1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement CPU time clocks for the POSIX clock interface. 4 */ 5 6 #include <linux/sched/signal.h> 7 #include <linux/sched/cputime.h> 8 #include <linux/posix-timers.h> 9 #include <linux/errno.h> 10 #include <linux/math64.h> 11 #include <linux/uaccess.h> 12 #include <linux/kernel_stat.h> 13 #include <trace/events/timer.h> 14 #include <linux/tick.h> 15 #include <linux/workqueue.h> 16 #include <linux/compat.h> 17 #include <linux/sched/deadline.h> 18 #include <linux/task_work.h> 19 20 #include "posix-timers.h" 21 22 static void posix_cpu_timer_rearm(struct k_itimer *timer); 23 24 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) 25 { 26 posix_cputimers_init(pct); 27 if (cpu_limit != RLIM_INFINITY) { 28 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC; 29 pct->timers_active = true; 30 } 31 } 32 33 /* 34 * Called after updating RLIMIT_CPU to run cpu timer and update 35 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if 36 * necessary. Needs siglock protection since other code may update the 37 * expiration cache as well. 38 * 39 * Returns 0 on success, -ESRCH on failure. Can fail if the task is exiting and 40 * we cannot lock_task_sighand. Cannot fail if task is current. 41 */ 42 int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 43 { 44 u64 nsecs = rlim_new * NSEC_PER_SEC; 45 unsigned long irq_fl; 46 47 if (!lock_task_sighand(task, &irq_fl)) 48 return -ESRCH; 49 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); 50 unlock_task_sighand(task, &irq_fl); 51 return 0; 52 } 53 54 /* 55 * Functions for validating access to tasks. 56 */ 57 static struct pid *pid_for_clock(const clockid_t clock, bool gettime) 58 { 59 const bool thread = !!CPUCLOCK_PERTHREAD(clock); 60 const pid_t upid = CPUCLOCK_PID(clock); 61 struct pid *pid; 62 63 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX) 64 return NULL; 65 66 /* 67 * If the encoded PID is 0, then the timer is targeted at current 68 * or the process to which current belongs. 69 */ 70 if (upid == 0) 71 return thread ? task_pid(current) : task_tgid(current); 72 73 pid = find_vpid(upid); 74 if (!pid) 75 return NULL; 76 77 if (thread) { 78 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID); 79 return (tsk && same_thread_group(tsk, current)) ? pid : NULL; 80 } 81 82 /* 83 * For clock_gettime(PROCESS) allow finding the process by 84 * with the pid of the current task. The code needs the tgid 85 * of the process so that pid_task(pid, PIDTYPE_TGID) can be 86 * used to find the process. 87 */ 88 if (gettime && (pid == task_pid(current))) 89 return task_tgid(current); 90 91 /* 92 * For processes require that pid identifies a process. 93 */ 94 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL; 95 } 96 97 static inline int validate_clock_permissions(const clockid_t clock) 98 { 99 int ret; 100 101 rcu_read_lock(); 102 ret = pid_for_clock(clock, false) ? 0 : -EINVAL; 103 rcu_read_unlock(); 104 105 return ret; 106 } 107 108 static inline enum pid_type clock_pid_type(const clockid_t clock) 109 { 110 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID; 111 } 112 113 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer) 114 { 115 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock)); 116 } 117 118 /* 119 * Update expiry time from increment, and increase overrun count, 120 * given the current clock sample. 121 */ 122 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now) 123 { 124 u64 delta, incr, expires = timer->it.cpu.node.expires; 125 int i; 126 127 if (!timer->it_interval) 128 return expires; 129 130 if (now < expires) 131 return expires; 132 133 incr = timer->it_interval; 134 delta = now + incr - expires; 135 136 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 137 for (i = 0; incr < delta - incr; i++) 138 incr = incr << 1; 139 140 for (; i >= 0; incr >>= 1, i--) { 141 if (delta < incr) 142 continue; 143 144 timer->it.cpu.node.expires += incr; 145 timer->it_overrun += 1LL << i; 146 delta -= incr; 147 } 148 return timer->it.cpu.node.expires; 149 } 150 151 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */ 152 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct) 153 { 154 return !(~pct->bases[CPUCLOCK_PROF].nextevt | 155 ~pct->bases[CPUCLOCK_VIRT].nextevt | 156 ~pct->bases[CPUCLOCK_SCHED].nextevt); 157 } 158 159 static int 160 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 161 { 162 int error = validate_clock_permissions(which_clock); 163 164 if (!error) { 165 tp->tv_sec = 0; 166 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 167 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 168 /* 169 * If sched_clock is using a cycle counter, we 170 * don't have any idea of its true resolution 171 * exported, but it is much more than 1s/HZ. 172 */ 173 tp->tv_nsec = 1; 174 } 175 } 176 return error; 177 } 178 179 static int 180 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp) 181 { 182 int error = validate_clock_permissions(clock); 183 184 /* 185 * You can never reset a CPU clock, but we check for other errors 186 * in the call before failing with EPERM. 187 */ 188 return error ? : -EPERM; 189 } 190 191 /* 192 * Sample a per-thread clock for the given task. clkid is validated. 