cputimers; 344 u64 samples[CPUCLOCK_MAX]; 345 346 if (!READ_ONCE(pct->timers_active)) { 347 if (start) 348 thread_group_start_cputime(p, samples); 349 else 350 __thread_group_cputime(p, samples); 351 } else { 352 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 353 } 354 355 return samples[clkid]; 356 } 357 358 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp) 359 { 360 const clockid_t clkid = CPUCLOCK_WHICH(clock); 361 struct task_struct *tsk; 362 u64 t; 363 364 rcu_read_lock(); 365 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock)); 366 if (!tsk) { 367 rcu_read_unlock(); 368 return -EINVAL; 369 } 370 371 if (CPUCLOCK_PERTHREAD(clock)) 372 t = cpu_clock_sample(clkid, tsk); 373 else 374 t = cpu_clock_sample_group(clkid, tsk, false); 375 rcu_read_unlock(); 376 377 *tp = ns_to_timespec64(t); 378 return 0; 379 } 380 381 /* 382 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 383 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 384 * new timer already all-zeros initialized. 385 */ 386 static int posix_cpu_timer_create(struct k_itimer *new_timer) 387 { 388 static struct lock_class_key posix_cpu_timers_key; 389 struct pid *pid; 390 391 rcu_read_lock(); 392 pid = pid_for_clock(new_timer->it_clock, false); 393 if (!pid) { 394 rcu_read_unlock(); 395 return -EINVAL; 396 } 397 398 /* 399 * If posix timer expiry is handled in task work context then 400 * timer::it_lock can be taken without disabling interrupts as all 401 * other locking happens in task context. This requires a separate 402 * lock class key otherwise regular posix timer expiry would record 403 * the lock class being taken in interrupt context and generate a 404 * false positive warning. 405 */ 406 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK)) 407 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key); 408 409 new_timer->kclock = &clock_posix_cpu; 410 timerqueue_init(&new_timer->it.cpu.node); 411 new_timer->it.cpu.pid = get_pid(pid); 412 rcu_read_unlock(); 413 return 0; 414 } 415 416 static struct posix_cputimer_base *timer_base(struct k_itimer *timer, 417 struct task_struct *tsk) 418 { 419 int clkidx = CPUCLOCK_WHICH(timer->it_clock); 420 421 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 422 return tsk->posix_cputimers.bases + clkidx; 423 else 424 return tsk->signal->posix_cputimers.bases + clkidx; 425 } 426 427 /* 428 * Force recalculating the base earliest expiration on the next tick. 429 * This will also re-evaluate the need to keep around the process wide 430 * cputime counter and tick dependency and eventually shut these down 431 * if necessary. 432 */ 433 static void trigger_base_recalc_expires(struct k_itimer *timer, 434 struct task_struct *tsk) 435 { 436 struct posix_cputimer_base *base = timer_base(timer, tsk); 437 438 base->nextevt = 0; 439 } 440 441 /* 442 * Dequeue the timer and reset the base if it was its earliest expiration. 443 * It makes sure the next tick recalculates the base next expiration so we 444 * don't keep the costly process wide cputime counter around for a random 445 * amount of time, along with the tick dependency. 446 * 447 * If another timer gets queued between this and the next tick, its 448 * expiration will update the base next event if necessary on the next 449 * tick. 450 */ 451 static void disarm_timer(struct k_itimer *timer, struct task_struct *p) 452 { 453 struct cpu_timer *ctmr = &timer->it.cpu; 454 struct posix_cputimer_base *base; 455 456 timer->it_active = 0; 457 if (!cpu_timer_dequeue(ctmr)) 458 return; 459 460 base = timer_base(timer, p); 461 if (cpu_timer_getexpires(ctmr) == base->nextevt) 462 trigger_base_recalc_expires(timer, p); 463 } 464 465 466 /* 467 * Clean up a CPU-clock timer that is about to be destroyed. 468 * This is called from timer deletion with the timer already locked. 469 * If we return TIMER_RETRY, it's necessary to release the timer's lock 470 * and try again. (This happens when the timer is in the middle of firing.) 471 */ 472 static int posix_cpu_timer_del(struct k_itimer *timer) 473 { 474 struct cpu_timer *ctmr = &timer->it.cpu; 475 struct sighand_struct *sighand; 476 struct task_struct *p; 477 unsigned long flags; 478 int ret = 0; 479 480 rcu_read_lock(); 481 p = cpu_timer_task_rcu(timer); 482 if (!p) 483 goto out; 484 485 /* 486 * Protect against sighand release/switch in exit/exec and process/ 487 * thread timer list entry concurrent read/writes. 488 */ 489 sighand = lock_task_sighand(p, &flags); 490 if (unlikely(sighand == NULL)) { 491 /* 492 * This raced with the reaping of the task. The exit cleanup 493 * should have removed this timer from the timer queue. 494 */ 495 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node)); 496 } else { 497 if (timer->it.cpu.firing) 498 ret = TIMER_RETRY; 499 else 500 disarm_timer(timer, p); 501 502 unlock_task_sighand(p, &flags); 503 } 504 505 out: 506 rcu_read_unlock(); 507 if (!ret) 508 put_pid(ctmr->pid); 509 510 return ret; 511 } 512 513 static void cleanup_timerqueue(struct timerqueue_head *head) 514 { 515 struct timerqueue_node *node; 516 struct cpu_timer *ctmr; 517 518 while ((node = timerqueue_getnext(head))) { 519 timerqueue_del(head, node); 520 ctmr = container_of(node, struct cpu_timer, node); 521 ctmr->head = NULL; 522 } 523 } 524 525 /* 526 * Clean out CPU timers which are still armed when a thread exits. The 527 * timers are only removed from the list. No other updates are done. The 528 * corresponding posix timers are still accessible, but cannot be rearmed. 