1 /* 2 * Implement CPU time clocks for the POSIX clock interface. 3 */ 4 5 #include <linux/sched.h> 6 #include <linux/posix-timers.h> 7 #include <linux/errno.h> 8 #include <linux/math64.h> 9 #include <linux/uaccess.h> 10 #include <linux/kernel_stat.h> 11 #include <trace/events/timer.h> 12 #include <linux/tick.h> 13 #include <linux/workqueue.h> 14 15 /* 16 * Called after updating RLIMIT_CPU to run cpu timer and update 17 * tsk->signal->cputime_expires expiration cache if necessary. Needs 18 * siglock protection since other code may update expiration cache as 19 * well. 20 */ 21 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 22 { 23 cputime_t cputime = secs_to_cputime(rlim_new); 24 25 spin_lock_irq(&task->sighand->siglock); 26 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); 27 spin_unlock_irq(&task->sighand->siglock); 28 } 29 30 static int check_clock(const clockid_t which_clock) 31 { 32 int error = 0; 33 struct task_struct *p; 34 const pid_t pid = CPUCLOCK_PID(which_clock); 35 36 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 37 return -EINVAL; 38 39 if (pid == 0) 40 return 0; 41 42 rcu_read_lock(); 43 p = find_task_by_vpid(pid); 44 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 45 same_thread_group(p, current) : has_group_leader_pid(p))) { 46 error = -EINVAL; 47 } 48 rcu_read_unlock(); 49 50 return error; 51 } 52 53 static inline unsigned long long 54 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) 55 { 56 unsigned long long ret; 57 58 ret = 0; /* high half always zero when .cpu used */ 59 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 60 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; 61 } else { 62 ret = cputime_to_expires(timespec_to_cputime(tp)); 63 } 64 return ret; 65 } 66 67 static void sample_to_timespec(const clockid_t which_clock, 68 unsigned long long expires, 69 struct timespec *tp) 70 { 71 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) 72 *tp = ns_to_timespec(expires); 73 else 74 cputime_to_timespec((__force cputime_t)expires, tp); 75 } 76 77 /* 78 * Update expiry time from increment, and increase overrun count, 79 * given the current clock sample. 80 */ 81 static void bump_cpu_timer(struct k_itimer *timer, 82 unsigned long long now) 83 { 84 int i; 85 unsigned long long delta, incr; 86 87 if (timer->it.cpu.incr == 0) 88 return; 89 90 if (now < timer->it.cpu.expires) 91 return; 92 93 incr = timer->it.cpu.incr; 94 delta = now + incr - timer->it.cpu.expires; 95 96 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 97 for (i = 0; incr < delta - incr; i++) 98 incr = incr << 1; 99 100 for (; i >= 0; incr >>= 1, i--) { 101 if (delta < incr) 102 continue; 103 104 timer->it.cpu.expires += incr; 105 timer->it_overrun += 1 << i; 106 delta -= incr; 107 } 108 } 109 110 /** 111 * task_cputime_zero - Check a task_cputime struct for all zero fields. 112 * 113 * @cputime: The struct to compare. 114 * 115 * Checks @cputime to see if all fields are zero. Returns true if all fields 116 * are zero, false if any field is nonzero. 117 */ 118 static inline int task_cputime_zero(const struct task_cputime *cputime) 119 { 120 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 121 return 1; 122 return 0; 123 } 124 125 static inline unsigned long long prof_ticks(struct task_struct *p) 126 { 127 cputime_t utime, stime; 128 129 task_cputime(p, &utime, &stime); 130 131 return cputime_to_expires(utime + stime); 132 } 133 static inline unsigned long long virt_ticks(struct task_struct *p) 134 { 135 cputime_t utime, stime; 136 137 task_cputime(p, &utime, &stime); 138 139 return cputime_to_expires(utime); 140 } 141 142 static int 143 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) 144 { 145 int error = check_clock(which_clock); 146 if (!error) { 147 tp->tv_sec = 0; 148 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 149 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 150 /* 151 * If sched_clock is using a cycle counter, we 152 * don't have any idea of its true resolution 153 * exported, but it is much more than 1s/HZ. 154 */ 155 tp->tv_nsec = 1; 156 } 157 } 158 return error; 159 } 160 161 static int 162 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) 163 { 164 /* 165 * You can never reset a CPU clock, but we check for other errors 166 * in the call before failing with EPERM. 167 */ 168 int error = check_clock(which_clock); 169 if (error == 0) { 170 error = -EPERM; 171 } 172 return error; 173 } 174 175 176 /* 177 * Sample a per-thread clock for the given task. 178 */ 179 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, 180 unsigned long long *sample) 181 { 182 switch (CPUCLOCK_WHICH(which_clock)) { 183 default: 184 return -EINVAL; 185 case CPUCLOCK_PROF: 186 *sample = prof_ticks(p); 187 break; 188 case CPUCLOCK_VIRT: 189 *sample = virt_ticks(p); 190 break; 191 case CPUCLOCK_SCHED: 192 *sample = task_sched_runtime(p); 193 break; 194 } 195 return 0; 196 } 197 198 /* 199 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 200 * to avoid race conditions with concurrent updates to cputime. 