xref: /linux/kernel/time/posix-cpu-timers.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <linux/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/tick.h>
13 #include <linux/workqueue.h>
14 
15 /*
16  * Called after updating RLIMIT_CPU to run cpu timer and update
17  * tsk->signal->cputime_expires expiration cache if necessary. Needs
18  * siglock protection since other code may update expiration cache as
19  * well.
20  */
21 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
22 {
23 	cputime_t cputime = secs_to_cputime(rlim_new);
24 
25 	spin_lock_irq(&task->sighand->siglock);
26 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
27 	spin_unlock_irq(&task->sighand->siglock);
28 }
29 
30 static int check_clock(const clockid_t which_clock)
31 {
32 	int error = 0;
33 	struct task_struct *p;
34 	const pid_t pid = CPUCLOCK_PID(which_clock);
35 
36 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
37 		return -EINVAL;
38 
39 	if (pid == 0)
40 		return 0;
41 
42 	rcu_read_lock();
43 	p = find_task_by_vpid(pid);
44 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
45 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
46 		error = -EINVAL;
47 	}
48 	rcu_read_unlock();
49 
50 	return error;
51 }
52 
53 static inline unsigned long long
54 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
55 {
56 	unsigned long long ret;
57 
58 	ret = 0;		/* high half always zero when .cpu used */
59 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
60 		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
61 	} else {
62 		ret = cputime_to_expires(timespec_to_cputime(tp));
63 	}
64 	return ret;
65 }
66 
67 static void sample_to_timespec(const clockid_t which_clock,
68 			       unsigned long long expires,
69 			       struct timespec *tp)
70 {
71 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
72 		*tp = ns_to_timespec(expires);
73 	else
74 		cputime_to_timespec((__force cputime_t)expires, tp);
75 }
76 
77 /*
78  * Update expiry time from increment, and increase overrun count,
79  * given the current clock sample.
80  */
81 static void bump_cpu_timer(struct k_itimer *timer,
82 			   unsigned long long now)
83 {
84 	int i;
85 	unsigned long long delta, incr;
86 
87 	if (timer->it.cpu.incr == 0)
88 		return;
89 
90 	if (now < timer->it.cpu.expires)
91 		return;
92 
93 	incr = timer->it.cpu.incr;
94 	delta = now + incr - timer->it.cpu.expires;
95 
96 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
97 	for (i = 0; incr < delta - incr; i++)
98 		incr = incr << 1;
99 
100 	for (; i >= 0; incr >>= 1, i--) {
101 		if (delta < incr)
102 			continue;
103 
104 		timer->it.cpu.expires += incr;
105 		timer->it_overrun += 1 << i;
106 		delta -= incr;
107 	}
108 }
109 
110 /**
111  * task_cputime_zero - Check a task_cputime struct for all zero fields.
112  *
113  * @cputime:	The struct to compare.
114  *
115  * Checks @cputime to see if all fields are zero.  Returns true if all fields
116  * are zero, false if any field is nonzero.
117  */
118 static inline int task_cputime_zero(const struct task_cputime *cputime)
119 {
120 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
121 		return 1;
122 	return 0;
123 }
124 
125 static inline unsigned long long prof_ticks(struct task_struct *p)
126 {
127 	cputime_t utime, stime;
128 
129 	task_cputime(p, &utime, &stime);
130 
131 	return cputime_to_expires(utime + stime);
132 }
133 static inline unsigned long long virt_ticks(struct task_struct *p)
134 {
135 	cputime_t utime, stime;
136 
137 	task_cputime(p, &utime, &stime);
138 
139 	return cputime_to_expires(utime);
140 }
141 
142 static int
143 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
144 {
145 	int error = check_clock(which_clock);
146 	if (!error) {
147 		tp->tv_sec = 0;
148 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
149 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
150 			/*
151 			 * If sched_clock is using a cycle counter, we
152 			 * don't have any idea of its true resolution
153 			 * exported, but it is much more than 1s/HZ.
154 			 */
155 			tp->tv_nsec = 1;
156 		}
157 	}
158 	return error;
159 }
160 
161 static int
162 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
163 {
164 	/*
165 	 * You can never reset a CPU clock, but we check for other errors
166 	 * in the call before failing with EPERM.
167 	 */
168 	int error = check_clock(which_clock);
169 	if (error == 0) {
170 		error = -EPERM;
171 	}
172 	return error;
173 }
174 
175 
176 /*
177  * Sample a per-thread clock for the given task.
178  */
179 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
180 			    unsigned long long *sample)
181 {
182 	switch (CPUCLOCK_WHICH(which_clock)) {
183 	default:
184 		return -EINVAL;
185 	case CPUCLOCK_PROF:
186 		*sample = prof_ticks(p);
187 		break;
188 	case CPUCLOCK_VIRT:
189 		*sample = virt_ticks(p);
190 		break;
191 	case CPUCLOCK_SCHED:
192 		*sample = task_sched_runtime(p);
193 		break;
194 	}
195 	return 0;
196 }
197 
198 /*
199  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
200  * to avoid race conditions with concurrent updates to cputime.
201  */
202 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
203 {
204 	u64 curr_cputime;
205 retry:
206 	curr_cputime = atomic64_read(cputime);
207 	if (sum_cputime > curr_cputime) {
208 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
209 			goto retry;
210 	}
211 }
212 
213 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
214 {
215 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
216 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
217 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
218 }
219 
220 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
221 static inline void sample_cputime_atomic(struct task_cputime *times,
222 					 struct task_cputime_atomic *atomic_times)
223 {
224 	times->utime = atomic64_read(&atomic_times->utime);
225 	times->stime = atomic64_read(&atomic_times->stime);
226 	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
227 }
228 
229 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
230 {
231 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
232 	struct task_cputime sum;
233 
234 	/* Check if cputimer isn't running. This is accessed without locking. */
235 	if (!READ_ONCE(cputimer->running)) {
236 		/*
237 		 * The POSIX timer interface allows for absolute time expiry
238 		 * values through the TIMER_ABSTIME flag, therefore we have
239 		 * to synchronize the timer to the clock every time we start it.