529 * 530 * This must be called with the siglock held. 531 */ 532 static void cleanup_timers(struct posix_cputimers *pct) 533 { 534 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead); 535 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead); 536 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead); 537 } 538 539 /* 540 * These are both called with the siglock held, when the current thread 541 * is being reaped. When the final (leader) thread in the group is reaped, 542 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 543 */ 544 void posix_cpu_timers_exit(struct task_struct *tsk) 545 { 546 cleanup_timers(&tsk->posix_cputimers); 547 } 548 void posix_cpu_timers_exit_group(struct task_struct *tsk) 549 { 550 cleanup_timers(&tsk->signal->posix_cputimers); 551 } 552 553 /* 554 * Insert the timer on the appropriate list before any timers that 555 * expire later. This must be called with the sighand lock held. 556 */ 557 static void arm_timer(struct k_itimer *timer, struct task_struct *p) 558 { 559 struct posix_cputimer_base *base = timer_base(timer, p); 560 struct cpu_timer *ctmr = &timer->it.cpu; 561 u64 newexp = cpu_timer_getexpires(ctmr); 562 563 timer->it_active = 1; 564 if (!cpu_timer_enqueue(&base->tqhead, ctmr)) 565 return; 566 567 /* 568 * We are the new earliest-expiring POSIX 1.b timer, hence 569 * need to update expiration cache. Take into account that 570 * for process timers we share expiration cache with itimers 571 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 572 */ 573 if (newexp < base->nextevt) 574 base->nextevt = newexp; 575 576 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 577 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 578 else 579 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER); 580 } 581 582 /* 583 * The timer is locked, fire it and arrange for its reload. 584 */ 585 static void cpu_timer_fire(struct k_itimer *timer) 586 { 587 struct cpu_timer *ctmr = &timer->it.cpu; 588 589 timer->it_active = 0; 590 if (unlikely(timer->sigq == NULL)) { 591 /* 592 * This a special case for clock_nanosleep, 593 * not a normal timer from sys_timer_create. 594 */ 595 wake_up_process(timer->it_process); 596 cpu_timer_setexpires(ctmr, 0); 597 } else if (!timer->it_interval) { 598 /* 599 * One-shot timer. Clear it as soon as it's fired. 600 */ 601 posix_timer_queue_signal(timer); 602 cpu_timer_setexpires(ctmr, 0); 603 } else if (posix_timer_queue_signal(timer)) { 604 /* 605 * The signal did not get queued because the signal 606 * was ignored, so we won't get any callback to 607 * reload the timer. But we need to keep it 608 * ticking in case the signal is deliverable next time. 609 */ 610 posix_cpu_timer_rearm(timer); 611 ++timer->it_requeue_pending; 612 } 613 } 614 615 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now); 616 617 /* 618 * Guts of sys_timer_settime for CPU timers. 619 * This is called with the timer locked and interrupts disabled. 620 * If we return TIMER_RETRY, it's necessary to release the timer's lock 621 * and try again. (This happens when the timer is in the middle of firing.) 622 */ 623 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 624 struct itimerspec64 *new, struct itimerspec64 *old) 625 { 626 bool sigev_none = timer->it_sigev_notify == SIGEV_NONE; 627 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 628 struct cpu_timer *ctmr = &timer->it.cpu; 629 u64 old_expires, new_expires, now; 630 struct sighand_struct *sighand; 631 struct task_struct *p; 632 unsigned long flags; 633 int ret = 0; 634 635 rcu_read_lock(); 636 p = cpu_timer_task_rcu(timer); 637 if (!p) { 638 /* 639 * If p has just been reaped, we can no 640 * longer get any information about it at all. 641 */ 642 rcu_read_unlock(); 643 return -ESRCH; 644 } 645 646 /* 647 * Use the to_ktime conversion because that clamps the maximum 648 * value to KTIME_MAX and avoid multiplication overflows. 649 */ 650 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); 651 652 /* 653 * Protect against sighand release/switch in exit/exec and p->cpu_timers 654 * and p->signal->cpu_timers read/write in arm_timer() 655 */ 656 sighand = lock_task_sighand(p, &flags); 657 /* 658 * If p has just been reaped, we can no 659 * longer get any information about it at all. 660 */ 661 if (unlikely(sighand == NULL)) { 662 rcu_read_unlock(); 663 return -ESRCH; 664 } 665 666 /* Retrieve the current expiry time before disarming the timer */ 667 old_expires = cpu_timer_getexpires(ctmr); 668 669 if (unlikely(timer->it.cpu.firing)) { 670 timer->it.cpu.firing = -1; 671 ret = TIMER_RETRY; 672 } else { 673 cpu_timer_dequeue(ctmr); 674 timer->it_active = 0; 675 } 676 677 /* 678 * Sample the current clock for saving the previous setting 679 * and for rearming the timer. 