201 */ 202 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 203 { 204 u64 curr_cputime; 205 retry: 206 curr_cputime = atomic64_read(cputime); 207 if (sum_cputime > curr_cputime) { 208 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 209 goto retry; 210 } 211 } 212 213 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 214 { 215 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 216 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 217 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 218 } 219 220 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 221 static inline void sample_cputime_atomic(struct task_cputime *times, 222 struct task_cputime_atomic *atomic_times) 223 { 224 times->utime = atomic64_read(&atomic_times->utime); 225 times->stime = atomic64_read(&atomic_times->stime); 226 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 227 } 228 229 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 230 { 231 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 232 struct task_cputime sum; 233 234 /* Check if cputimer isn't running. This is accessed without locking. */ 235 if (!READ_ONCE(cputimer->running)) { 236 /* 237 * The POSIX timer interface allows for absolute time expiry 238 * values through the TIMER_ABSTIME flag, therefore we have 239 * to synchronize the timer to the clock every time we start it. 240 */ 241 thread_group_cputime(tsk, &sum); 242 update_gt_cputime(&cputimer->cputime_atomic, &sum); 243 244 /* 245 * We're setting cputimer->running without a lock. Ensure 246 * this only gets written to in one operation. We set 247 * running after update_gt_cputime() as a small optimization, 248 * but barriers are not required because update_gt_cputime() 249 * can handle concurrent updates. 250 */ 251 WRITE_ONCE(cputimer->running, true); 252 } 253 sample_cputime_atomic(times, &cputimer->cputime_atomic); 254 } 255 256 /* 257 * Sample a process (thread group) clock for the given group_leader task. 258 * Must be called with task sighand lock held for safe while_each_thread() 259 * traversal. 260 */ 261 static int cpu_clock_sample_group(const clockid_t which_clock, 262 struct task_struct *p, 263 unsigned long long *sample) 264 { 265 struct task_cputime cputime; 266 267 switch (CPUCLOCK_WHICH(which_clock)) { 268 default: 269 return -EINVAL; 270 case CPUCLOCK_PROF: 271 thread_group_cputime(p, &cputime); 272 *sample = cputime_to_expires(cputime.utime + cputime.stime); 273 break; 274 case CPUCLOCK_VIRT: 275 thread_group_cputime(p, &cputime); 276 *sample = cputime_to_expires(cputime.utime); 277 break; 278 case CPUCLOCK_SCHED: 279 thread_group_cputime(p, &cputime); 280 *sample = cputime.sum_exec_runtime; 281 break; 282 } 283 return 0; 284 } 285 286 static int posix_cpu_clock_get_task(struct task_struct *tsk, 287 const clockid_t which_clock, 288 struct timespec *tp) 289 { 290 int err = -EINVAL; 291 unsigned long long rtn; 292 293 if (CPUCLOCK_PERTHREAD(which_clock)) { 294 if (same_thread_group(tsk, current)) 295 err = cpu_clock_sample(which_clock, tsk, &rtn); 296 } else { 297 if (tsk == current || thread_group_leader(tsk)) 298 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 299 } 300 301 if (!err) 302 sample_to_timespec(which_clock, rtn, tp); 303 304 return err; 305 } 306 307 308 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) 309 { 310 const pid_t pid = CPUCLOCK_PID(which_clock); 311 int err = -EINVAL; 312 313 if (pid == 0) { 314 /* 315 * Special case constant value for our own clocks. 316 * We don't have to do any lookup to find ourselves. 317 */ 318 err = posix_cpu_clock_get_task(current, which_clock, tp); 319 } else { 320 /* 321 * Find the given PID, and validate that the caller 322 * should be able to see it. 323 */ 324 struct task_struct *p; 325 rcu_read_lock(); 326 p = find_task_by_vpid(pid); 327 if (p) 328 err = posix_cpu_clock_get_task(p, which_clock, tp); 329 rcu_read_unlock(); 330 } 331 332 return err; 333 } 334 335 /* 336 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 337 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 338 * new timer already all-zeros initialized. 339 */ 340 static int posix_cpu_timer_create(struct k_itimer *new_timer) 341 { 342 int ret = 0; 343 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 344 struct task_struct *p; 345 346 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 347 return -EINVAL; 348 349 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 350 351 rcu_read_lock(); 352 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 353 if (pid == 0) { 354 p = current; 355 } else { 356 p = find_task_by_vpid(pid); 357 if (p && !same_thread_group(p, current)) 358 p = NULL; 359 } 360 } else { 361 if (pid == 0) { 362 p = current->group_leader; 363 } else { 364 p = find_task_by_vpid(pid); 365 if (p && !has_group_leader_pid(p)) 366 p = NULL; 367 } 368 } 369 new_timer->it.cpu.task = p; 370 if (p) { 371 get_task_struct(p); 372 } else { 373 ret = -EINVAL; 374 } 375 rcu_read_unlock(); 376 377 return ret; 378 } 379 380 /* 381 * Clean up a CPU-clock timer that is about to be destroyed. 382 * This is called from timer deletion with the timer already locked. 383 * If we return TIMER_RETRY, it's necessary to release the timer's lock 384 * and try again. (This happens when the timer is in the middle of firing.) 385 */ 386 static int posix_cpu_timer_del(struct k_itimer *timer) 387 { 388 int ret = 0; 389 unsigned long flags; 390 struct sighand_struct *sighand; 391 struct task_struct *p = timer->it.cpu.task; 392 393 WARN_ON_ONCE(p == NULL); 394 395 /* 396 * Protect against sighand release/switch in exit/exec and process/ 397 * thread timer list entry concurrent read/writes. 