240 		 */
241 		thread_group_cputime(tsk, &sum);
242 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
243 
244 		/*
245 		 * We're setting cputimer->running without a lock. Ensure
246 		 * this only gets written to in one operation. We set
247 		 * running after update_gt_cputime() as a small optimization,
248 		 * but barriers are not required because update_gt_cputime()
249 		 * can handle concurrent updates.
250 		 */
251 		WRITE_ONCE(cputimer->running, true);
252 	}
253 	sample_cputime_atomic(times, &cputimer->cputime_atomic);
254 }
255 
256 /*
257  * Sample a process (thread group) clock for the given group_leader task.
258  * Must be called with task sighand lock held for safe while_each_thread()
259  * traversal.
260  */
261 static int cpu_clock_sample_group(const clockid_t which_clock,
262 				  struct task_struct *p,
263 				  unsigned long long *sample)
264 {
265 	struct task_cputime cputime;
266 
267 	switch (CPUCLOCK_WHICH(which_clock)) {
268 	default:
269 		return -EINVAL;
270 	case CPUCLOCK_PROF:
271 		thread_group_cputime(p, &cputime);
272 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
273 		break;
274 	case CPUCLOCK_VIRT:
275 		thread_group_cputime(p, &cputime);
276 		*sample = cputime_to_expires(cputime.utime);
277 		break;
278 	case CPUCLOCK_SCHED:
279 		thread_group_cputime(p, &cputime);
280 		*sample = cputime.sum_exec_runtime;
281 		break;
282 	}
283 	return 0;
284 }
285 
286 static int posix_cpu_clock_get_task(struct task_struct *tsk,
287 				    const clockid_t which_clock,
288 				    struct timespec *tp)
289 {
290 	int err = -EINVAL;
291 	unsigned long long rtn;
292 
293 	if (CPUCLOCK_PERTHREAD(which_clock)) {
294 		if (same_thread_group(tsk, current))
295 			err = cpu_clock_sample(which_clock, tsk, &rtn);
296 	} else {
297 		if (tsk == current || thread_group_leader(tsk))
298 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
299 	}
300 
301 	if (!err)
302 		sample_to_timespec(which_clock, rtn, tp);
303 
304 	return err;
305 }
306 
307 
308 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
309 {
310 	const pid_t pid = CPUCLOCK_PID(which_clock);
311 	int err = -EINVAL;
312 
313 	if (pid == 0) {
314 		/*
315 		 * Special case constant value for our own clocks.
316 		 * We don't have to do any lookup to find ourselves.
317 		 */
318 		err = posix_cpu_clock_get_task(current, which_clock, tp);
319 	} else {
320 		/*
321 		 * Find the given PID, and validate that the caller
322 		 * should be able to see it.
323 		 */
324 		struct task_struct *p;
325 		rcu_read_lock();
326 		p = find_task_by_vpid(pid);
327 		if (p)
328 			err = posix_cpu_clock_get_task(p, which_clock, tp);
329 		rcu_read_unlock();
330 	}
331 
332 	return err;
333 }
334 
335 /*
336  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
337  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
338  * new timer already all-zeros initialized.
339  */
340 static int posix_cpu_timer_create(struct k_itimer *new_timer)
341 {
342 	int ret = 0;
343 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
344 	struct task_struct *p;
345 
346 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
347 		return -EINVAL;
348 
349 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
350 
351 	rcu_read_lock();
352 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
353 		if (pid == 0) {
354 			p = current;
355 		} else {
356 			p = find_task_by_vpid(pid);
357 			if (p && !same_thread_group(p, current))
358 				p = NULL;
359 		}
360 	} else {
361 		if (pid == 0) {
362 			p = current->group_leader;
363 		} else {
364 			p = find_task_by_vpid(pid);
365 			if (p && !has_group_leader_pid(p))
366 				p = NULL;
367 		}
368 	}
369 	new_timer->it.cpu.task = p;
370 	if (p) {
371 		get_task_struct(p);
372 	} else {
373 		ret = -EINVAL;
374 	}
375 	rcu_read_unlock();
376 
377 	return ret;
378 }
379 
380 /*
381  * Clean up a CPU-clock timer that is about to be destroyed.
382  * This is called from timer deletion with the timer already locked.
383  * If we return TIMER_RETRY, it's necessary to release the timer's lock
384  * and try again.  (This happens when the timer is in the middle of firing.)
385  */
386 static int posix_cpu_timer_del(struct k_itimer *timer)
387 {
388 	int ret = 0;
389 	unsigned long flags;
390 	struct sighand_struct *sighand;
391 	struct task_struct *p = timer->it.cpu.task;
392 
393 	WARN_ON_ONCE(p == NULL);
394 
395 	/*
396 	 * Protect against sighand release/switch in exit/exec and process/
397 	 * thread timer list entry concurrent read/writes.
398 	 */
399 	sighand = lock_task_sighand(p, &flags);
400 	if (unlikely(sighand == NULL)) {
401 		/*
402 		 * We raced with the reaping of the task.
403 		 * The deletion should have cleared us off the list.