680 */ 681 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 682 now = cpu_clock_sample(clkid, p); 683 else 684 now = cpu_clock_sample_group(clkid, p, !sigev_none); 685 686 /* Retrieve the previous expiry value if requested. */ 687 if (old) { 688 old->it_value = (struct timespec64){ }; 689 if (old_expires) 690 __posix_cpu_timer_get(timer, old, now); 691 } 692 693 /* Retry if the timer expiry is running concurrently */ 694 if (unlikely(ret)) { 695 unlock_task_sighand(p, &flags); 696 goto out; 697 } 698 699 /* Convert relative expiry time to absolute */ 700 if (new_expires && !(timer_flags & TIMER_ABSTIME)) 701 new_expires += now; 702 703 /* Set the new expiry time (might be 0) */ 704 cpu_timer_setexpires(ctmr, new_expires); 705 706 /* 707 * Arm the timer if it is not disabled, the new expiry value has 708 * not yet expired and the timer requires signal delivery. 709 * SIGEV_NONE timers are never armed. In case the timer is not 710 * armed, enforce the reevaluation of the timer base so that the 711 * process wide cputime counter can be disabled eventually. 712 */ 713 if (likely(!sigev_none)) { 714 if (new_expires && now < new_expires) 715 arm_timer(timer, p); 716 else 717 trigger_base_recalc_expires(timer, p); 718 } 719 720 unlock_task_sighand(p, &flags); 721 722 posix_timer_set_common(timer, new); 723 724 /* 725 * If the new expiry time was already in the past the timer was not 726 * queued. Fire it immediately even if the thread never runs to 727 * accumulate more time on this clock. 728 */ 729 if (!sigev_none && new_expires && now >= new_expires) 730 cpu_timer_fire(timer); 731 out: 732 rcu_read_unlock(); 733 return ret; 734 } 735 736 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now) 737 { 738 bool sigev_none = timer->it_sigev_notify == SIGEV_NONE; 739 u64 expires, iv = timer->it_interval; 740 741 /* 742 * Make sure that interval timers are moved forward for the 743 * following cases: 744 * - SIGEV_NONE timers which are never armed 745 * - Timers which expired, but the signal has not yet been 746 * delivered 747 */ 748 if (iv && ((timer->it_requeue_pending & REQUEUE_PENDING) || sigev_none)) 749 expires = bump_cpu_timer(timer, now); 750 else 751 expires = cpu_timer_getexpires(&timer->it.cpu); 752 753 /* 754 * Expired interval timers cannot have a remaining time <= 0. 755 * The kernel has to move them forward so that the next 756 * timer expiry is > @now. 757 */ 758 if (now < expires) { 759 itp->it_value = ns_to_timespec64(expires - now); 760 } else { 761 /* 762 * A single shot SIGEV_NONE timer must return 0, when it is 763 * expired! Timers which have a real signal delivery mode 764 * must return a remaining time greater than 0 because the 765 * signal has not yet been delivered. 766 */ 767 if (!sigev_none) 768 itp->it_value.tv_nsec = 1; 769 } 770 } 771 772 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) 773 { 774 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 775 struct task_struct *p; 776 u64 now; 777 778 rcu_read_lock(); 779 p = cpu_timer_task_rcu(timer); 780 if (p && cpu_timer_getexpires(&timer->it.cpu)) { 781 itp->it_interval = ktime_to_timespec64(timer->it_interval); 782 783 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 784 now = cpu_clock_sample(clkid, p); 785 else 786 now = cpu_clock_sample_group(clkid, p, false); 787 788 __posix_cpu_timer_get(timer, itp, now); 789 } 790 rcu_read_unlock(); 791 } 792 793 #define MAX_COLLECTED 20 794 795 static u64 collect_timerqueue(struct timerqueue_head *head, 796 struct list_head *firing, u64 now) 797 { 798 struct timerqueue_node *next; 799 int i = 0; 800 801 while ((next = timerqueue_getnext(head))) { 802 struct cpu_timer *ctmr; 803 u64 expires; 804 805 ctmr = container_of(next, struct cpu_timer, node); 806 expires = cpu_timer_getexpires(ctmr); 807 /* Limit the number of timers to expire at once */ 808 if (++i == MAX_COLLECTED || now < expires) 809 return expires; 810 811 ctmr->firing = 1; 812 /* See posix_cpu_timer_wait_running() */ 813 rcu_assign_pointer(ctmr->handling, current); 814 cpu_timer_dequeue(ctmr); 815 list_add_tail(&ctmr->elist, firing); 816 } 817 818 return U64_MAX; 819 } 820 821 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples, 822 struct list_head *firing) 823 { 824 struct posix_cputimer_base *base = pct->bases; 825 int i; 826 827 for (i = 0; i < CPUCLOCK_MAX; i++, base++) { 828 base->nextevt = collect_timerqueue(&base->tqhead, firing, 829 samples[i]); 830 } 831 } 832 833 static inline void check_dl_overrun(struct task_struct *tsk) 834 { 835 if (tsk->dl.dl_overrun) { 836 tsk->dl.dl_overrun = 0; 837 send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID); 838 } 839 } 840 841 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard) 842 { 843 if (time < limit) 844 return false; 845 846 if (print_fatal_signals) { 847 pr_info("%s Watchdog Timeout (%s): %s[%d]\n", 848 rt ? "RT" : "CPU", hard ? "hard" : "soft", 849 current->comm, task_pid_nr(current)); 850 } 851 send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID); 852 return true; 853 } 854 855 /* 856 * Check for any per-thread CPU timers that have fired and move them off 857 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 858 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 859 */ 860 static void check_thread_timers(struct task_struct *tsk, 861 struct list_head *firing) 862 { 863 struct posix_cputimers *pct = &tsk->posix_cputimers; 864 u64 samples[CPUCLOCK_MAX]; 865 unsigned long soft; 866 867 if (dl_task(tsk)) 868 check_dl_overrun(tsk); 869 870 if (expiry_cache_is_inactive(pct)) 871 return; 872 873 task_sample_cputime(tsk, samples); 874 collect_posix_cputimers(pct, samples, firing); 875 876 /* 877 * Check for the special case thread timers. 878 */ 879 soft = task_rlimit(tsk, RLIMIT_RTTIME); 880 if (soft != RLIM_INFINITY) { 881 /* Task RT timeout is accounted in jiffies. RTTIME is usec */ 882 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ); 883 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); 884 885 /* At the hard limit, send SIGKILL. No further action. */ 886 if (hard != RLIM_INFINITY && 887 check_rlimit(rttime, hard, SIGKILL, true, true)) 888 return; 889 890 /* At the soft limit, send a SIGXCPU every second */ 891 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) { 892 soft += USEC_PER_SEC; 893 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft; 894 } 895 } 896 897 if (expiry_cache_is_inactive(pct)) 898 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 899 } 900 901 static inline void stop_process_timers(struct signal_struct *sig) 902 { 903 struct posix_cputimers *pct = &sig->posix_cputimers; 904 905 /* Turn off the active flag. This is done without locking. */ 906 WRITE_ONCE(pct->timers_active, false); 907 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 908 } 909 910 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 911 u64 *expires, u64 cur_time, int signo) 912 { 913 if (!it->expires) 914 return; 915 916 if (cur_time >= it->expires) { 917 if (it->incr) 918 it->expires += it->incr; 919 else 920 it->expires = 0; 921 922 trace_itimer_expire(signo == SIGPROF ? 923 ITIMER_PROF : ITIMER_VIRTUAL, 924 task_tgid(tsk), cur_time); 925 send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID); 926 } 927 928 if (it->expires && it->expires < *expires) 929 *expires = it->expires; 930 } 931 932 /* 933 * Check for any per-thread CPU timers that have fired and move them 934 * off the tsk->*_timers list onto the firing list. Per-thread timers 935 * have already been taken off. 936 */ 937 static void check_process_timers(struct task_struct *tsk, 938 struct list_head *firing) 939 { 940 struct signal_struct *const sig = tsk->signal; 941 struct posix_cputimers *pct = &sig->posix_cputimers; 942 u64 samples[CPUCLOCK_MAX]; 943 unsigned long soft; 944 945 /* 946 * If there are no active process wide timers (POSIX 1.b, itimers, 947 * RLIMIT_CPU) nothing to check. Also skip the process wide timer 948 * processing when there is already another task handling them. 949 */ 950 if (!READ_ONCE(pct->timers_active) || pct->expiry_active) 951 return; 952 953 /* 954 * Signify that a thread is checking for process timers. 955 * Write access to this field is protected by the sighand lock. 956 */ 957 pct->expiry_active = true; 958 959 /* 960 * Collect the current process totals. Group accounting is active 961 * so the sample can be taken directly. 962 */ 963 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples); 964 collect_posix_cputimers(pct, samples, firing); 965 966 /* 967 * Check for the special case process timers. 968 */ 969 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], 970 &pct->bases[CPUCLOCK_PROF].nextevt, 971 samples[CPUCLOCK_PROF], SIGPROF); 972 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], 973 &pct->bases[CPUCLOCK_VIRT].nextevt, 974 samples[CPUCLOCK_VIRT], SIGVTALRM); 975 976 soft = task_rlimit(tsk, RLIMIT_CPU); 977 if (soft != RLIM_INFINITY) { 978 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */ 979 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); 980 u64 ptime = samples[CPUCLOCK_PROF]; 981 u64 softns = (u64)soft * NSEC_PER_SEC; 982 u64 hardns = (u64)hard * NSEC_PER_SEC; 983 984 /* At the hard limit, send SIGKILL. No further action. */ 985 if (hard != RLIM_INFINITY && 986 check_rlimit(ptime, hardns, SIGKILL, false, true)) 987 return; 988 989 /* At the soft limit, send a SIGXCPU every second */ 990 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) { 991 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1; 992 softns += NSEC_PER_SEC; 993 } 994 995 /* Update the expiry cache */ 996 if (softns < pct->bases[CPUCLOCK_PROF].nextevt) 997 pct->bases[CPUCLOCK_PROF].nextevt = softns; 998 } 999 1000 if (expiry_cache_is_inactive(pct)) 1001 stop_process_timers(sig); 1002 1003 pct->expiry_active = false; 1004 } 1005 1006 /* 1007 * This is called from the signal code (via posixtimer_rearm) 1008 * when the last timer signal was delivered and we have to reload the timer. 