398 */ 399 sighand = lock_task_sighand(p, &flags); 400 if (unlikely(sighand == NULL)) { 401 /* 402 * We raced with the reaping of the task. 403 * The deletion should have cleared us off the list. 404 */ 405 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 406 } else { 407 if (timer->it.cpu.firing) 408 ret = TIMER_RETRY; 409 else 410 list_del(&timer->it.cpu.entry); 411 412 unlock_task_sighand(p, &flags); 413 } 414 415 if (!ret) 416 put_task_struct(p); 417 418 return ret; 419 } 420 421 static void cleanup_timers_list(struct list_head *head) 422 { 423 struct cpu_timer_list *timer, *next; 424 425 list_for_each_entry_safe(timer, next, head, entry) 426 list_del_init(&timer->entry); 427 } 428 429 /* 430 * Clean out CPU timers still ticking when a thread exited. The task 431 * pointer is cleared, and the expiry time is replaced with the residual 432 * time for later timer_gettime calls to return. 433 * This must be called with the siglock held. 434 */ 435 static void cleanup_timers(struct list_head *head) 436 { 437 cleanup_timers_list(head); 438 cleanup_timers_list(++head); 439 cleanup_timers_list(++head); 440 } 441 442 /* 443 * These are both called with the siglock held, when the current thread 444 * is being reaped. When the final (leader) thread in the group is reaped, 445 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 446 */ 447 void posix_cpu_timers_exit(struct task_struct *tsk) 448 { 449 cleanup_timers(tsk->cpu_timers); 450 } 451 void posix_cpu_timers_exit_group(struct task_struct *tsk) 452 { 453 cleanup_timers(tsk->signal->cpu_timers); 454 } 455 456 static inline int expires_gt(cputime_t expires, cputime_t new_exp) 457 { 458 return expires == 0 || expires > new_exp; 459 } 460 461 /* 462 * Insert the timer on the appropriate list before any timers that 463 * expire later. This must be called with the sighand lock held. 464 */ 465 static void arm_timer(struct k_itimer *timer) 466 { 467 struct task_struct *p = timer->it.cpu.task; 468 struct list_head *head, *listpos; 469 struct task_cputime *cputime_expires; 470 struct cpu_timer_list *const nt = &timer->it.cpu; 471 struct cpu_timer_list *next; 472 473 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 474 head = p->cpu_timers; 475 cputime_expires = &p->cputime_expires; 476 } else { 477 head = p->signal->cpu_timers; 478 cputime_expires = &p->signal->cputime_expires; 479 } 480 head += CPUCLOCK_WHICH(timer->it_clock); 481 482 listpos = head; 483 list_for_each_entry(next, head, entry) { 484 if (nt->expires < next->expires) 485 break; 486 listpos = &next->entry; 487 } 488 list_add(&nt->entry, listpos); 489 490 if (listpos == head) { 491 unsigned long long exp = nt->expires; 492 493 /* 494 * We are the new earliest-expiring POSIX 1.b timer, hence 495 * need to update expiration cache. Take into account that 496 * for process timers we share expiration cache with itimers 497 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 498 */ 499 500 switch (CPUCLOCK_WHICH(timer->it_clock)) { 501 case CPUCLOCK_PROF: 502 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp))) 503 cputime_expires->prof_exp = expires_to_cputime(exp); 504 break; 505 case CPUCLOCK_VIRT: 506 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp))) 507 cputime_expires->virt_exp = expires_to_cputime(exp); 508 break; 509 case CPUCLOCK_SCHED: 510 if (cputime_expires->sched_exp == 0 || 511 cputime_expires->sched_exp > exp) 512 cputime_expires->sched_exp = exp; 513 break; 514 } 515 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 516 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 517 else 518 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER); 519 } 520 } 521 522 /* 523 * The timer is locked, fire it and arrange for its reload. 524 */ 525 static void cpu_timer_fire(struct k_itimer *timer) 526 { 527 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 528 /* 529 * User don't want any signal. 530 */ 531 timer->it.cpu.expires = 0; 532 } else if (unlikely(timer->sigq == NULL)) { 533 /* 534 * This a special case for clock_nanosleep, 535 * not a normal timer from sys_timer_create. 536 */ 537 wake_up_process(timer->it_process); 538 timer->it.cpu.expires = 0; 539 } else if (timer->it.cpu.incr == 0) { 540 /* 541 * One-shot timer. Clear it as soon as it's fired. 542 */ 543 posix_timer_event(timer, 0); 544 timer->it.cpu.expires = 0; 545 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 546 /* 547 * The signal did not get queued because the signal 548 * was ignored, so we won't get any callback to 549 * reload the timer. But we need to keep it 550 * ticking in case the signal is deliverable next time. 551 */ 552 posix_cpu_timer_schedule(timer); 553 } 554 } 555 556 /* 557 * Sample a process (thread group) timer for the given group_leader task. 558 * Must be called with task sighand lock held for safe while_each_thread() 559 * traversal. 560 */ 561 static int cpu_timer_sample_group(const clockid_t which_clock, 562 struct task_struct *p, 563 unsigned long long *sample) 564 { 565 struct task_cputime cputime; 566 567 thread_group_cputimer(p, &cputime); 568 switch (CPUCLOCK_WHICH(which_clock)) { 569 default: 570 return -EINVAL; 571 case CPUCLOCK_PROF: 572 *sample = cputime_to_expires(cputime.utime + cputime.stime); 573 break; 574 case CPUCLOCK_VIRT: 575 *sample = cputime_to_expires(cputime.utime); 576 break; 577 case CPUCLOCK_SCHED: 578 *sample = cputime.sum_exec_runtime; 579 break; 580 } 581 return 0; 582 } 583 584 /* 585 * Guts of sys_timer_settime for CPU timers. 586 * This is called with the timer locked and interrupts disabled. 