193 */ 194 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p) 195 { 196 u64 utime, stime; 197 198 if (clkid == CPUCLOCK_SCHED) 199 return task_sched_runtime(p); 200 201 task_cputime(p, &utime, &stime); 202 203 switch (clkid) { 204 case CPUCLOCK_PROF: 205 return utime + stime; 206 case CPUCLOCK_VIRT: 207 return utime; 208 default: 209 WARN_ON_ONCE(1); 210 } 211 return 0; 212 } 213 214 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime) 215 { 216 samples[CPUCLOCK_PROF] = stime + utime; 217 samples[CPUCLOCK_VIRT] = utime; 218 samples[CPUCLOCK_SCHED] = rtime; 219 } 220 221 static void task_sample_cputime(struct task_struct *p, u64 *samples) 222 { 223 u64 stime, utime; 224 225 task_cputime(p, &utime, &stime); 226 store_samples(samples, stime, utime, p->se.sum_exec_runtime); 227 } 228 229 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at, 230 u64 *samples) 231 { 232 u64 stime, utime, rtime; 233 234 utime = atomic64_read(&at->utime); 235 stime = atomic64_read(&at->stime); 236 rtime = atomic64_read(&at->sum_exec_runtime); 237 store_samples(samples, stime, utime, rtime); 238 } 239 240 /* 241 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 242 * to avoid race conditions with concurrent updates to cputime. 243 */ 244 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 245 { 246 u64 curr_cputime = atomic64_read(cputime); 247 248 do { 249 if (sum_cputime <= curr_cputime) 250 return; 251 } while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime)); 252 } 253 254 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, 255 struct task_cputime *sum) 256 { 257 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 258 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 259 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 260 } 261 262 /** 263 * thread_group_sample_cputime - Sample cputime for a given task 264 * @tsk: Task for which cputime needs to be started 265 * @samples: Storage for time samples 266 * 267 * Called from sys_getitimer() to calculate the expiry time of an active 268 * timer. That means group cputime accounting is already active. Called 269 * with task sighand lock held. 270 * 271 * Updates @times with an uptodate sample of the thread group cputimes. 272 */ 273 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples) 274 { 275 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 276 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 277 278 WARN_ON_ONCE(!pct->timers_active); 279 280 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 281 } 282 283 /** 284 * thread_group_start_cputime - Start cputime and return a sample 285 * @tsk: Task for which cputime needs to be started 286 * @samples: Storage for time samples 287 * 288 * The thread group cputime accounting is avoided when there are no posix 289 * CPU timers armed. Before starting a timer it's required to check whether 290 * the time accounting is active. If not, a full update of the atomic 291 * accounting store needs to be done and the accounting enabled. 292 * 293 * Updates @times with an uptodate sample of the thread group cputimes. 294 */ 295 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples) 296 { 297 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 298 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 299 300 lockdep_assert_task_sighand_held(tsk); 301 302 /* Check if cputimer isn't running. This is accessed without locking. */ 303 if (!READ_ONCE(pct->timers_active)) { 304 struct task_cputime sum; 305 306 /* 307 * The POSIX timer interface allows for absolute time expiry 308 * values through the TIMER_ABSTIME flag, therefore we have 309 * to synchronize the timer to the clock every time we start it. 310 */ 311 thread_group_cputime(tsk, &sum); 312 update_gt_cputime(&cputimer->cputime_atomic, &sum); 313 314 /* 315 * We're setting timers_active without a lock. Ensure this 316 * only gets written to in one operation. We set it after 317 * update_gt_cputime() as a small optimization, but 318 * barriers are not required because update_gt_cputime() 319 * can handle concurrent updates. 320 */ 321 WRITE_ONCE(pct->timers_active, true); 322 } 323 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 324 } 325 326 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples) 327 { 328 struct task_cputime ct; 329 330 thread_group_cputime(tsk, &ct); 331 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime); 332 } 333 334 /* 335 * Sample a process (thread group) clock for the given task clkid. If the 336 * group's cputime accounting is already enabled, read the atomic 337 * store. Otherwise a full update is required. clkid is already validated. 338 */ 339 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p, 340 bool start) 341 { 342 struct thread_group_cputimer *cputimer = &p->signal->cputimer; 343 struct posix_cputimers *pct = &p->signal->posix_cputimers; 344 u64 samples[CPUCLOCK_MAX]; 345 346 if (!READ_ONCE(pct->timers_active)) { 347 if (start) 348 thread_group_start_cputime(p, samples); 349 else 350 __thread_group_cputime(p, samples); 351 } else { 352 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 353 } 354 355 return samples[clkid]; 356 } 357 358 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp) 359 { 360 const clockid_t clkid = CPUCLOCK_WHICH(clock); 361 struct task_struct *tsk; 362 u64 t; 363 364 rcu_read_lock(); 365 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock)); 366 if (!tsk) { 367 rcu_read_unlock(); 368 return -EINVAL; 369 } 370 371 if (CPUCLOCK_PERTHREAD(clock)) 372 t = cpu_clock_sample(clkid, tsk); 373 else 374 t = cpu_clock_sample_group(clkid, tsk, false); 375 rcu_read_unlock(); 376 377 *tp = ns_to_timespec64(t); 378 return 0; 379 } 380 381 /* 382 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 383 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 384 * new timer already all-zeros initialized. 