1009 */ 1010 static void posix_cpu_timer_rearm(struct k_itimer *timer) 1011 { 1012 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 1013 struct task_struct *p; 1014 struct sighand_struct *sighand; 1015 unsigned long flags; 1016 u64 now; 1017 1018 rcu_read_lock(); 1019 p = cpu_timer_task_rcu(timer); 1020 if (!p) 1021 goto out; 1022 1023 /* Protect timer list r/w in arm_timer() */ 1024 sighand = lock_task_sighand(p, &flags); 1025 if (unlikely(sighand == NULL)) 1026 goto out; 1027 1028 /* 1029 * Fetch the current sample and update the timer's expiry time. 1030 */ 1031 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 1032 now = cpu_clock_sample(clkid, p); 1033 else 1034 now = cpu_clock_sample_group(clkid, p, true); 1035 1036 bump_cpu_timer(timer, now); 1037 1038 /* 1039 * Now re-arm for the new expiry time. 1040 */ 1041 arm_timer(timer, p); 1042 unlock_task_sighand(p, &flags); 1043 out: 1044 rcu_read_unlock(); 1045 } 1046 1047 /** 1048 * task_cputimers_expired - Check whether posix CPU timers are expired 1049 * 1050 * @samples: Array of current samples for the CPUCLOCK clocks 1051 * @pct: Pointer to a posix_cputimers container 1052 * 1053 * Returns true if any member of @samples is greater than the corresponding 1054 * member of @pct->bases[CLK].nextevt. False otherwise 1055 */ 1056 static inline bool 1057 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct) 1058 { 1059 int i; 1060 1061 for (i = 0; i < CPUCLOCK_MAX; i++) { 1062 if (samples[i] >= pct->bases[i].nextevt) 1063 return true; 1064 } 1065 return false; 1066 } 1067 1068 /** 1069 * fastpath_timer_check - POSIX CPU timers fast path. 1070 * 1071 * @tsk: The task (thread) being checked. 1072 * 1073 * Check the task and thread group timers. If both are zero (there are no 1074 * timers set) return false. Otherwise snapshot the task and thread group 1075 * timers and compare them with the corresponding expiration times. Return 1076 * true if a timer has expired, else return false. 1077 */ 1078 static inline bool fastpath_timer_check(struct task_struct *tsk) 1079 { 1080 struct posix_cputimers *pct = &tsk->posix_cputimers; 1081 struct signal_struct *sig; 1082 1083 if (!expiry_cache_is_inactive(pct)) { 1084 u64 samples[CPUCLOCK_MAX]; 1085 1086 task_sample_cputime(tsk, samples); 1087 if (task_cputimers_expired(samples, pct)) 1088 return true; 1089 } 1090 1091 sig = tsk->signal; 1092 pct = &sig->posix_cputimers; 1093 /* 1094 * Check if thread group timers expired when timers are active and 1095 * no other thread in the group is already handling expiry for 1096 * thread group cputimers. These fields are read without the 1097 * sighand lock. However, this is fine because this is meant to be 1098 * a fastpath heuristic to determine whether we should try to 1099 * acquire the sighand lock to handle timer expiry. 1100 * 1101 * In the worst case scenario, if concurrently timers_active is set 1102 * or expiry_active is cleared, but the current thread doesn't see 1103 * the change yet, the timer checks are delayed until the next 1104 * thread in the group gets a scheduler interrupt to handle the 1105 * timer. This isn't an issue in practice because these types of 1106 * delays with signals actually getting sent are expected. 1107 */ 1108 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) { 1109 u64 samples[CPUCLOCK_MAX]; 1110 1111 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, 1112 samples); 1113 1114 if (task_cputimers_expired(samples, pct)) 1115 return true; 1116 } 1117 1118 if (dl_task(tsk) && tsk->dl.dl_overrun) 1119 return true; 1120 1121 return false; 1122 } 1123 1124 static void handle_posix_cpu_timers(struct task_struct *tsk); 1125 1126 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 1127 static void posix_cpu_timers_work(struct callback_head *work) 1128 { 1129 struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work); 1130 1131 mutex_lock(&cw->mutex); 1132 handle_posix_cpu_timers(current); 1133 mutex_unlock(&cw->mutex); 1134 } 1135 1136 /* 1137 * Invoked from the posix-timer core when a cancel operation failed because 1138 * the timer is marked firing. The caller holds rcu_read_lock(), which 1139 * protects the timer and the task which is expiring it from being freed. 1140 */ 1141 static void posix_cpu_timer_wait_running(struct k_itimer *timr) 1142 { 1143 struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling); 1144 1145 /* Has the handling task completed expiry already? */ 1146 if (!tsk) 1147 return; 1148 1149 /* Ensure that the task cannot go away */ 1150 get_task_struct(tsk); 1151 /* Now drop the RCU protection so the mutex can be locked */ 1152 rcu_read_unlock(); 1153 /* Wait on the expiry mutex */ 1154 mutex_lock(&tsk->posix_cputimers_work.mutex); 1155 /* Release it immediately again. */ 1156 mutex_unlock(&tsk->posix_cputimers_work.mutex); 1157 /* Drop the task reference. */ 1158 put_task_struct(tsk); 1159 /* Relock RCU so the callsite is balanced */ 1160 rcu_read_lock(); 1161 } 1162 1163 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) 1164 { 1165 /* Ensure that timr->it.cpu.handling task cannot go away */ 1166 