587 * If we return TIMER_RETRY, it's necessary to release the timer's lock 588 * and try again. (This happens when the timer is in the middle of firing.) 589 */ 590 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 591 struct itimerspec *new, struct itimerspec *old) 592 { 593 unsigned long flags; 594 struct sighand_struct *sighand; 595 struct task_struct *p = timer->it.cpu.task; 596 unsigned long long old_expires, new_expires, old_incr, val; 597 int ret; 598 599 WARN_ON_ONCE(p == NULL); 600 601 new_expires = timespec_to_sample(timer->it_clock, &new->it_value); 602 603 /* 604 * Protect against sighand release/switch in exit/exec and p->cpu_timers 605 * and p->signal->cpu_timers read/write in arm_timer() 606 */ 607 sighand = lock_task_sighand(p, &flags); 608 /* 609 * If p has just been reaped, we can no 610 * longer get any information about it at all. 611 */ 612 if (unlikely(sighand == NULL)) { 613 return -ESRCH; 614 } 615 616 /* 617 * Disarm any old timer after extracting its expiry time. 618 */ 619 WARN_ON_ONCE(!irqs_disabled()); 620 621 ret = 0; 622 old_incr = timer->it.cpu.incr; 623 old_expires = timer->it.cpu.expires; 624 if (unlikely(timer->it.cpu.firing)) { 625 timer->it.cpu.firing = -1; 626 ret = TIMER_RETRY; 627 } else 628 list_del_init(&timer->it.cpu.entry); 629 630 /* 631 * We need to sample the current value to convert the new 632 * value from to relative and absolute, and to convert the 633 * old value from absolute to relative. To set a process 634 * timer, we need a sample to balance the thread expiry 635 * times (in arm_timer). With an absolute time, we must 636 * check if it's already passed. In short, we need a sample. 637 */ 638 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 639 cpu_clock_sample(timer->it_clock, p, &val); 640 } else { 641 cpu_timer_sample_group(timer->it_clock, p, &val); 642 } 643 644 if (old) { 645 if (old_expires == 0) { 646 old->it_value.tv_sec = 0; 647 old->it_value.tv_nsec = 0; 648 } else { 649 /* 650 * Update the timer in case it has 651 * overrun already. If it has, 652 * we'll report it as having overrun 653 * and with the next reloaded timer 654 * already ticking, though we are 655 * swallowing that pending 656 * notification here to install the 657 * new setting. 658 */ 659 bump_cpu_timer(timer, val); 660 if (val < timer->it.cpu.expires) { 661 old_expires = timer->it.cpu.expires - val; 662 sample_to_timespec(timer->it_clock, 663 old_expires, 664 &old->it_value); 665 } else { 666 old->it_value.tv_nsec = 1; 667 old->it_value.tv_sec = 0; 668 } 669 } 670 } 671 672 if (unlikely(ret)) { 673 /* 674 * We are colliding with the timer actually firing. 675 * Punt after filling in the timer's old value, and 676 * disable this firing since we are already reporting 677 * it as an overrun (thanks to bump_cpu_timer above). 678 */ 679 unlock_task_sighand(p, &flags); 680 goto out; 681 } 682 683 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 684 new_expires += val; 685 } 686 687 /* 688 * Install the new expiry time (or zero). 689 * For a timer with no notification action, we don't actually 690 * arm the timer (we'll just fake it for timer_gettime). 691 */ 692 timer->it.cpu.expires = new_expires; 693 if (new_expires != 0 && val < new_expires) { 694 arm_timer(timer); 695 } 696 697 unlock_task_sighand(p, &flags); 698 /* 699 * Install the new reload setting, and 700 * set up the signal and overrun bookkeeping. 701 */ 702 timer->it.cpu.incr = timespec_to_sample(timer->it_clock, 703 &new->it_interval); 704 705 /* 706 * This acts as a modification timestamp for the timer, 707 * so any automatic reload attempt will punt on seeing 708 * that we have reset the timer manually. 709 */ 710 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 711 ~REQUEUE_PENDING; 712 timer->it_overrun_last = 0; 713 timer->it_overrun = -1; 714 715 if (new_expires != 0 && !(val < new_expires)) { 716 /* 717 * The designated time already passed, so we notify 718 * immediately, even if the thread never runs to 719 * accumulate more time on this clock. 720 */ 721 cpu_timer_fire(timer); 722 } 723 724 ret = 0; 725 out: 726 if (old) { 727 sample_to_timespec(timer->it_clock, 728 old_incr, &old->it_interval); 729 } 730 731 return ret; 732 } 733 734 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) 735 { 736 unsigned long long now; 737 struct task_struct *p = timer->it.cpu.task; 738 739 WARN_ON_ONCE(p == NULL); 740 741 /* 742 * Easy part: convert the reload time. 743 */ 744 sample_to_timespec(timer->it_clock, 745 timer->it.cpu.incr, &itp->it_interval); 746 747 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ 748 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; 749 return; 750 } 751 752 /* 753 * Sample the clock to take the difference with the expiry time. 754 */ 755 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 756 cpu_clock_sample(timer->it_clock, p, &now); 757 } else { 758 struct sighand_struct *sighand; 759 unsigned long flags; 760 761 /* 762 * Protect against sighand release/switch in exit/exec and 763 * also make timer sampling safe if it ends up calling 764 * thread_group_cputime(). 765 */ 766 sighand = lock_task_sighand(p, &flags); 767 if (unlikely(sighand == NULL)) { 768 /* 769 * The process has been reaped. 