385 */ 386 static int posix_cpu_timer_create(struct k_itimer *new_timer) 387 { 388 static struct lock_class_key posix_cpu_timers_key; 389 struct pid *pid; 390 391 rcu_read_lock(); 392 pid = pid_for_clock(new_timer->it_clock, false); 393 if (!pid) { 394 rcu_read_unlock(); 395 return -EINVAL; 396 } 397 398 /* 399 * If posix timer expiry is handled in task work context then 400 * timer::it_lock can be taken without disabling interrupts as all 401 * other locking happens in task context. This requires a separate 402 * lock class key otherwise regular posix timer expiry would record 403 * the lock class being taken in interrupt context and generate a 404 * false positive warning. 405 */ 406 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK)) 407 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key); 408 409 new_timer->kclock = &clock_posix_cpu; 410 timerqueue_init(&new_timer->it.cpu.node); 411 new_timer->it.cpu.pid = get_pid(pid); 412 rcu_read_unlock(); 413 return 0; 414 } 415 416 static struct posix_cputimer_base *timer_base(struct k_itimer *timer, 417 struct task_struct *tsk) 418 { 419 int clkidx = CPUCLOCK_WHICH(timer->it_clock); 420 421 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 422 return tsk->posix_cputimers.bases + clkidx; 423 else 424 return tsk->signal->posix_cputimers.bases + clkidx; 425 } 426 427 /* 428 * Force recalculating the base earliest expiration on the next tick. 429 * This will also re-evaluate the need to keep around the process wide 430 * cputime counter and tick dependency and eventually shut these down 431 * if necessary. 432 */ 433 static void trigger_base_recalc_expires(struct k_itimer *timer, 434 struct task_struct *tsk) 435 { 436 struct posix_cputimer_base *base = timer_base(timer, tsk); 437 438 base->nextevt = 0; 439 } 440 441 /* 442 * Dequeue the timer and reset the base if it was its earliest expiration. 443 * It makes sure the next tick recalculates the base next expiration so we 444 * don't keep the costly process wide cputime counter around for a random 445 * amount of time, along with the tick dependency. 446 * 447 * If another timer gets queued between this and the next tick, its 448 * expiration will update the base next event if necessary on the next 449 * tick. 450 */ 451 static void disarm_timer(struct k_itimer *timer, struct task_struct *p) 452 { 453 struct cpu_timer *ctmr = &timer->it.cpu; 454 struct posix_cputimer_base *base; 455 456 if (!cpu_timer_dequeue(ctmr)) 457 return; 458 459 base = timer_base(timer, p); 460 if (cpu_timer_getexpires(ctmr) == base->nextevt) 461 trigger_base_recalc_expires(timer, p); 462 } 463 464 465 /* 466 * Clean up a CPU-clock timer that is about to be destroyed. 467 * This is called from timer deletion with the timer already locked. 468 * If we return TIMER_RETRY, it's necessary to release the timer's lock 469 * and try again. (This happens when the timer is in the middle of firing.) 470 */ 471 static int posix_cpu_timer_del(struct k_itimer *timer) 472 { 473 struct cpu_timer *ctmr = &timer->it.cpu; 474 struct sighand_struct *sighand; 475 struct task_struct *p; 476 unsigned long flags; 477 int ret = 0; 478 479 rcu_read_lock(); 480 p = cpu_timer_task_rcu(timer); 481 if (!p) 482 goto out; 483 484 /* 485 * Protect against sighand release/switch in exit/exec and process/ 486 * thread timer list entry concurrent read/writes. 487 */ 488 sighand = lock_task_sighand(p, &flags); 489 if (unlikely(sighand == NULL)) { 490 /* 491 * This raced with the reaping of the task. The exit cleanup 492 * should have removed this timer from the timer queue. 493 */ 494 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node)); 495 } else { 496 if (timer->it.cpu.firing) { 497 /* 498 * Prevent signal delivery. The timer cannot be dequeued 499 * because it is on the firing list which is not protected 500 * by sighand->lock. The delivery path is waiting for 501 * the timer lock. So go back, unlock and retry. 502 */ 503 timer->it.cpu.firing = false; 504 ret = TIMER_RETRY; 505 } else { 506 disarm_timer(timer, p); 507 } 508 unlock_task_sighand(p, &flags); 509 } 510 511 out: 512 rcu_read_unlock(); 513 514 if (!ret) { 515 put_pid(ctmr->pid); 516 timer->it_status = POSIX_TIMER_DISARMED; 517 } 518 return ret; 519 } 520 521 static void cleanup_timerqueue(struct timerqueue_head *head) 522 { 523 struct timerqueue_node *node; 524 struct cpu_timer *ctmr; 525 526 while ((node = timerqueue_getnext(head))) { 527 timerqueue_del(head, node); 528 ctmr = container_of(node, struct cpu_timer, node); 529 ctmr->head = NULL; 530 } 531 } 532 533 /* 534 * Clean out CPU timers which are still armed when a thread exits. The 535 * timers are only removed from the list. No other updates are done. The 536 * corresponding posix timers are still accessible, but cannot be rearmed. 