404 		 */
405 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
406 	} else {
407 		if (timer->it.cpu.firing)
408 			ret = TIMER_RETRY;
409 		else
410 			list_del(&timer->it.cpu.entry);
411 
412 		unlock_task_sighand(p, &flags);
413 	}
414 
415 	if (!ret)
416 		put_task_struct(p);
417 
418 	return ret;
419 }
420 
421 static void cleanup_timers_list(struct list_head *head)
422 {
423 	struct cpu_timer_list *timer, *next;
424 
425 	list_for_each_entry_safe(timer, next, head, entry)
426 		list_del_init(&timer->entry);
427 }
428 
429 /*
430  * Clean out CPU timers still ticking when a thread exited.  The task
431  * pointer is cleared, and the expiry time is replaced with the residual
432  * time for later timer_gettime calls to return.
433  * This must be called with the siglock held.
434  */
435 static void cleanup_timers(struct list_head *head)
436 {
437 	cleanup_timers_list(head);
438 	cleanup_timers_list(++head);
439 	cleanup_timers_list(++head);
440 }
441 
442 /*
443  * These are both called with the siglock held, when the current thread
444  * is being reaped.  When the final (leader) thread in the group is reaped,
445  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
446  */
447 void posix_cpu_timers_exit(struct task_struct *tsk)
448 {
449 	cleanup_timers(tsk->cpu_timers);
450 }
451 void posix_cpu_timers_exit_group(struct task_struct *tsk)
452 {
453 	cleanup_timers(tsk->signal->cpu_timers);
454 }
455 
456 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
457 {
458 	return expires == 0 || expires > new_exp;
459 }
460 
461 /*
462  * Insert the timer on the appropriate list before any timers that
463  * expire later.  This must be called with the sighand lock held.
464  */
465 static void arm_timer(struct k_itimer *timer)
466 {
467 	struct task_struct *p = timer->it.cpu.task;
468 	struct list_head *head, *listpos;
469 	struct task_cputime *cputime_expires;
470 	struct cpu_timer_list *const nt = &timer->it.cpu;
471 	struct cpu_timer_list *next;
472 
473 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
474 		head = p->cpu_timers;
475 		cputime_expires = &p->cputime_expires;
476 	} else {
477 		head = p->signal->cpu_timers;
478 		cputime_expires = &p->signal->cputime_expires;
479 	}
480 	head += CPUCLOCK_WHICH(timer->it_clock);
481 
482 	listpos = head;
483 	list_for_each_entry(next, head, entry) {
484 		if (nt->expires < next->expires)
485 			break;
486 		listpos = &next->entry;
487 	}
488 	list_add(&nt->entry, listpos);
489 
490 	if (listpos == head) {
491 		unsigned long long exp = nt->expires;
492 
493 		/*
494 		 * We are the new earliest-expiring POSIX 1.b timer, hence
495 		 * need to update expiration cache. Take into account that
496 		 * for process timers we share expiration cache with itimers
497 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
498 		 */
499 
500 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
501 		case CPUCLOCK_PROF:
502 			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
503 				cputime_expires->prof_exp = expires_to_cputime(exp);
504 			break;
505 		case CPUCLOCK_VIRT:
506 			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
507 				cputime_expires->virt_exp = expires_to_cputime(exp);
508 			break;
509 		case CPUCLOCK_SCHED:
510 			if (cputime_expires->sched_exp == 0 ||
511 			    cputime_expires->sched_exp > exp)
512 				cputime_expires->sched_exp = exp;
513 			break;
514 		}
515 		if (CPUCLOCK_PERTHREAD(timer->it_clock))
516 			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
517 		else
518 			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
519 	}
520 }
521 
522 /*
523  * The timer is locked, fire it and arrange for its reload.
524  */
525 static void cpu_timer_fire(struct k_itimer *timer)
526 {
527 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
528 		/*
529 		 * User don't want any signal.
530 		 */
531 		timer->it.cpu.expires = 0;
532 	} else if (unlikely(timer->sigq == NULL)) {
533 		/*
534 		 * This a special case for clock_nanosleep,
535 		 * not a normal timer from sys_timer_create.
536 		 */
537 		wake_up_process(timer->it_process);
538 		timer->it.cpu.expires = 0;
539 	} else if (timer->it.cpu.incr == 0) {
540 		/*
541 		 * One-shot timer.  Clear it as soon as it's fired.
542 		 */
543 		posix_timer_event(timer, 0);
544 		timer->it.cpu.expires = 0;
545 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
546 		/*
547 		 * The signal did not get queued because the signal
548 		 * was ignored, so we won't get any callback to
549 		 * reload the timer.  But we need to keep it
550 		 * ticking in case the signal is deliverable next time.
551 		 */
552 		posix_cpu_timer_schedule(timer);
553 	}
554 }
555 
556 /*
557  * Sample a process (thread group) timer for the given group_leader task.
558  * Must be called with task sighand lock held for safe while_each_thread()
559  * traversal.
560  */
561 static int cpu_timer_sample_group(const clockid_t which_clock,
562 				  struct task_struct *p,
563 				  unsigned long long *sample)
564 {
565 	struct task_cputime cputime;
566 
567 	thread_group_cputimer(p, &cputime);
568 	switch (CPUCLOCK_WHICH(which_clock)) {
569 	default:
570 		return -EINVAL;
571 	case CPUCLOCK_PROF:
572 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
573 		break;
574 	case CPUCLOCK_VIRT:
575 		*sample = cputime_to_expires(cputime.utime);
576 		break;
577 	case CPUCLOCK_SCHED:
578 		*sample = cputime.sum_exec_runtime;
579 		break;
580 	}
581 	return 0;
582 }
583 
584 /*
585  * Guts of sys_timer_settime for CPU timers.
586  * This is called with the timer locked and interrupts disabled.
587  * If we return TIMER_RETRY, it's necessary to release the timer's lock
588  * and try again.  (This happens when the timer is in the middle of firing.)