rcu_read_lock(); 1167 spin_unlock_irq(&timr->it_lock); 1168 posix_cpu_timer_wait_running(timr); 1169 rcu_read_unlock(); 1170 /* @timr is on stack and is valid */ 1171 spin_lock_irq(&timr->it_lock); 1172 } 1173 1174 /* 1175 * Clear existing posix CPU timers task work. 1176 */ 1177 void clear_posix_cputimers_work(struct task_struct *p) 1178 { 1179 /* 1180 * A copied work entry from the old task is not meaningful, clear it. 1181 * N.B. init_task_work will not do this. 1182 */ 1183 memset(&p->posix_cputimers_work.work, 0, 1184 sizeof(p->posix_cputimers_work.work)); 1185 init_task_work(&p->posix_cputimers_work.work, 1186 posix_cpu_timers_work); 1187 mutex_init(&p->posix_cputimers_work.mutex); 1188 p->posix_cputimers_work.scheduled = false; 1189 } 1190 1191 /* 1192 * Initialize posix CPU timers task work in init task. Out of line to 1193 * keep the callback static and to avoid header recursion hell. 1194 */ 1195 void __init posix_cputimers_init_work(void) 1196 { 1197 clear_posix_cputimers_work(current); 1198 } 1199 1200 /* 1201 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either 1202 * in hard interrupt context or in task context with interrupts 1203 * disabled. Aside of that the writer/reader interaction is always in the 1204 * context of the current task, which means they are strict per CPU. 1205 */ 1206 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1207 { 1208 return tsk->posix_cputimers_work.scheduled; 1209 } 1210 1211 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1212 { 1213 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) 1214 return; 1215 1216 /* Schedule task work to actually expire the timers */ 1217 tsk->posix_cputimers_work.scheduled = true; 1218 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); 1219 } 1220 1221 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1222 unsigned long start) 1223 { 1224 bool ret = true; 1225 1226 /* 1227 * On !RT kernels interrupts are disabled while collecting expired 1228 * timers, so no tick can happen and the fast path check can be 1229 * reenabled without further checks. 1230 */ 1231 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 1232 tsk->posix_cputimers_work.scheduled = false; 1233 return true; 1234 } 1235 1236 /* 1237 * On RT enabled kernels ticks can happen while the expired timers 1238 * are collected under sighand lock. But any tick which observes 1239 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath 1240 * checks. So reenabling the tick work has do be done carefully: 1241 * 1242 * Disable interrupts and run the fast path check if jiffies have 1243 * advanced since the collecting of expired timers started. If 1244 * jiffies have not advanced or the fast path check did not find 1245 * newly expired timers, reenable the fast path check in the timer 1246 * interrupt. If there are newly expired timers, return false and 1247 * let the collection loop repeat. 1248 */ 1249 local_irq_disable(); 1250 if (start != jiffies && fastpath_timer_check(tsk)) 1251 ret = false; 1252 else 1253 tsk->posix_cputimers_work.scheduled = false; 1254 local_irq_enable(); 1255 1256 return ret; 1257 } 1258 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1259 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1260 { 1261 lockdep_posixtimer_enter(); 1262 handle_posix_cpu_timers(tsk); 1263 lockdep_posixtimer_exit(); 1264 } 1265 1266 static void posix_cpu_timer_wait_running(struct k_itimer *timr) 1267 { 1268 cpu_relax(); 1269 } 1270 1271 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) 1272 { 1273 spin_unlock_irq(&timr->it_lock); 1274 cpu_relax(); 1275 spin_lock_irq(&timr->it_lock); 1276 } 1277 1278 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1279 { 1280 return false; 1281 } 1282 1283 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1284 unsigned long start) 1285 { 1286 return true; 1287 } 1288 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1289 1290 static void handle_posix_cpu_timers(struct task_struct *tsk) 1291 { 1292 struct k_itimer *timer, *next; 1293 unsigned long flags, start; 1294 LIST_HEAD(firing); 1295 1296 if (!lock_task_sighand(tsk, &flags)) 1297 return; 1298 1299 do { 1300 /* 1301 * On RT locking sighand lock does not disable interrupts, 1302 * so this needs to be careful vs. ticks. Store the current 1303 * jiffies value. 1304 */ 1305 start = READ_ONCE(jiffies); 1306 barrier(); 1307 1308 /* 1309 * Here we take off tsk->signal->cpu_timers[N] and 1310 * tsk->cpu_timers[N] all the timers that are firing, and 1311 * put them on the firing list. 1312 */ 1313 check_thread_timers(tsk, &firing); 1314 1315 check_process_timers(tsk, &firing); 1316 1317 /* 1318 * The above timer checks have updated the expiry cache and 1319 * because nothing can have queued or modified timers after 1320 * sighand lock was taken above it is guaranteed to be 1321 * consistent. So the next timer interrupt fastpath check 1322 * will find valid data. 1323 * 1324 * If timer expiry runs in the timer interrupt context then 1325 * the loop is not relevant as timers will be directly 1326 * expired in interrupt