770 * We can't even collect a sample any more. 771 * Call the timer disarmed, nothing else to do. 772 */ 773 timer->it.cpu.expires = 0; 774 sample_to_timespec(timer->it_clock, timer->it.cpu.expires, 775 &itp->it_value); 776 return; 777 } else { 778 cpu_timer_sample_group(timer->it_clock, p, &now); 779 unlock_task_sighand(p, &flags); 780 } 781 } 782 783 if (now < timer->it.cpu.expires) { 784 sample_to_timespec(timer->it_clock, 785 timer->it.cpu.expires - now, 786 &itp->it_value); 787 } else { 788 /* 789 * The timer should have expired already, but the firing 790 * hasn't taken place yet. Say it's just about to expire. 791 */ 792 itp->it_value.tv_nsec = 1; 793 itp->it_value.tv_sec = 0; 794 } 795 } 796 797 static unsigned long long 798 check_timers_list(struct list_head *timers, 799 struct list_head *firing, 800 unsigned long long curr) 801 { 802 int maxfire = 20; 803 804 while (!list_empty(timers)) { 805 struct cpu_timer_list *t; 806 807 t = list_first_entry(timers, struct cpu_timer_list, entry); 808 809 if (!--maxfire || curr < t->expires) 810 return t->expires; 811 812 t->firing = 1; 813 list_move_tail(&t->entry, firing); 814 } 815 816 return 0; 817 } 818 819 /* 820 * Check for any per-thread CPU timers that have fired and move them off 821 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 822 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 823 */ 824 static void check_thread_timers(struct task_struct *tsk, 825 struct list_head *firing) 826 { 827 struct list_head *timers = tsk->cpu_timers; 828 struct signal_struct *const sig = tsk->signal; 829 struct task_cputime *tsk_expires = &tsk->cputime_expires; 830 unsigned long long expires; 831 unsigned long soft; 832 833 /* 834 * If cputime_expires is zero, then there are no active 835 * per thread CPU timers. 836 */ 837 if (task_cputime_zero(&tsk->cputime_expires)) 838 return; 839 840 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 841 tsk_expires->prof_exp = expires_to_cputime(expires); 842 843 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 844 tsk_expires->virt_exp = expires_to_cputime(expires); 845 846 tsk_expires->sched_exp = check_timers_list(++timers, firing, 847 tsk->se.sum_exec_runtime); 848 849 /* 850 * Check for the special case thread timers. 851 */ 852 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); 853 if (soft != RLIM_INFINITY) { 854 unsigned long hard = 855 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); 856 857 if (hard != RLIM_INFINITY && 858 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 859 /* 860 * At the hard limit, we just die. 861 * No need to calculate anything else now. 862 */ 863 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 864 return; 865 } 866 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 867 /* 868 * At the soft limit, send a SIGXCPU every second. 869 */ 870 if (soft < hard) { 871 soft += USEC_PER_SEC; 872 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; 873 } 874 printk(KERN_INFO 875 "RT Watchdog Timeout: %s[%d]\n", 876 tsk->comm, task_pid_nr(tsk)); 877 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 878 } 879 } 880 if (task_cputime_zero(tsk_expires)) 881 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 882 } 883 884 static inline void stop_process_timers(struct signal_struct *sig) 885 { 886 struct thread_group_cputimer *cputimer = &sig->cputimer; 887 888 /* Turn off cputimer->running. This is done without locking. */ 889 WRITE_ONCE(cputimer->running, false); 890 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 891 } 892 893 static u32 onecputick; 894 895 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 896 unsigned long long *expires, 897 unsigned long long cur_time, int signo) 898 { 899 if (!it->expires) 900 return; 901 902 if (cur_time >= it->expires) { 903 if (it->incr) { 904 it->expires += it->incr; 905 it->error += it->incr_error; 906 if (it->error >= onecputick) { 907 it->expires -= cputime_one_jiffy; 908 it->error -= onecputick; 909 } 910 } else { 911 it->expires = 0; 912 } 913 914 trace_itimer_expire(signo == SIGPROF ? 915 ITIMER_PROF : ITIMER_VIRTUAL, 916 tsk->signal->leader_pid, cur_time); 917 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 918 } 919 920 if (it->expires && (!*expires || it->expires < *expires)) { 921 *expires = it->expires; 922 } 923 } 924 925 /* 926 * Check for any per-thread CPU timers that have fired and move them 927 * off the tsk->*_timers list onto the firing list. Per-thread timers 928 * have already been taken off. 929 */ 930 static void check_process_timers(struct task_struct *tsk, 931 struct list_head *firing) 932 { 933 struct signal_struct *const sig = tsk->signal; 934 unsigned long long utime, ptime, virt_expires, prof_expires; 935 unsigned long long sum_sched_runtime, sched_expires; 936 struct list_head *timers = sig->cpu_timers; 937 struct task_cputime cputime; 938 unsigned long soft; 939 940 /* 941 * If cputimer is not running, then there are no active 942 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). 943 */ 944 if (!READ_ONCE(tsk->signal->cputimer.running)) 945 return; 946 947 /* 948 * Signify that a thread is checking for process timers. 949 * Write access to this field is protected by the sighand lock. 950 */ 951 sig->cputimer.checking_timer = true; 952 953 /* 954 * Collect the current process totals. 955 */ 956 thread_group_cputimer(tsk, &cputime); 957 utime = cputime_to_expires(cputime.utime); 958 ptime = utime + cputime_to_expires(cputime.stime); 959 sum_sched_runtime = cputime.sum_exec_runtime; 960 961 prof_expires = check_timers_list(timers, firing, ptime); 962 virt_expires = check_timers_list(++timers, firing, utime); 963 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 964 965 /* 966 * Check for the special case process timers. 