589  */
590 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
591 			       struct itimerspec *new, struct itimerspec *old)
592 {
593 	unsigned long flags;
594 	struct sighand_struct *sighand;
595 	struct task_struct *p = timer->it.cpu.task;
596 	unsigned long long old_expires, new_expires, old_incr, val;
597 	int ret;
598 
599 	WARN_ON_ONCE(p == NULL);
600 
601 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
602 
603 	/*
604 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
605 	 * and p->signal->cpu_timers read/write in arm_timer()
606 	 */
607 	sighand = lock_task_sighand(p, &flags);
608 	/*
609 	 * If p has just been reaped, we can no
610 	 * longer get any information about it at all.
611 	 */
612 	if (unlikely(sighand == NULL)) {
613 		return -ESRCH;
614 	}
615 
616 	/*
617 	 * Disarm any old timer after extracting its expiry time.
618 	 */
619 	WARN_ON_ONCE(!irqs_disabled());
620 
621 	ret = 0;
622 	old_incr = timer->it.cpu.incr;
623 	old_expires = timer->it.cpu.expires;
624 	if (unlikely(timer->it.cpu.firing)) {
625 		timer->it.cpu.firing = -1;
626 		ret = TIMER_RETRY;
627 	} else
628 		list_del_init(&timer->it.cpu.entry);
629 
630 	/*
631 	 * We need to sample the current value to convert the new
632 	 * value from to relative and absolute, and to convert the
633 	 * old value from absolute to relative.  To set a process
634 	 * timer, we need a sample to balance the thread expiry
635 	 * times (in arm_timer).  With an absolute time, we must
636 	 * check if it's already passed.  In short, we need a sample.
637 	 */
638 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
639 		cpu_clock_sample(timer->it_clock, p, &val);
640 	} else {
641 		cpu_timer_sample_group(timer->it_clock, p, &val);
642 	}
643 
644 	if (old) {
645 		if (old_expires == 0) {
646 			old->it_value.tv_sec = 0;
647 			old->it_value.tv_nsec = 0;
648 		} else {
649 			/*
650 			 * Update the timer in case it has
651 			 * overrun already.  If it has,
652 			 * we'll report it as having overrun
653 			 * and with the next reloaded timer
654 			 * already ticking, though we are
655 			 * swallowing that pending
656 			 * notification here to install the
657 			 * new setting.
658 			 */
659 			bump_cpu_timer(timer, val);
660 			if (val < timer->it.cpu.expires) {
661 				old_expires = timer->it.cpu.expires - val;
662 				sample_to_timespec(timer->it_clock,
663 						   old_expires,
664 						   &old->it_value);
665 			} else {
666 				old->it_value.tv_nsec = 1;
667 				old->it_value.tv_sec = 0;
668 			}
669 		}
670 	}
671 
672 	if (unlikely(ret)) {
673 		/*
674 		 * We are colliding with the timer actually firing.
675 		 * Punt after filling in the timer's old value, and
676 		 * disable this firing since we are already reporting
677 		 * it as an overrun (thanks to bump_cpu_timer above).
678 		 */
679 		unlock_task_sighand(p, &flags);
680 		goto out;
681 	}
682 
683 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
684 		new_expires += val;
685 	}
686 
687 	/*
688 	 * Install the new expiry time (or zero).
689 	 * For a timer with no notification action, we don't actually
690 	 * arm the timer (we'll just fake it for timer_gettime).
691 	 */
692 	timer->it.cpu.expires = new_expires;
693 	if (new_expires != 0 && val < new_expires) {
694 		arm_timer(timer);
695 	}
696 
697 	unlock_task_sighand(p, &flags);
698 	/*
699 	 * Install the new reload setting, and
700 	 * set up the signal and overrun bookkeeping.
701 	 */
702 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
703 						&new->it_interval);
704 
705 	/*
706 	 * This acts as a modification timestamp for the timer,
707 	 * so any automatic reload attempt will punt on seeing
708 	 * that we have reset the timer manually.
709 	 */
710 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
711 		~REQUEUE_PENDING;
712 	timer->it_overrun_last = 0;
713 	timer->it_overrun = -1;
714 
715 	if (new_expires != 0 && !(val < new_expires)) {
716 		/*
717 		 * The designated time already passed, so we notify
718 		 * immediately, even if the thread never runs to
719 		 * accumulate more time on this clock.
720 		 */
721 		cpu_timer_fire(timer);
722 	}
723 
724 	ret = 0;
725  out:
726 	if (old) {
727 		sample_to_timespec(timer->it_clock,
728 				   old_incr, &old->it_interval);
729 	}
730 
731 	return ret;
732 }
733 
734 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
735 {
736 	unsigned long long now;
737 	struct task_struct *p = timer->it.cpu.task;
738 
739 	WARN_ON_ONCE(p == NULL);
740 
741 	/*
742 	 * Easy part: convert the reload time.
743 	 */
744 	sample_to_timespec(timer->it_clock,
745 			   timer->it.cpu.incr, &itp->it_interval);
746 
747 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
748 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
749 		return;
750 	}
751 
752 	/*
753 	 * Sample the clock to take the difference with the expiry time.
754 	 */
755 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
756 		cpu_clock_sample(timer->it_clock, p, &now);
757 	} else {
758 		struct sighand_struct *sighand;
759 		unsigned long flags;
760 
761 		/*
762 		 * Protect against sighand release/switch in exit/exec and
763 		 * also make timer sampling safe if it ends up calling
764 		 * thread_group_cputime().
765 		 */
766 		sighand = lock_task_sighand(p, &flags);
767 		if (unlikely(sighand == NULL)) {
768 			/*
769 			 * The process has been reaped.
770 			 * We can't even collect a sample any more.
771 			 * Call the timer disarmed, nothing else to do.