537 * 538 * This must be called with the siglock held. 539 */ 540 static void cleanup_timers(struct posix_cputimers *pct) 541 { 542 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead); 543 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead); 544 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead); 545 } 546 547 /* 548 * These are both called with the siglock held, when the current thread 549 * is being reaped. When the final (leader) thread in the group is reaped, 550 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 551 */ 552 void posix_cpu_timers_exit(struct task_struct *tsk) 553 { 554 cleanup_timers(&tsk->posix_cputimers); 555 } 556 void posix_cpu_timers_exit_group(struct task_struct *tsk) 557 { 558 cleanup_timers(&tsk->signal->posix_cputimers); 559 } 560 561 /* 562 * Insert the timer on the appropriate list before any timers that 563 * expire later. This must be called with the sighand lock held. 564 */ 565 static void arm_timer(struct k_itimer *timer, struct task_struct *p) 566 { 567 struct posix_cputimer_base *base = timer_base(timer, p); 568 struct cpu_timer *ctmr = &timer->it.cpu; 569 u64 newexp = cpu_timer_getexpires(ctmr); 570 571 timer->it_status = POSIX_TIMER_ARMED; 572 if (!cpu_timer_enqueue(&base->tqhead, ctmr)) 573 return; 574 575 /* 576 * We are the new earliest-expiring POSIX 1.b timer, hence 577 * need to update expiration cache. Take into account that 578 * for process timers we share expiration cache with itimers 579 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 580 */ 581 if (newexp < base->nextevt) 582 base->nextevt = newexp; 583 584 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 585 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 586 else 587 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER); 588 } 589 590 /* 591 * The timer is locked, fire it and arrange for its reload. 592 */ 593 static void cpu_timer_fire(struct k_itimer *timer) 594 { 595 struct cpu_timer *ctmr = &timer->it.cpu; 596 597 timer->it_status = POSIX_TIMER_DISARMED; 598 599 if (unlikely(ctmr->nanosleep)) { 600 /* 601 * This a special case for clock_nanosleep, 602 * not a normal timer from sys_timer_create. 603 */ 604 wake_up_process(timer->it_process); 605 cpu_timer_setexpires(ctmr, 0); 606 } else { 607 posix_timer_queue_signal(timer); 608 /* Disable oneshot timers */ 609 if (!timer->it_interval) 610 cpu_timer_setexpires(ctmr, 0); 611 } 612 } 613 614 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now); 615 616 /* 617 * Guts of sys_timer_settime for CPU timers. 618 * This is called with the timer locked and interrupts disabled. 619 * If we return TIMER_RETRY, it's necessary to release the timer's lock 620 * and try again. (This happens when the timer is in the middle of firing.) 621 */ 622 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 623 struct itimerspec64 *new, struct itimerspec64 *old) 624 { 625 bool sigev_none = timer->it_sigev_notify == SIGEV_NONE; 626 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 627 struct cpu_timer *ctmr = &timer->it.cpu; 628 u64 old_expires, new_expires, now; 629 struct sighand_struct *sighand; 630 struct task_struct *p; 631 unsigned long flags; 632 int ret = 0; 633 634 rcu_read_lock(); 635 p = cpu_timer_task_rcu(timer); 636 if (!p) { 637 /* 638 * If p has just been reaped, we can no 639 * longer get any information about it at all. 640 */ 641 rcu_read_unlock(); 642 return -ESRCH; 643 } 644 645 /* 646 * Use the to_ktime conversion because that clamps the maximum 647 * value to KTIME_MAX and avoid multiplication overflows. 648 */ 649 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); 650 651 /* 652 * Protect against sighand release/switch in exit/exec and p->cpu_timers 653 * and p->signal->cpu_timers read/write in arm_timer() 654 */ 655 sighand = lock_task_sighand(p, &flags); 656 /* 657 * If p has just been reaped, we can no 658 * longer get any information about it at all. 659 */ 660 if (unlikely(sighand == NULL)) { 661 rcu_read_unlock(); 662 return -ESRCH; 663 } 664 665 /* Retrieve the current expiry time before disarming the timer */ 666 old_expires = cpu_timer_getexpires(ctmr); 667 668 if (unlikely(timer->it.cpu.firing)) { 669 /* 670 * Prevent signal delivery. The timer cannot be dequeued 671 * because it is on the firing list which is not protected 672 * by sighand->lock. The delivery path is waiting for 673 * the timer lock. So go back, unlock and retry. 674 */ 675 timer->it.cpu.firing = false; 676 ret = TIMER_RETRY; 677 } else { 678 cpu_timer_dequeue(ctmr); 679 timer->it_status = POSIX_TIMER_DISARMED; 680 } 681 682 /* 683 * Sample the current clock for saving the previous setting 684 * and for rearming the timer. 685 */ 686 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 687 now = cpu_clock_sample(clkid, p); 688 else 689 now = cpu_clock_sample_group(clkid, p, !sigev_none); 690 691 /* Retrieve the previous expiry value if requested. */ 692 if (old) { 693 old->it_value = (struct timespec64){ }; 694 if (old_expires) 695 __posix_cpu_timer_get(timer, old, now); 696 } 697 698 /* Retry if the timer expiry is running concurrently */ 699 if (unlikely(ret)) { 700 unlock_task_sighand(p, &flags); 701 goto out; 702 } 703 704 /* Convert relative expiry time to absolute */ 705 if (new_expires && !(timer_flags & TIMER_ABSTIME)) 706 new_expires += now; 707 708 /* Set the new expiry time (might be 0) */ 709 cpu_timer_setexpires(ctmr, new_expires); 710 711 /* 712 * Arm the timer if it is not disabled, the new expiry value has 713 * not yet expired and the timer requires signal delivery. 714 * SIGEV_NONE timers are never armed. In case the timer is not 715 * armed, enforce the reevaluation of the timer base so that the 716 * process wide cputime counter can be disabled eventually. 717 */ 718 if (likely(!sigev_none)) { 719 if (new_expires && now < new_expires) 720 arm_timer(timer, p); 721 else 722 trigger_base_recalc_expires(timer, p); 723 } 724 725 unlock_task_sighand(p, &flags); 726 727 posix_timer_set_common(timer, new); 728 729 /* 730 * If the new expiry time was already in the past the timer was not 731 * queued. Fire it immediately even if the thread never runs to 732 * accumulate more time on this clock. 