967 */ 968 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 969 SIGPROF); 970 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 971 SIGVTALRM); 972 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 973 if (soft != RLIM_INFINITY) { 974 unsigned long psecs = cputime_to_secs(ptime); 975 unsigned long hard = 976 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); 977 cputime_t x; 978 if (psecs >= hard) { 979 /* 980 * At the hard limit, we just die. 981 * No need to calculate anything else now. 982 */ 983 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 984 return; 985 } 986 if (psecs >= soft) { 987 /* 988 * At the soft limit, send a SIGXCPU every second. 989 */ 990 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 991 if (soft < hard) { 992 soft++; 993 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 994 } 995 } 996 x = secs_to_cputime(soft); 997 if (!prof_expires || x < prof_expires) { 998 prof_expires = x; 999 } 1000 } 1001 1002 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires); 1003 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires); 1004 sig->cputime_expires.sched_exp = sched_expires; 1005 if (task_cputime_zero(&sig->cputime_expires)) 1006 stop_process_timers(sig); 1007 1008 sig->cputimer.checking_timer = false; 1009 } 1010 1011 /* 1012 * This is called from the signal code (via do_schedule_next_timer) 1013 * when the last timer signal was delivered and we have to reload the timer. 1014 */ 1015 void posix_cpu_timer_schedule(struct k_itimer *timer) 1016 { 1017 struct sighand_struct *sighand; 1018 unsigned long flags; 1019 struct task_struct *p = timer->it.cpu.task; 1020 unsigned long long now; 1021 1022 WARN_ON_ONCE(p == NULL); 1023 1024 /* 1025 * Fetch the current sample and update the timer's expiry time. 1026 */ 1027 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 1028 cpu_clock_sample(timer->it_clock, p, &now); 1029 bump_cpu_timer(timer, now); 1030 if (unlikely(p->exit_state)) 1031 goto out; 1032 1033 /* Protect timer list r/w in arm_timer() */ 1034 sighand = lock_task_sighand(p, &flags); 1035 if (!sighand) 1036 goto out; 1037 } else { 1038 /* 1039 * Protect arm_timer() and timer sampling in case of call to 1040 * thread_group_cputime(). 1041 */ 1042 sighand = lock_task_sighand(p, &flags); 1043 if (unlikely(sighand == NULL)) { 1044 /* 1045 * The process has been reaped. 1046 * We can't even collect a sample any more. 1047 */ 1048 timer->it.cpu.expires = 0; 1049 goto out; 1050 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1051 unlock_task_sighand(p, &flags); 1052 /* Optimizations: if the process is dying, no need to rearm */ 1053 goto out; 1054 } 1055 cpu_timer_sample_group(timer->it_clock, p, &now); 1056 bump_cpu_timer(timer, now); 1057 /* Leave the sighand locked for the call below. */ 1058 } 1059 1060 /* 1061 * Now re-arm for the new expiry time. 1062 */ 1063 WARN_ON_ONCE(!irqs_disabled()); 1064 arm_timer(timer); 1065 unlock_task_sighand(p, &flags); 1066 1067 out: 1068 timer->it_overrun_last = timer->it_overrun; 1069 timer->it_overrun = -1; 1070 ++timer->it_requeue_pending; 1071 } 1072 1073 /** 1074 * task_cputime_expired - Compare two task_cputime entities. 1075 * 1076 * @sample: The task_cputime structure to be checked for expiration. 1077 * @expires: Expiration times, against which @sample will be checked. 1078 * 1079 * Checks @sample against @expires to see if any field of @sample has expired. 1080 * Returns true if any field of the former is greater than the corresponding 1081 * field of the latter if the latter field is set. Otherwise returns false. 1082 */ 1083 static inline int task_cputime_expired(const struct task_cputime *sample, 1084 const struct task_cputime *expires) 1085 { 1086 if (expires->utime && sample->utime >= expires->utime) 1087 return 1; 1088 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1089 return 1; 1090 if (expires->sum_exec_runtime != 0 && 1091 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1092 return 1; 1093 return 0; 1094 } 1095 1096 /** 1097 * fastpath_timer_check - POSIX CPU timers fast path. 1098 * 1099 * @tsk: The task (thread) being checked. 1100 * 1101 * Check the task and thread group timers. If both are zero (there are no 1102 * timers set) return false. Otherwise snapshot the task and thread group 1103 * timers and compare them with the corresponding expiration times. Return 1104 * true if a timer has expired, else return false. 1105 */ 1106 static inline int fastpath_timer_check(struct task_struct *tsk) 1107 { 1108 struct signal_struct *sig; 1109 1110 if (!task_cputime_zero(&tsk->cputime_expires)) { 1111 struct task_cputime task_sample; 1112 1113 task_cputime(tsk, &task_sample.utime, &task_sample.stime); 1114 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; 1115 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1116 return 1; 1117 } 1118 1119 sig = tsk->signal; 1120 /* 1121 * Check if thread group timers expired when the cputimer is 1122 * running and no other thread in the group is already checking 1123 * for thread group cputimers. These fields are read without the 1124 * sighand lock. However, this is fine because this is meant to 1125 * be a fastpath heuristic to determine whether we should try to 1126 * acquire the sighand lock to check/handle timers. 