772 			 */
773 			timer->it.cpu.expires = 0;
774 			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
775 					   &itp->it_value);
776 			return;
777 		} else {
778 			cpu_timer_sample_group(timer->it_clock, p, &now);
779 			unlock_task_sighand(p, &flags);
780 		}
781 	}
782 
783 	if (now < timer->it.cpu.expires) {
784 		sample_to_timespec(timer->it_clock,
785 				   timer->it.cpu.expires - now,
786 				   &itp->it_value);
787 	} else {
788 		/*
789 		 * The timer should have expired already, but the firing
790 		 * hasn't taken place yet.  Say it's just about to expire.
791 		 */
792 		itp->it_value.tv_nsec = 1;
793 		itp->it_value.tv_sec = 0;
794 	}
795 }
796 
797 static unsigned long long
798 check_timers_list(struct list_head *timers,
799 		  struct list_head *firing,
800 		  unsigned long long curr)
801 {
802 	int maxfire = 20;
803 
804 	while (!list_empty(timers)) {
805 		struct cpu_timer_list *t;
806 
807 		t = list_first_entry(timers, struct cpu_timer_list, entry);
808 
809 		if (!--maxfire || curr < t->expires)
810 			return t->expires;
811 
812 		t->firing = 1;
813 		list_move_tail(&t->entry, firing);
814 	}
815 
816 	return 0;
817 }
818 
819 /*
820  * Check for any per-thread CPU timers that have fired and move them off
821  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
822  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
823  */
824 static void check_thread_timers(struct task_struct *tsk,
825 				struct list_head *firing)
826 {
827 	struct list_head *timers = tsk->cpu_timers;
828 	struct signal_struct *const sig = tsk->signal;
829 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
830 	unsigned long long expires;
831 	unsigned long soft;
832 
833 	/*
834 	 * If cputime_expires is zero, then there are no active
835 	 * per thread CPU timers.
836 	 */
837 	if (task_cputime_zero(&tsk->cputime_expires))
838 		return;
839 
840 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
841 	tsk_expires->prof_exp = expires_to_cputime(expires);
842 
843 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
844 	tsk_expires->virt_exp = expires_to_cputime(expires);
845 
846 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
847 						   tsk->se.sum_exec_runtime);
848 
849 	/*
850 	 * Check for the special case thread timers.
851 	 */
852 	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
853 	if (soft != RLIM_INFINITY) {
854 		unsigned long hard =
855 			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
856 
857 		if (hard != RLIM_INFINITY &&
858 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
859 			/*
860 			 * At the hard limit, we just die.
861 			 * No need to calculate anything else now.
862 			 */
863 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
864 			return;
865 		}
866 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
867 			/*
868 			 * At the soft limit, send a SIGXCPU every second.
869 			 */
870 			if (soft < hard) {
871 				soft += USEC_PER_SEC;
872 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
873 			}
874 			printk(KERN_INFO
875 				"RT Watchdog Timeout: %s[%d]\n",
876 				tsk->comm, task_pid_nr(tsk));
877 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
878 		}
879 	}
880 	if (task_cputime_zero(tsk_expires))
881 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
882 }
883 
884 static inline void stop_process_timers(struct signal_struct *sig)
885 {
886 	struct thread_group_cputimer *cputimer = &sig->cputimer;
887 
888 	/* Turn off cputimer->running. This is done without locking. */
889 	WRITE_ONCE(cputimer->running, false);
890 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
891 }
892 
893 static u32 onecputick;
894 
895 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
896 			     unsigned long long *expires,
897 			     unsigned long long cur_time, int signo)
898 {
899 	if (!it->expires)
900 		return;
901 
902 	if (cur_time >= it->expires) {
903 		if (it->incr) {
904 			it->expires += it->incr;
905 			it->error += it->incr_error;
906 			if (it->error >= onecputick) {
907 				it->expires -= cputime_one_jiffy;
908 				it->error -= onecputick;
909 			}
910 		} else {
911 			it->expires = 0;
912 		}
913 
914 		trace_itimer_expire(signo == SIGPROF ?
915 				    ITIMER_PROF : ITIMER_VIRTUAL,
916 				    tsk->signal->leader_pid, cur_time);
917 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
918 	}
919 
920 	if (it->expires && (!*expires || it->expires < *expires)) {
921 		*expires = it->expires;
922 	}
923 }
924 
925 /*
926  * Check for any per-thread CPU timers that have fired and move them
927  * off the tsk->*_timers list onto the firing list.  Per-thread timers
928  * have already been taken off.
929  */
930 static void check_process_timers(struct task_struct *tsk,
931 				 struct list_head *firing)
932 {
933 	struct signal_struct *const sig = tsk->signal;
934 	unsigned long long utime, ptime, virt_expires, prof_expires;
935 	unsigned long long sum_sched_runtime, sched_expires;
936 	struct list_head *timers = sig->cpu_timers;
937 	struct task_cputime cputime;
938 	unsigned long soft;
939 
940 	/*
941 	 * If cputimer is not running, then there are no active
942 	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
943 	 */
944 	if (!READ_ONCE(tsk->signal->cputimer.running))
945 		return;
946 
947         /*
948 	 * Signify that a thread is checking for process timers.
949 	 * Write access to this field is protected by the sighand lock.
950 	 */
951 	sig->cputimer.checking_timer = true;
952 
953 	/*
954 	 * Collect the current process totals.
955 	 */
956 	thread_group_cputimer(tsk, &cputime);
957 	utime = cputime_to_expires(cputime.utime);
958 	ptime = utime + cputime_to_expires(cputime.stime);
959 	sum_sched_runtime = cputime.sum_exec_runtime;
960 
961 	prof_expires = check_timers_list(timers, firing, ptime);
962 	virt_expires = check_timers_list(++timers, firing, utime);
963 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
964 
965 	/*
966 	 * Check for the special case process timers.