context. The stub function below 1327 * returns always true which allows the compiler to 1328 * optimize the loop out. 1329 * 1330 * If timer expiry is deferred to task work context then 1331 * the following rules apply: 1332 * 1333 * - On !RT kernels no tick can have happened on this CPU 1334 * after sighand lock was acquired because interrupts are 1335 * disabled. So reenabling task work before dropping 1336 * sighand lock and reenabling interrupts is race free. 1337 * 1338 * - On RT kernels ticks might have happened but the tick 1339 * work ignored posix CPU timer handling because the 1340 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work 1341 * must be done very carefully including a check whether 1342 * ticks have happened since the start of the timer 1343 * expiry checks. posix_cpu_timers_enable_work() takes 1344 * care of that and eventually lets the expiry checks 1345 * run again. 1346 */ 1347 } while (!posix_cpu_timers_enable_work(tsk, start)); 1348 1349 /* 1350 * We must release sighand lock before taking any timer's lock. 1351 * There is a potential race with timer deletion here, as the 1352 * siglock now protects our private firing list. We have set 1353 * the firing flag in each timer, so that a deletion attempt 1354 * that gets the timer lock before we do will give it up and 1355 * spin until we've taken care of that timer below. 1356 */ 1357 unlock_task_sighand(tsk, &flags); 1358 1359 /* 1360 * Now that all the timers on our list have the firing flag, 1361 * no one will touch their list entries but us. We'll take 1362 * each timer's lock before clearing its firing flag, so no 1363 * timer call will interfere. 1364 */ 1365 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { 1366 int cpu_firing; 1367 1368 /* 1369 * spin_lock() is sufficient here even independent of the 1370 * expiry context. If expiry happens in hard interrupt 1371 * context it's obvious. For task work context it's safe 1372 * because all other operations on timer::it_lock happen in 1373 * task context (syscall or exit). 1374 */ 1375 spin_lock(&timer->it_lock); 1376 list_del_init(&timer->it.cpu.elist); 1377 cpu_firing = timer->it.cpu.firing; 1378 timer->it.cpu.firing = 0; 1379 /* 1380 * The firing flag is -1 if we collided with a reset 1381 * of the timer, which already reported this 1382 * almost-firing as an overrun. So don't generate an event. 1383 */ 1384 if (likely(cpu_firing >= 0)) 1385 cpu_timer_fire(timer); 1386 /* See posix_cpu_timer_wait_running() */ 1387 rcu_assign_pointer(timer->it.cpu.handling, NULL); 1388 spin_unlock(&timer->it_lock); 1389 } 1390 } 1391 1392 /* 1393 * This is called from the timer interrupt handler. The irq handler has 1394 * already updated our counts. We need to check if any timers fire now. 1395 * Interrupts are disabled. 1396 */ 1397 void run_posix_cpu_timers(void) 1398 { 1399 struct task_struct *tsk = current; 1400 1401 lockdep_assert_irqs_disabled(); 1402 1403 /* 1404 * If the actual expiry is deferred to task work context and the 1405 * work is already scheduled there is no point to do anything here. 1406 */ 1407 if (posix_cpu_timers_work_scheduled(tsk)) 1408 return; 1409 1410 /* 1411 * The fast path checks that there are no expired thread or thread 1412 * group timers. If that's so, just return. 1413 */ 1414 if (!fastpath_timer_check(tsk)) 1415 return; 1416 1417 __run_posix_cpu_timers(tsk); 1418 } 1419 1420 /* 1421 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1422 * The tsk->sighand->siglock must be held by the caller. 1423 */ 1424 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid, 1425 u64 *newval, u64 *oldval) 1426 { 1427 u64 now, *nextevt; 1428 1429 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED)) 1430 return; 1431 1432 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt; 1433 now = cpu_clock_sample_group(clkid, tsk, true); 1434 1435 if (oldval) { 1436 /* 1437 * We are setting itimer. The *oldval is absolute and we update 1438 * it to be relative, *newval argument is relative and we update 1439 * it to be absolute. 1440 */ 1441 if (*oldval) { 1442 if (*oldval <= now) { 1443 /* Just about to fire. */ 1444 *oldval = TICK_NSEC; 1445 } else { 1446 *oldval -= now; 1447 } 1448 } 1449 1450 if (*newval) 1451 *newval += now; 1452 } 1453 1454 /* 1455 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF 1456 * expiry cache is also used by RLIMIT_CPU!. 1457 */ 1458 if (*newval < *nextevt) 1459 *nextevt = *newval; 1460 1461 tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER); 1462 } 1463 1464 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1465 const struct timespec64 *rqtp) 1466 { 1467 struct itimerspec64 it; 1468 struct k_itimer timer; 1469 u64 expires; 1470 int error; 1471 1472 /* 1473 * Set up a temporary timer and then wait for it to go off. 1474 */ 1475 memset(&timer, 0, sizeof timer); 1476 spin_lock_init(&timer.it_lock); 1477 timer.it_clock = which_clock; 1478 timer.it_overrun = -1; 1479 error = posix_cpu_timer_create(&timer); 1480 timer.it_process = current; 1481 1482 if (!error) { 1483 static struct