1127 * 1128 * In the worst case scenario, if 'running' or 'checking_timer' gets 1129 * set but the current thread doesn't see the change yet, we'll wait 1130 * until the next thread in the group gets a scheduler interrupt to 1131 * handle the timer. This isn't an issue in practice because these 1132 * types of delays with signals actually getting sent are expected. 1133 */ 1134 if (READ_ONCE(sig->cputimer.running) && 1135 !READ_ONCE(sig->cputimer.checking_timer)) { 1136 struct task_cputime group_sample; 1137 1138 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1139 1140 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1141 return 1; 1142 } 1143 1144 return 0; 1145 } 1146 1147 /* 1148 * This is called from the timer interrupt handler. The irq handler has 1149 * already updated our counts. We need to check if any timers fire now. 1150 * Interrupts are disabled. 1151 */ 1152 void run_posix_cpu_timers(struct task_struct *tsk) 1153 { 1154 LIST_HEAD(firing); 1155 struct k_itimer *timer, *next; 1156 unsigned long flags; 1157 1158 WARN_ON_ONCE(!irqs_disabled()); 1159 1160 /* 1161 * The fast path checks that there are no expired thread or thread 1162 * group timers. If that's so, just return. 1163 */ 1164 if (!fastpath_timer_check(tsk)) 1165 return; 1166 1167 if (!lock_task_sighand(tsk, &flags)) 1168 return; 1169 /* 1170 * Here we take off tsk->signal->cpu_timers[N] and 1171 * tsk->cpu_timers[N] all the timers that are firing, and 1172 * put them on the firing list. 1173 */ 1174 check_thread_timers(tsk, &firing); 1175 1176 check_process_timers(tsk, &firing); 1177 1178 /* 1179 * We must release these locks before taking any timer's lock. 1180 * There is a potential race with timer deletion here, as the 1181 * siglock now protects our private firing list. We have set 1182 * the firing flag in each timer, so that a deletion attempt 1183 * that gets the timer lock before we do will give it up and 1184 * spin until we've taken care of that timer below. 1185 */ 1186 unlock_task_sighand(tsk, &flags); 1187 1188 /* 1189 * Now that all the timers on our list have the firing flag, 1190 * no one will touch their list entries but us. We'll take 1191 * each timer's lock before clearing its firing flag, so no 1192 * timer call will interfere. 1193 */ 1194 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1195 int cpu_firing; 1196 1197 spin_lock(&timer->it_lock); 1198 list_del_init(&timer->it.cpu.entry); 1199 cpu_firing = timer->it.cpu.firing; 1200 timer->it.cpu.firing = 0; 1201 /* 1202 * The firing flag is -1 if we collided with a reset 1203 * of the timer, which already reported this 1204 * almost-firing as an overrun. So don't generate an event. 1205 */ 1206 if (likely(cpu_firing >= 0)) 1207 cpu_timer_fire(timer); 1208 spin_unlock(&timer->it_lock); 1209 } 1210 } 1211 1212 /* 1213 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1214 * The tsk->sighand->siglock must be held by the caller. 1215 */ 1216 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1217 cputime_t *newval, cputime_t *oldval) 1218 { 1219 unsigned long long now; 1220 1221 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1222 cpu_timer_sample_group(clock_idx, tsk, &now); 1223 1224 if (oldval) { 1225 /* 1226 * We are setting itimer. The *oldval is absolute and we update 1227 * it to be relative, *newval argument is relative and we update 1228 * it to be absolute. 1229 */ 1230 if (*oldval) { 1231 if (*oldval <= now) { 1232 /* Just about to fire. */ 1233 *oldval = cputime_one_jiffy; 1234 } else { 1235 *oldval -= now; 1236 } 1237 } 1238 1239 if (!*newval) 1240 return; 1241 *newval += now; 1242 } 1243 1244 /* 1245 * Update expiration cache if we are the earliest timer, or eventually 1246 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1247 */ 1248 switch (clock_idx) { 1249 case CPUCLOCK_PROF: 1250 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1251 tsk->signal->cputime_expires.prof_exp = *newval; 1252 break; 1253 case CPUCLOCK_VIRT: 1254 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1255 tsk->signal->cputime_expires.virt_exp = *newval; 1256 break; 1257 } 1258 1259 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); 1260 } 1261 1262 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1263 struct timespec *rqtp, struct itimerspec *it) 1264 { 1265 struct k_itimer timer; 1266 int error; 1267 1268 /* 1269 * Set up a temporary timer and then wait for it to go off. 1270 */ 1271 memset(&timer, 0, sizeof timer); 1272 spin_lock_init(&timer.it_lock); 1273 timer.it_clock = which_clock; 1274 timer.it_overrun = -1; 1275 error = posix_cpu_timer_create(&timer); 1276 timer.it_process = current; 1277 if (!error) { 1278 static struct itimerspec zero_it; 1279 1280 memset(it, 0, sizeof *it); 1281 it->it_value = *rqtp; 1282 1283 spin_lock_irq(&timer.it_lock); 1284 error = posix_cpu_timer_set(&timer, flags, it, NULL); 1285 if (error) { 1286 spin_unlock_irq(&timer.it_lock); 1287 return error; 1288 } 1289 1290 while (!signal_pending(current)) { 1291 if (timer.it.cpu.expires == 0) { 1292 /* 1293 * Our timer fired and was reset, below 1294 * deletion can not fail. 1295 */ 1296 posix_cpu_timer_del(&timer); 1297 spin_unlock_irq(&timer.it_lock); 1298 return 0; 1299 } 1300 1301 /* 1302 * Block until cpu_timer_fire (or a signal) wakes us. 1303 */ 1304 __set_current_state(TASK_INTERRUPTIBLE); 1305 spin_unlock_irq(&timer.it_lock); 1306 schedule(); 1307 spin_lock_irq(&timer.it_lock); 1308 } 1309 1310 /* 1311 * We were interrupted by a signal. 