733 */ 734 if (!sigev_none && new_expires && now >= new_expires) 735 cpu_timer_fire(timer); 736 out: 737 rcu_read_unlock(); 738 return ret; 739 } 740 741 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now) 742 { 743 bool sigev_none = timer->it_sigev_notify == SIGEV_NONE; 744 u64 expires, iv = timer->it_interval; 745 746 /* 747 * Make sure that interval timers are moved forward for the 748 * following cases: 749 * - SIGEV_NONE timers which are never armed 750 * - Timers which expired, but the signal has not yet been 751 * delivered 752 */ 753 if (iv && timer->it_status != POSIX_TIMER_ARMED) 754 expires = bump_cpu_timer(timer, now); 755 else 756 expires = cpu_timer_getexpires(&timer->it.cpu); 757 758 /* 759 * Expired interval timers cannot have a remaining time <= 0. 760 * The kernel has to move them forward so that the next 761 * timer expiry is > @now. 762 */ 763 if (now < expires) { 764 itp->it_value = ns_to_timespec64(expires - now); 765 } else { 766 /* 767 * A single shot SIGEV_NONE timer must return 0, when it is 768 * expired! Timers which have a real signal delivery mode 769 * must return a remaining time greater than 0 because the 770 * signal has not yet been delivered. 771 */ 772 if (!sigev_none) 773 itp->it_value.tv_nsec = 1; 774 } 775 } 776 777 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) 778 { 779 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 780 struct task_struct *p; 781 u64 now; 782 783 rcu_read_lock(); 784 p = cpu_timer_task_rcu(timer); 785 if (p && cpu_timer_getexpires(&timer->it.cpu)) { 786 itp->it_interval = ktime_to_timespec64(timer->it_interval); 787 788 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 789 now = cpu_clock_sample(clkid, p); 790 else 791 now = cpu_clock_sample_group(clkid, p, false); 792 793 __posix_cpu_timer_get(timer, itp, now); 794 } 795 rcu_read_unlock(); 796 } 797 798 #define MAX_COLLECTED 20 799 800 static u64 collect_timerqueue(struct timerqueue_head *head, 801 struct list_head *firing, u64 now) 802 { 803 struct timerqueue_node *next; 804 int i = 0; 805 806 while ((next = timerqueue_getnext(head))) { 807 struct cpu_timer *ctmr; 808 u64 expires; 809 810 ctmr = container_of(next, struct cpu_timer, node); 811 expires = cpu_timer_getexpires(ctmr); 812 /* Limit the number of timers to expire at once */ 813 if (++i == MAX_COLLECTED || now < expires) 814 return expires; 815 816 ctmr->firing = true; 817 /* See posix_cpu_timer_wait_running() */ 818 rcu_assign_pointer(ctmr->handling, current); 819 cpu_timer_dequeue(ctmr); 820 list_add_tail(&ctmr->elist, firing); 821 } 822 823 return U64_MAX; 824 } 825 826 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples, 827 struct list_head *firing) 828 { 829 struct posix_cputimer_base *base = pct->bases; 830 int i; 831 832 for (i = 0; i < CPUCLOCK_MAX; i++, base++) { 833 base->nextevt = collect_timerqueue(&base->tqhead, firing, 834 samples[i]); 835 } 836 } 837 838 static inline void check_dl_overrun(struct task_struct *tsk) 839 { 840 if (tsk->dl.dl_overrun) { 841 tsk->dl.dl_overrun = 0; 842 send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID); 843 } 844 } 845 846 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard) 847 { 848 if (time < limit) 849 return false; 850 851 if (print_fatal_signals) { 852 pr_info("%s Watchdog Timeout (%s): %s[%d]\n", 853 rt ? "RT" : "CPU", hard ? "hard" : "soft", 854 current->comm, task_pid_nr(current)); 855 } 856 send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID); 857 return true; 858 } 859 860 /* 861 * Check for any per-thread CPU timers that have fired and move them off 862 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 863 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 864 */ 865 static void check_thread_timers(struct task_struct *tsk, 866 struct list_head *firing) 867 { 868 struct posix_cputimers *pct = &tsk->posix_cputimers; 869 u64 samples[CPUCLOCK_MAX]; 870 unsigned long soft; 871 872 if (dl_task(tsk)) 873 check_dl_overrun(tsk); 874 875 if (expiry_cache_is_inactive(pct)) 876 return; 877 878 task_sample_cputime(tsk, samples); 879 collect_posix_cputimers(pct, samples, firing); 880 881 /* 882 * Check for the special case thread timers. 883 */ 884 soft = task_rlimit(tsk, RLIMIT_RTTIME); 885 if (soft != RLIM_INFINITY) { 886 /* Task RT timeout is accounted in jiffies. RTTIME is usec */ 887 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ); 888 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); 889 890 /* At the hard limit, send SIGKILL. No further action. */ 891 if (hard != RLIM_INFINITY && 892 check_rlimit(rttime, hard, SIGKILL, true, true)) 893 return; 894 895 /* At the soft limit, send a SIGXCPU every second */ 896 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) { 897 soft += USEC_PER_SEC; 898 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft; 899 } 900 } 901 902 if (expiry_cache_is_inactive(pct)) 903 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 904 } 905 906 static inline void stop_process_timers(struct signal_struct *sig) 907 { 908 struct posix_cputimers *pct = &sig->posix_cputimers; 909 910 /* Turn off the active flag. This is done without locking. */ 911 WRITE_ONCE(pct->timers_active, false); 912 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 913 } 914 915 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 916 u64 *expires, u64 cur_time, int signo) 917 { 918 if (!it->expires) 919 return; 920 921 if (cur_time >= it->expires) { 922 if (it->incr) 923 it->expires += it->incr; 924 else 925 it->expires = 0; 926 927 trace_itimer_expire(signo == SIGPROF ? 