967 	 */
968 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
969 			 SIGPROF);
970 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
971 			 SIGVTALRM);
972 	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
973 	if (soft != RLIM_INFINITY) {
974 		unsigned long psecs = cputime_to_secs(ptime);
975 		unsigned long hard =
976 			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
977 		cputime_t x;
978 		if (psecs >= hard) {
979 			/*
980 			 * At the hard limit, we just die.
981 			 * No need to calculate anything else now.
982 			 */
983 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
984 			return;
985 		}
986 		if (psecs >= soft) {
987 			/*
988 			 * At the soft limit, send a SIGXCPU every second.
989 			 */
990 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
991 			if (soft < hard) {
992 				soft++;
993 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
994 			}
995 		}
996 		x = secs_to_cputime(soft);
997 		if (!prof_expires || x < prof_expires) {
998 			prof_expires = x;
999 		}
1000 	}
1001 
1002 	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1003 	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1004 	sig->cputime_expires.sched_exp = sched_expires;
1005 	if (task_cputime_zero(&sig->cputime_expires))
1006 		stop_process_timers(sig);
1007 
1008 	sig->cputimer.checking_timer = false;
1009 }
1010 
1011 /*
1012  * This is called from the signal code (via do_schedule_next_timer)
1013  * when the last timer signal was delivered and we have to reload the timer.
1014  */
1015 void posix_cpu_timer_schedule(struct k_itimer *timer)
1016 {
1017 	struct sighand_struct *sighand;
1018 	unsigned long flags;
1019 	struct task_struct *p = timer->it.cpu.task;
1020 	unsigned long long now;
1021 
1022 	WARN_ON_ONCE(p == NULL);
1023 
1024 	/*
1025 	 * Fetch the current sample and update the timer's expiry time.
1026 	 */
1027 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1028 		cpu_clock_sample(timer->it_clock, p, &now);
1029 		bump_cpu_timer(timer, now);
1030 		if (unlikely(p->exit_state))
1031 			goto out;
1032 
1033 		/* Protect timer list r/w in arm_timer() */
1034 		sighand = lock_task_sighand(p, &flags);
1035 		if (!sighand)
1036 			goto out;
1037 	} else {
1038 		/*
1039 		 * Protect arm_timer() and timer sampling in case of call to
1040 		 * thread_group_cputime().
1041 		 */
1042 		sighand = lock_task_sighand(p, &flags);
1043 		if (unlikely(sighand == NULL)) {
1044 			/*
1045 			 * The process has been reaped.
1046 			 * We can't even collect a sample any more.
1047 			 */
1048 			timer->it.cpu.expires = 0;
1049 			goto out;
1050 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1051 			unlock_task_sighand(p, &flags);
1052 			/* Optimizations: if the process is dying, no need to rearm */
1053 			goto out;
1054 		}
1055 		cpu_timer_sample_group(timer->it_clock, p, &now);
1056 		bump_cpu_timer(timer, now);
1057 		/* Leave the sighand locked for the call below.  */
1058 	}
1059 
1060 	/*
1061 	 * Now re-arm for the new expiry time.
1062 	 */
1063 	WARN_ON_ONCE(!irqs_disabled());
1064 	arm_timer(timer);
1065 	unlock_task_sighand(p, &flags);
1066 
1067 out:
1068 	timer->it_overrun_last = timer->it_overrun;
1069 	timer->it_overrun = -1;
1070 	++timer->it_requeue_pending;
1071 }
1072 
1073 /**
1074  * task_cputime_expired - Compare two task_cputime entities.
1075  *
1076  * @sample:	The task_cputime structure to be checked for expiration.
1077  * @expires:	Expiration times, against which @sample will be checked.
1078  *
1079  * Checks @sample against @expires to see if any field of @sample has expired.
1080  * Returns true if any field of the former is greater than the corresponding
1081  * field of the latter if the latter field is set.  Otherwise returns false.
1082  */
1083 static inline int task_cputime_expired(const struct task_cputime *sample,
1084 					const struct task_cputime *expires)
1085 {
1086 	if (expires->utime && sample->utime >= expires->utime)
1087 		return 1;
1088 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1089 		return 1;
1090 	if (expires->sum_exec_runtime != 0 &&
1091 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1092 		return 1;
1093 	return 0;
1094 }
1095 
1096 /**
1097  * fastpath_timer_check - POSIX CPU timers fast path.
1098  *
1099  * @tsk:	The task (thread) being checked.
1100  *
1101  * Check the task and thread group timers.  If both are zero (there are no
1102  * timers set) return false.  Otherwise snapshot the task and thread group
1103  * timers and compare them with the corresponding expiration times.  Return
1104  * true if a timer has expired, else return false.
1105  */
1106 static inline int fastpath_timer_check(struct task_struct *tsk)
1107 {
1108 	struct signal_struct *sig;
1109 
1110 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1111 		struct task_cputime task_sample;
1112 
1113 		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1114 		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1115 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1116 			return 1;
1117 	}
1118 
1119 	sig = tsk->signal;
1120 	/*
1121 	 * Check if thread group timers expired when the cputimer is
1122 	 * running and no other thread in the group is already checking
1123 	 * for thread group cputimers. These fields are read without the
1124 	 * sighand lock. However, this is fine because this is meant to
1125 	 * be a fastpath heuristic to determine whether we should try to
1126 	 * acquire the sighand lock to check/handle timers.
1127 	 *
1128 	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1129 	 * set but the current thread doesn't see the change yet, we'll wait
1130 	 * until the next thread in the group gets a scheduler interrupt to
1131 	 * handle the timer. This isn't an issue in practice because these
1132 	 * types of delays with signals actually getting sent are expected.