itimerspec64 zero_it; 1484 struct restart_block *restart; 1485 1486 memset(&it, 0, sizeof(it)); 1487 it.it_value = *rqtp; 1488 1489 spin_lock_irq(&timer.it_lock); 1490 error = posix_cpu_timer_set(&timer, flags, &it, NULL); 1491 if (error) { 1492 spin_unlock_irq(&timer.it_lock); 1493 return error; 1494 } 1495 1496 while (!signal_pending(current)) { 1497 if (!cpu_timer_getexpires(&timer.it.cpu)) { 1498 /* 1499 * Our timer fired and was reset, below 1500 * deletion can not fail. 1501 */ 1502 posix_cpu_timer_del(&timer); 1503 spin_unlock_irq(&timer.it_lock); 1504 return 0; 1505 } 1506 1507 /* 1508 * Block until cpu_timer_fire (or a signal) wakes us. 1509 */ 1510 __set_current_state(TASK_INTERRUPTIBLE); 1511 spin_unlock_irq(&timer.it_lock); 1512 schedule(); 1513 spin_lock_irq(&timer.it_lock); 1514 } 1515 1516 /* 1517 * We were interrupted by a signal. 1518 */ 1519 expires = cpu_timer_getexpires(&timer.it.cpu); 1520 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); 1521 if (!error) { 1522 /* Timer is now unarmed, deletion can not fail. */ 1523 posix_cpu_timer_del(&timer); 1524 } else { 1525 while (error == TIMER_RETRY) { 1526 posix_cpu_timer_wait_running_nsleep(&timer); 1527 error = posix_cpu_timer_del(&timer); 1528 } 1529 } 1530 1531 spin_unlock_irq(&timer.it_lock); 1532 1533 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { 1534 /* 1535 * It actually did fire already. 1536 */ 1537 return 0; 1538 } 1539 1540 error = -ERESTART_RESTARTBLOCK; 1541 /* 1542 * Report back to the user the time still remaining. 1543 */ 1544 restart = ¤t->restart_block; 1545 restart->nanosleep.expires = expires; 1546 if (restart->nanosleep.type != TT_NONE) 1547 error = nanosleep_copyout(restart, &it.it_value); 1548 } 1549 1550 return error; 1551 } 1552 1553 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1554 1555 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1556 const struct timespec64 *rqtp) 1557 { 1558 struct restart_block *restart_block = ¤t->restart_block; 1559 int error; 1560 1561 /* 1562 * Diagnose required errors first. 1563 */ 1564 if (CPUCLOCK_PERTHREAD(which_clock) && 1565 (CPUCLOCK_PID(which_clock) == 0 || 1566 CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) 1567 return -EINVAL; 1568 1569 error = do_cpu_nanosleep(which_clock, flags, rqtp); 1570 1571 if (error == -ERESTART_RESTARTBLOCK) { 1572 1573 if (flags & TIMER_ABSTIME) 1574 return -ERESTARTNOHAND; 1575 1576 restart_block->nanosleep.clockid = which_clock; 1577 set_restart_fn(restart_block, posix_cpu_nsleep_restart); 1578 } 1579 return error; 1580 } 1581 1582 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1583 { 1584 clockid_t which_clock = restart_block->nanosleep.clockid; 1585 struct timespec64 t; 1586 1587 t = ns_to_timespec64(restart_block->nanosleep.expires); 1588 1589 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); 1590 } 1591 1592 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED) 1593 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED) 1594 1595 static int process_cpu_clock_getres(const clockid_t which_clock, 1596 struct timespec64 *tp) 1597 { 1598 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1599 } 1600 static int process_cpu_clock_get(const clockid_t which_clock, 1601 struct timespec64 *tp) 1602 { 1603 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1604 } 1605 static int process_cpu_timer_create(struct k_itimer *timer) 1606 { 1607 timer->it_clock = PROCESS_CLOCK; 1608 return posix_cpu_timer_create(timer); 1609 } 1610 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1611 const struct timespec64 *rqtp) 1612 { 1613 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); 1614 } 1615 static int thread_cpu_clock_getres(const clockid_t which_clock, 1616 struct timespec64 *tp) 1617 { 1618 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1619 } 1620 static int thread_cpu_clock_get(const clockid_t which_clock, 1621 struct timespec64 *tp) 1622 { 1623 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1624 } 1625 static int thread_cpu_timer_create(struct k_itimer *timer) 1626 { 1627 timer->it_clock = THREAD_CLOCK; 1628 return posix_cpu_timer_create(timer); 1629 } 1630 1631 const struct k_clock clock_posix_cpu = { 1632 .clock_getres = posix_cpu_clock_getres, 1633 .clock_set = posix_cpu_clock_set, 1634 .clock_get_timespec = posix_cpu_clock_get, 1635 .timer_create = posix_cpu_timer_create, 1636 .nsleep = posix_cpu_nsleep, 1637 .timer_set = posix_cpu_timer_set, 1638 .timer_del = posix_cpu_timer_del, 1639 .timer_get = posix_cpu_timer_get, 1640 .timer_rearm = posix_cpu_timer_rearm, 1641 .timer_wait_running = posix_cpu_timer_wait_running, 1642 }; 1643 1644 const struct k_clock clock_process = { 1645 .clock_getres = process_cpu_clock_getres, 1646 .clock_get_timespec = process_cpu_clock_get, 1647 .timer_create = process_cpu_timer_create, 1648 .nsleep = process_cpu_nsleep, 1649 }; 1650 1651 const struct k_clock clock_thread = { 1652 .clock_getres = thread_cpu_clock_getres, 1653 .clock_get_timespec = thread_cpu_clock_get, 1654 .timer_create = thread_cpu_timer_create, 1655 }; 1656