928 ITIMER_PROF : ITIMER_VIRTUAL, 929 task_tgid(tsk), cur_time); 930 send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID); 931 } 932 933 if (it->expires && it->expires < *expires) 934 *expires = it->expires; 935 } 936 937 /* 938 * Check for any per-thread CPU timers that have fired and move them 939 * off the tsk->*_timers list onto the firing list. Per-thread timers 940 * have already been taken off. 941 */ 942 static void check_process_timers(struct task_struct *tsk, 943 struct list_head *firing) 944 { 945 struct signal_struct *const sig = tsk->signal; 946 struct posix_cputimers *pct = &sig->posix_cputimers; 947 u64 samples[CPUCLOCK_MAX]; 948 unsigned long soft; 949 950 /* 951 * If there are no active process wide timers (POSIX 1.b, itimers, 952 * RLIMIT_CPU) nothing to check. Also skip the process wide timer 953 * processing when there is already another task handling them. 954 */ 955 if (!READ_ONCE(pct->timers_active) || pct->expiry_active) 956 return; 957 958 /* 959 * Signify that a thread is checking for process timers. 960 * Write access to this field is protected by the sighand lock. 961 */ 962 pct->expiry_active = true; 963 964 /* 965 * Collect the current process totals. Group accounting is active 966 * so the sample can be taken directly. 967 */ 968 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples); 969 collect_posix_cputimers(pct, samples, firing); 970 971 /* 972 * Check for the special case process timers. 973 */ 974 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], 975 &pct->bases[CPUCLOCK_PROF].nextevt, 976 samples[CPUCLOCK_PROF], SIGPROF); 977 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], 978 &pct->bases[CPUCLOCK_VIRT].nextevt, 979 samples[CPUCLOCK_VIRT], SIGVTALRM); 980 981 soft = task_rlimit(tsk, RLIMIT_CPU); 982 if (soft != RLIM_INFINITY) { 983 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */ 984 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); 985 u64 ptime = samples[CPUCLOCK_PROF]; 986 u64 softns = (u64)soft * NSEC_PER_SEC; 987 u64 hardns = (u64)hard * NSEC_PER_SEC; 988 989 /* At the hard limit, send SIGKILL. No further action. */ 990 if (hard != RLIM_INFINITY && 991 check_rlimit(ptime, hardns, SIGKILL, false, true)) 992 return; 993 994 /* At the soft limit, send a SIGXCPU every second */ 995 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) { 996 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1; 997 softns += NSEC_PER_SEC; 998 } 999 1000 /* Update the expiry cache */ 1001 if (softns < pct->bases[CPUCLOCK_PROF].nextevt) 1002 pct->bases[CPUCLOCK_PROF].nextevt = softns; 1003 } 1004 1005 if (expiry_cache_is_inactive(pct)) 1006 stop_process_timers(sig); 1007 1008 pct->expiry_active = false; 1009 } 1010 1011 /* 1012 * This is called from the signal code (via posixtimer_rearm) 1013 * when the last timer signal was delivered and we have to reload the timer. 1014 */ 1015 static void posix_cpu_timer_rearm(struct k_itimer *timer) 1016 { 1017 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 1018 struct task_struct *p; 1019 struct sighand_struct *sighand; 1020 unsigned long flags; 1021 u64 now; 1022 1023 rcu_read_lock(); 1024 p = cpu_timer_task_rcu(timer); 1025 if (!p) 1026 goto out; 1027 1028 /* Protect timer list r/w in arm_timer() */ 1029 sighand = lock_task_sighand(p, &flags); 1030 if (unlikely(sighand == NULL)) 1031 goto out; 1032 1033 /* 1034 * Fetch the current sample and update the timer's expiry time. 1035 */ 1036 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 1037 now = cpu_clock_sample(clkid, p); 1038 else 1039 now = cpu_clock_sample_group(clkid, p, true); 1040 1041 bump_cpu_timer(timer, now); 1042 1043 /* 1044 * Now re-arm for the new expiry time. 1045 */ 1046 arm_timer(timer, p); 1047 unlock_task_sighand(p, &flags); 1048 out: 1049 rcu_read_unlock(); 1050 } 1051 1052 /** 1053 * task_cputimers_expired - Check whether posix CPU timers are expired 1054 * 1055 * @samples: Array of current samples for the CPUCLOCK clocks 1056 * @pct: Pointer to a posix_cputimers container 1057 * 1058 * Returns true if any member of @samples is greater than the corresponding 1059 * member of @pct->bases[CLK].nextevt. False otherwise 1060 */ 1061 static inline bool 1062 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct) 1063 { 1064 int i; 1065 1066 for (i = 0; i < CPUCLOCK_MAX; i++) { 1067 if (samples[i] >= pct->bases[i].nextevt) 1068 return true; 1069 } 1070 return false; 1071 } 1072 1073 /** 1074 * fastpath_timer_check - POSIX CPU timers fast path. 1075 * 1076 * @tsk: The task (thread) being checked. 1077 * 1078 * Check the task and thread group timers. If both are zero (there are no 1079 * timers set) return false. Otherwise snapshot the task and thread group 1080 * timers and compare them with the corresponding expiration times. Return 1081 * true if a timer has expired, else return false. 1082 */ 1083 static inline bool fastpath_timer_check(struct task_struct *tsk) 1084 { 1085 struct posix_cputimers *pct = &tsk->posix_cputimers; 1086 struct signal_struct *sig; 1087 1088 if (!expiry_cache_is_inactive(pct)) { 1089 u64 samples[CPUCLOCK_MAX]; 1090 1091 task_sample_cputime(tsk, samples); 1092 if (task_cputimers_expired(samples, pct)) 1093 return true; 1094 } 1095 1096 sig = tsk->signal; 1097 pct = &sig->posix_cputimers; 1098 /* 1099 * Check if thread group timers expired when timers are active and 1100 * no other thread in the group is already handling expiry for 1101 * thread group cputimers. These fields are read without the 1102 * sighand lock. However, this is fine because this is meant to be 1103 * a fastpath heuristic to determine whether we should try to 1104 * acquire the sighand lock to handle timer expiry. 