1133 	 */
1134 	if (READ_ONCE(sig->cputimer.running) &&
1135 	    !READ_ONCE(sig->cputimer.checking_timer)) {
1136 		struct task_cputime group_sample;
1137 
1138 		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1139 
1140 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1141 			return 1;
1142 	}
1143 
1144 	return 0;
1145 }
1146 
1147 /*
1148  * This is called from the timer interrupt handler.  The irq handler has
1149  * already updated our counts.  We need to check if any timers fire now.
1150  * Interrupts are disabled.
1151  */
1152 void run_posix_cpu_timers(struct task_struct *tsk)
1153 {
1154 	LIST_HEAD(firing);
1155 	struct k_itimer *timer, *next;
1156 	unsigned long flags;
1157 
1158 	WARN_ON_ONCE(!irqs_disabled());
1159 
1160 	/*
1161 	 * The fast path checks that there are no expired thread or thread
1162 	 * group timers.  If that's so, just return.
1163 	 */
1164 	if (!fastpath_timer_check(tsk))
1165 		return;
1166 
1167 	if (!lock_task_sighand(tsk, &flags))
1168 		return;
1169 	/*
1170 	 * Here we take off tsk->signal->cpu_timers[N] and
1171 	 * tsk->cpu_timers[N] all the timers that are firing, and
1172 	 * put them on the firing list.
1173 	 */
1174 	check_thread_timers(tsk, &firing);
1175 
1176 	check_process_timers(tsk, &firing);
1177 
1178 	/*
1179 	 * We must release these locks before taking any timer's lock.
1180 	 * There is a potential race with timer deletion here, as the
1181 	 * siglock now protects our private firing list.  We have set
1182 	 * the firing flag in each timer, so that a deletion attempt
1183 	 * that gets the timer lock before we do will give it up and
1184 	 * spin until we've taken care of that timer below.
1185 	 */
1186 	unlock_task_sighand(tsk, &flags);
1187 
1188 	/*
1189 	 * Now that all the timers on our list have the firing flag,
1190 	 * no one will touch their list entries but us.  We'll take
1191 	 * each timer's lock before clearing its firing flag, so no
1192 	 * timer call will interfere.
1193 	 */
1194 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1195 		int cpu_firing;
1196 
1197 		spin_lock(&timer->it_lock);
1198 		list_del_init(&timer->it.cpu.entry);
1199 		cpu_firing = timer->it.cpu.firing;
1200 		timer->it.cpu.firing = 0;
1201 		/*
1202 		 * The firing flag is -1 if we collided with a reset
1203 		 * of the timer, which already reported this
1204 		 * almost-firing as an overrun.  So don't generate an event.
1205 		 */
1206 		if (likely(cpu_firing >= 0))
1207 			cpu_timer_fire(timer);
1208 		spin_unlock(&timer->it_lock);
1209 	}
1210 }
1211 
1212 /*
1213  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1214  * The tsk->sighand->siglock must be held by the caller.
1215  */
1216 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1217 			   cputime_t *newval, cputime_t *oldval)
1218 {
1219 	unsigned long long now;
1220 
1221 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1222 	cpu_timer_sample_group(clock_idx, tsk, &now);
1223 
1224 	if (oldval) {
1225 		/*
1226 		 * We are setting itimer. The *oldval is absolute and we update
1227 		 * it to be relative, *newval argument is relative and we update
1228 		 * it to be absolute.
1229 		 */
1230 		if (*oldval) {
1231 			if (*oldval <= now) {
1232 				/* Just about to fire. */
1233 				*oldval = cputime_one_jiffy;
1234 			} else {
1235 				*oldval -= now;
1236 			}
1237 		}
1238 
1239 		if (!*newval)
1240 			return;
1241 		*newval += now;
1242 	}
1243 
1244 	/*
1245 	 * Update expiration cache if we are the earliest timer, or eventually
1246 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1247 	 */
1248 	switch (clock_idx) {
1249 	case CPUCLOCK_PROF:
1250 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1251 			tsk->signal->cputime_expires.prof_exp = *newval;
1252 		break;
1253 	case CPUCLOCK_VIRT:
1254 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1255 			tsk->signal->cputime_expires.virt_exp = *newval;
1256 		break;
1257 	}
1258 
1259 	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1260 }
1261 
1262 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1263 			    struct timespec *rqtp, struct itimerspec *it)
1264 {
1265 	struct k_itimer timer;
1266 	int error;
1267 
1268 	/*
1269 	 * Set up a temporary timer and then wait for it to go off.
1270 	 */
1271 	memset(&timer, 0, sizeof timer);
1272 	spin_lock_init(&timer.it_lock);
1273 	timer.it_clock = which_clock;
1274 	timer.it_overrun = -1;
1275 	error = posix_cpu_timer_create(&timer);
1276 	timer.it_process = current;
1277 	if (!error) {
1278 		static struct itimerspec zero_it;
1279 
1280 		memset(it, 0, sizeof *it);
1281 		it->it_value = *rqtp;
1282 
1283 		spin_lock_irq(&timer.it_lock);
1284 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1285 		if (error) {
1286 			spin_unlock_irq(&timer.it_lock);
1287 			return error;
1288 		}
1289 
1290 		while (!signal_pending(current)) {
1291 			if (timer.it.cpu.expires == 0) {
1292 				/*
1293 				 * Our timer fired and was reset, below
1294 				 * deletion can not fail.
1295 				 */
1296 				posix_cpu_timer_del(&timer);
1297 				spin_unlock_irq(&timer.it_lock);
1298 				return 0;
1299 			}
1300 
1301 			/*
1302 			 * Block until cpu_timer_fire (or a signal) wakes us.
1303 			 */
1304 			__set_current_state(TASK_INTERRUPTIBLE);
1305 			spin_unlock_irq(&timer.it_lock);
1306 			schedule();
1307 			spin_lock_irq(&timer.it_lock);
1308 		}
1309 
1310 		/*
1311 		 * We were interrupted by a signal.