1312 */ 1313 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); 1314 error = posix_cpu_timer_set(&timer, 0, &zero_it, it); 1315 if (!error) { 1316 /* 1317 * Timer is now unarmed, deletion can not fail. 1318 */ 1319 posix_cpu_timer_del(&timer); 1320 } 1321 spin_unlock_irq(&timer.it_lock); 1322 1323 while (error == TIMER_RETRY) { 1324 /* 1325 * We need to handle case when timer was or is in the 1326 * middle of firing. In other cases we already freed 1327 * resources. 1328 */ 1329 spin_lock_irq(&timer.it_lock); 1330 error = posix_cpu_timer_del(&timer); 1331 spin_unlock_irq(&timer.it_lock); 1332 } 1333 1334 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { 1335 /* 1336 * It actually did fire already. 1337 */ 1338 return 0; 1339 } 1340 1341 error = -ERESTART_RESTARTBLOCK; 1342 } 1343 1344 return error; 1345 } 1346 1347 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1348 1349 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1350 struct timespec *rqtp, struct timespec __user *rmtp) 1351 { 1352 struct restart_block *restart_block = ¤t->restart_block; 1353 struct itimerspec it; 1354 int error; 1355 1356 /* 1357 * Diagnose required errors first. 1358 */ 1359 if (CPUCLOCK_PERTHREAD(which_clock) && 1360 (CPUCLOCK_PID(which_clock) == 0 || 1361 CPUCLOCK_PID(which_clock) == current->pid)) 1362 return -EINVAL; 1363 1364 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); 1365 1366 if (error == -ERESTART_RESTARTBLOCK) { 1367 1368 if (flags & TIMER_ABSTIME) 1369 return -ERESTARTNOHAND; 1370 /* 1371 * Report back to the user the time still remaining. 1372 */ 1373 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1374 return -EFAULT; 1375 1376 restart_block->fn = posix_cpu_nsleep_restart; 1377 restart_block->nanosleep.clockid = which_clock; 1378 restart_block->nanosleep.rmtp = rmtp; 1379 restart_block->nanosleep.expires = timespec_to_ns(rqtp); 1380 } 1381 return error; 1382 } 1383 1384 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1385 { 1386 clockid_t which_clock = restart_block->nanosleep.clockid; 1387 struct timespec t; 1388 struct itimerspec it; 1389 int error; 1390 1391 t = ns_to_timespec(restart_block->nanosleep.expires); 1392 1393 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); 1394 1395 if (error == -ERESTART_RESTARTBLOCK) { 1396 struct timespec __user *rmtp = restart_block->nanosleep.rmtp; 1397 /* 1398 * Report back to the user the time still remaining. 1399 */ 1400 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1401 return -EFAULT; 1402 1403 restart_block->nanosleep.expires = timespec_to_ns(&t); 1404 } 1405 return error; 1406 1407 } 1408 1409 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1410 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1411 1412 static int process_cpu_clock_getres(const clockid_t which_clock, 1413 struct timespec *tp) 1414 { 1415 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1416 } 1417 static int process_cpu_clock_get(const clockid_t which_clock, 1418 struct timespec *tp) 1419 { 1420 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1421 } 1422 static int process_cpu_timer_create(struct k_itimer *timer) 1423 { 1424 timer->it_clock = PROCESS_CLOCK; 1425 return posix_cpu_timer_create(timer); 1426 } 1427 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1428 struct timespec *rqtp, 1429 struct timespec __user *rmtp) 1430 { 1431 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); 1432 } 1433 static long process_cpu_nsleep_restart(struct restart_block *restart_block) 1434 { 1435 return -EINVAL; 1436 } 1437 static int thread_cpu_clock_getres(const clockid_t which_clock, 1438 struct timespec *tp) 1439 { 1440 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1441 } 1442 static int thread_cpu_clock_get(const clockid_t which_clock, 1443 struct timespec *tp) 1444 { 1445 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1446 } 1447 static int thread_cpu_timer_create(struct k_itimer *timer) 1448 { 1449 timer->it_clock = THREAD_CLOCK; 1450 return posix_cpu_timer_create(timer); 1451 } 1452 1453 struct k_clock clock_posix_cpu = { 1454 .clock_getres = posix_cpu_clock_getres, 1455 .clock_set = posix_cpu_clock_set, 1456 .clock_get = posix_cpu_clock_get, 1457 .timer_create = posix_cpu_timer_create, 1458 .nsleep = posix_cpu_nsleep, 1459 .nsleep_restart = posix_cpu_nsleep_restart, 1460 .timer_set = posix_cpu_timer_set, 1461 .timer_del = posix_cpu_timer_del, 1462 .timer_get = posix_cpu_timer_get, 1463 }; 1464 1465 static __init int init_posix_cpu_timers(void) 1466 { 1467 struct k_clock process = { 1468 .clock_getres = process_cpu_clock_getres, 1469 .clock_get = process_cpu_clock_get, 1470 .timer_create = process_cpu_timer_create, 1471 .nsleep = process_cpu_nsleep, 1472 .nsleep_restart = process_cpu_nsleep_restart, 1473 }; 1474 struct k_clock thread = { 1475 .clock_getres = thread_cpu_clock_getres, 1476 .clock_get = thread_cpu_clock_get, 1477 .timer_create = thread_cpu_timer_create, 1478 }; 1479 struct timespec ts; 1480 1481 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1482 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1483 1484 cputime_to_timespec(cputime_one_jiffy, &ts); 1485 onecputick = ts.tv_nsec; 1486 WARN_ON(ts.tv_sec != 0); 1487 1488 return 0; 1489 } 1490 __initcall(init_posix_cpu_timers); 1491