1105 * 1106 * In the worst case scenario, if concurrently timers_active is set 1107 * or expiry_active is cleared, but the current thread doesn't see 1108 * the change yet, the timer checks are delayed until the next 1109 * thread in the group gets a scheduler interrupt to handle the 1110 * timer. This isn't an issue in practice because these types of 1111 * delays with signals actually getting sent are expected. 1112 */ 1113 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) { 1114 u64 samples[CPUCLOCK_MAX]; 1115 1116 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, 1117 samples); 1118 1119 if (task_cputimers_expired(samples, pct)) 1120 return true; 1121 } 1122 1123 if (dl_task(tsk) && tsk->dl.dl_overrun) 1124 return true; 1125 1126 return false; 1127 } 1128 1129 static void handle_posix_cpu_timers(struct task_struct *tsk); 1130 1131 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 1132 static void posix_cpu_timers_work(struct callback_head *work) 1133 { 1134 struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work); 1135 1136 mutex_lock(&cw->mutex); 1137 handle_posix_cpu_timers(current); 1138 mutex_unlock(&cw->mutex); 1139 } 1140 1141 /* 1142 * Invoked from the posix-timer core when a cancel operation failed because 1143 * the timer is marked firing. The caller holds rcu_read_lock(), which 1144 * protects the timer and the task which is expiring it from being freed. 1145 */ 1146 static void posix_cpu_timer_wait_running(struct k_itimer *timr) 1147 { 1148 struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling); 1149 1150 /* Has the handling task completed expiry already? */ 1151 if (!tsk) 1152 return; 1153 1154 /* Ensure that the task cannot go away */ 1155 get_task_struct(tsk); 1156 /* Now drop the RCU protection so the mutex can be locked */ 1157 rcu_read_unlock(); 1158 /* Wait on the expiry mutex */ 1159 mutex_lock(&tsk->posix_cputimers_work.mutex); 1160 /* Release it immediately again. */ 1161 mutex_unlock(&tsk->posix_cputimers_work.mutex); 1162 /* Drop the task reference. */ 1163 put_task_struct(tsk); 1164 /* Relock RCU so the callsite is balanced */ 1165 rcu_read_lock(); 1166 } 1167 1168 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) 1169 { 1170 /* Ensure that timr->it.cpu.handling task cannot go away */ 1171 rcu_read_lock(); 1172 spin_unlock_irq(&timr->it_lock); 1173 posix_cpu_timer_wait_running(timr); 1174 rcu_read_unlock(); 1175 /* @timr is on stack and is valid */ 1176 spin_lock_irq(&timr->it_lock); 1177 } 1178 1179 /* 1180 * Clear existing posix CPU timers task work. 1181 */ 1182 void clear_posix_cputimers_work(struct task_struct *p) 1183 { 1184 /* 1185 * A copied work entry from the old task is not meaningful, clear it. 1186 * N.B. init_task_work will not do this. 1187 */ 1188 memset(&p->posix_cputimers_work.work, 0, 1189 sizeof(p->posix_cputimers_work.work)); 1190 init_task_work(&p->posix_cputimers_work.work, 1191 posix_cpu_timers_work); 1192 mutex_init(&p->posix_cputimers_work.mutex); 1193 p->posix_cputimers_work.scheduled = false; 1194 } 1195 1196 /* 1197 * Initialize posix CPU timers task work in init task. Out of line to 1198 * keep the callback static and to avoid header recursion hell. 1199 */ 1200 void __init posix_cputimers_init_work(void) 1201 { 1202 clear_posix_cputimers_work(current); 1203 } 1204 1205 /* 1206 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either 1207 * in hard interrupt context or in task context with interrupts 1208 * disabled. Aside of that the writer/reader interaction is always in the 1209 * context of the current task, which means they are strict per CPU. 1210 */ 1211 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1212 { 1213 return tsk->posix_cputimers_work.scheduled; 1214 } 1215 1216 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1217 { 1218 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) 1219 return; 1220 1221 /* Schedule task work to actually expire the timers */ 1222 tsk->posix_cputimers_work.scheduled = true; 1223 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); 1224 } 1225 1226 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1227 unsigned long start) 1228 { 1229 bool ret = true; 1230 1231 /* 1232 * On !RT kernels interrupts are disabled while collecting expired 1233 * timers, so no tick can happen and the fast path check can be 1234 * reenabled without further checks. 1235 */ 1236 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 1237 tsk->posix_cputimers_work.scheduled = false; 1238 return true; 1239 } 1240 1241 /* 1242 * On RT enabled kernels ticks can happen while the expired timers 1243 * are collected under sighand lock. But any tick which observes 1244 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath 1245 * checks. So reenabling the tick work has do be done carefully: 1246 * 1247 * Disable interrupts and run the fast path check if jiffies have 1248 * advanced since the collecting of expired timers started. If 1249 * jiffies have not advanced or the fast path check did not find 1250 * newly expired timers, reenable the fast path check in the timer 1251 * interrupt. If there are newly expired timers, return false and 1252 * let the collection loop repeat. 