1312 		 */
1313 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1314 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1315 		if (!error) {
1316 			/*
1317 			 * Timer is now unarmed, deletion can not fail.
1318 			 */
1319 			posix_cpu_timer_del(&timer);
1320 		}
1321 		spin_unlock_irq(&timer.it_lock);
1322 
1323 		while (error == TIMER_RETRY) {
1324 			/*
1325 			 * We need to handle case when timer was or is in the
1326 			 * middle of firing. In other cases we already freed
1327 			 * resources.
1328 			 */
1329 			spin_lock_irq(&timer.it_lock);
1330 			error = posix_cpu_timer_del(&timer);
1331 			spin_unlock_irq(&timer.it_lock);
1332 		}
1333 
1334 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1335 			/*
1336 			 * It actually did fire already.
1337 			 */
1338 			return 0;
1339 		}
1340 
1341 		error = -ERESTART_RESTARTBLOCK;
1342 	}
1343 
1344 	return error;
1345 }
1346 
1347 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1348 
1349 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1350 			    struct timespec *rqtp, struct timespec __user *rmtp)
1351 {
1352 	struct restart_block *restart_block = &current->restart_block;
1353 	struct itimerspec it;
1354 	int error;
1355 
1356 	/*
1357 	 * Diagnose required errors first.
1358 	 */
1359 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1360 	    (CPUCLOCK_PID(which_clock) == 0 ||
1361 	     CPUCLOCK_PID(which_clock) == current->pid))
1362 		return -EINVAL;
1363 
1364 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1365 
1366 	if (error == -ERESTART_RESTARTBLOCK) {
1367 
1368 		if (flags & TIMER_ABSTIME)
1369 			return -ERESTARTNOHAND;
1370 		/*
1371 		 * Report back to the user the time still remaining.
1372 		 */
1373 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1374 			return -EFAULT;
1375 
1376 		restart_block->fn = posix_cpu_nsleep_restart;
1377 		restart_block->nanosleep.clockid = which_clock;
1378 		restart_block->nanosleep.rmtp = rmtp;
1379 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1380 	}
1381 	return error;
1382 }
1383 
1384 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1385 {
1386 	clockid_t which_clock = restart_block->nanosleep.clockid;
1387 	struct timespec t;
1388 	struct itimerspec it;
1389 	int error;
1390 
1391 	t = ns_to_timespec(restart_block->nanosleep.expires);
1392 
1393 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1394 
1395 	if (error == -ERESTART_RESTARTBLOCK) {
1396 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1397 		/*
1398 		 * Report back to the user the time still remaining.
1399 		 */
1400 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1401 			return -EFAULT;
1402 
1403 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1404 	}
1405 	return error;
1406 
1407 }
1408 
1409 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1410 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1411 
1412 static int process_cpu_clock_getres(const clockid_t which_clock,
1413 				    struct timespec *tp)
1414 {
1415 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1416 }
1417 static int process_cpu_clock_get(const clockid_t which_clock,
1418 				 struct timespec *tp)
1419 {
1420 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1421 }
1422 static int process_cpu_timer_create(struct k_itimer *timer)
1423 {
1424 	timer->it_clock = PROCESS_CLOCK;
1425 	return posix_cpu_timer_create(timer);
1426 }
1427 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1428 			      struct timespec *rqtp,
1429 			      struct timespec __user *rmtp)
1430 {
1431 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1432 }
1433 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1434 {
1435 	return -EINVAL;
1436 }
1437 static int thread_cpu_clock_getres(const clockid_t which_clock,
1438 				   struct timespec *tp)
1439 {
1440 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1441 }
1442 static int thread_cpu_clock_get(const clockid_t which_clock,
1443 				struct timespec *tp)
1444 {
1445 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1446 }
1447 static int thread_cpu_timer_create(struct k_itimer *timer)
1448 {
1449 	timer->it_clock = THREAD_CLOCK;
1450 	return posix_cpu_timer_create(timer);
1451 }
1452 
1453 struct k_clock clock_posix_cpu = {
1454 	.clock_getres	= posix_cpu_clock_getres,
1455 	.clock_set	= posix_cpu_clock_set,
1456 	.clock_get	= posix_cpu_clock_get,
1457 	.timer_create	= posix_cpu_timer_create,
1458 	.nsleep		= posix_cpu_nsleep,
1459 	.nsleep_restart	= posix_cpu_nsleep_restart,
1460 	.timer_set	= posix_cpu_timer_set,
1461 	.timer_del	= posix_cpu_timer_del,
1462 	.timer_get	= posix_cpu_timer_get,
1463 };
1464 
1465 static __init int init_posix_cpu_timers(void)
1466 {
1467 	struct k_clock process = {
1468 		.clock_getres	= process_cpu_clock_getres,
1469 		.clock_get	= process_cpu_clock_get,
1470 		.timer_create	= process_cpu_timer_create,
1471 		.nsleep		= process_cpu_nsleep,
1472 		.nsleep_restart	= process_cpu_nsleep_restart,
1473 	};
1474 	struct k_clock thread = {
1475 		.clock_getres	= thread_cpu_clock_getres,
1476 		.clock_get	= thread_cpu_clock_get,
1477 		.timer_create	= thread_cpu_timer_create,
1478 	};
1479 	struct timespec ts;
1480 
1481 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1482 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1483 
1484 	cputime_to_timespec(cputime_one_jiffy, &ts);
1485 	onecputick = ts.tv_nsec;
1486 	WARN_ON(ts.tv_sec != 0);
1487 
1488 	return 0;
1489 }
1490 __initcall(init_posix_cpu_timers);
1491