1253 */ 1254 local_irq_disable(); 1255 if (start != jiffies && fastpath_timer_check(tsk)) 1256 ret = false; 1257 else 1258 tsk->posix_cputimers_work.scheduled = false; 1259 local_irq_enable(); 1260 1261 return ret; 1262 } 1263 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1264 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1265 { 1266 lockdep_posixtimer_enter(); 1267 handle_posix_cpu_timers(tsk); 1268 lockdep_posixtimer_exit(); 1269 } 1270 1271 static void posix_cpu_timer_wait_running(struct k_itimer *timr) 1272 { 1273 cpu_relax(); 1274 } 1275 1276 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) 1277 { 1278 spin_unlock_irq(&timr->it_lock); 1279 cpu_relax(); 1280 spin_lock_irq(&timr->it_lock); 1281 } 1282 1283 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1284 { 1285 return false; 1286 } 1287 1288 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1289 unsigned long start) 1290 { 1291 return true; 1292 } 1293 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1294 1295 static void handle_posix_cpu_timers(struct task_struct *tsk) 1296 { 1297 struct k_itimer *timer, *next; 1298 unsigned long flags, start; 1299 LIST_HEAD(firing); 1300 1301 if (!lock_task_sighand(tsk, &flags)) 1302 return; 1303 1304 do { 1305 /* 1306 * On RT locking sighand lock does not disable interrupts, 1307 * so this needs to be careful vs. ticks. Store the current 1308 * jiffies value. 1309 */ 1310 start = READ_ONCE(jiffies); 1311 barrier(); 1312 1313 /* 1314 * Here we take off tsk->signal->cpu_timers[N] and 1315 * tsk->cpu_timers[N] all the timers that are firing, and 1316 * put them on the firing list. 1317 */ 1318 check_thread_timers(tsk, &firing); 1319 1320 check_process_timers(tsk, &firing); 1321 1322 /* 1323 * The above timer checks have updated the expiry cache and 1324 * because nothing can have queued or modified timers after 1325 * sighand lock was taken above it is guaranteed to be 1326 * consistent. So the next timer interrupt fastpath check 1327 * will find valid data. 1328 * 1329 * If timer expiry runs in the timer interrupt context then 1330 * the loop is not relevant as timers will be directly 1331 * expired in interrupt context. The stub function below 1332 * returns always true which allows the compiler to 1333 * optimize the loop out. 1334 * 1335 * If timer expiry is deferred to task work context then 1336 * the following rules apply: 1337 * 1338 * - On !RT kernels no tick can have happened on this CPU 1339 * after sighand lock was acquired because interrupts are 1340 * disabled. So reenabling task work before dropping 1341 * sighand lock and reenabling interrupts is race free. 1342 * 1343 * - On RT kernels ticks might have happened but the tick 1344 * work ignored posix CPU timer handling because the 1345 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work 1346 * must be done very carefully including a check whether 1347 * ticks have happened since the start of the timer 1348 * expiry checks. posix_cpu_timers_enable_work() takes 1349 * care of that and eventually lets the expiry checks 1350 * run again. 1351 */ 1352 } while (!posix_cpu_timers_enable_work(tsk, start)); 1353 1354 /* 1355 * We must release sighand lock before taking any timer's lock. 1356 * There is a potential race with timer deletion here, as the 1357 * siglock now protects our private firing list. We have set 1358 * the firing flag in each timer, so that a deletion attempt 1359 * that gets the timer lock before we do will give it up and 1360 * spin until we've taken care of that timer below. 1361 */ 1362 unlock_task_sighand(tsk, &flags); 1363 1364 /* 1365 * Now that all the timers on our list have the firing flag, 1366 * no one will touch their list entries but us. We'll take 1367 * each timer's lock before clearing its firing flag, so no 1368 * timer call will interfere. 1369 */ 1370 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { 1371 bool cpu_firing; 1372 1373 /* 1374 * spin_lock() is sufficient here even independent of the 1375 * expiry context. If expiry happens in hard interrupt 1376 * context it's obvious. For task work context it's safe 1377 * because all other operations on timer::it_lock happen in 1378 * task context (syscall or exit). 1379 */ 1380 spin_lock(&timer->it_lock); 1381 list_del_init(&timer->it.cpu.elist); 1382 cpu_firing = timer->it.cpu.firing; 1383 timer->it.cpu.firing = false; 1384 /* 1385 * If the firing flag is cleared then this raced with a 1386 * timer rearm/delete operation. So don't generate an 1387 * event. 1388 */ 1389 if (likely(cpu_firing)) 1390 cpu_timer_fire(timer); 1391 /* See posix_cpu_timer_wait_running() */ 1392 rcu_assign_pointer(timer->it.cpu.handling, NULL); 1393 spin_unlock(&timer->it_lock); 1394 } 1395 } 1396 1397 /* 1398 * This is called from the timer interrupt handler. The irq handler has 1399 * already updated our counts. We need to check if any timers fire now. 1400 * Interrupts are disabled. 1401 */ 1402 void run_posix_cpu_timers(void) 1403 { 1404 struct task_struct *tsk = current; 1405 1406 lockdep_assert_irqs_disabled(); 1407 1408 /* 1409 * If the actual expiry is deferred to task work context and the 1410 * work is already scheduled there is no point to do anything here. 1411 */ 1412 if (posix_cpu_timers_work_scheduled(tsk)) 1413 return; 1414 1415 /* 1416 * The fast path checks that there are no expired thread or thread 1417 * group timers. If that's so, just return. 1418 */ 1419 if (!fastpath_timer_check(tsk)) 1420 return; 1421 1422 __run_posix_cpu_timers(tsk); 1423 } 1424 1425 /* 1426 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1427 * The tsk->sighand->siglock must be held by the caller. 1428 */ 1429 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid, 1430 u64 *newval, u64 *oldval) 1431 { 1432 u64 now, *nextevt; 1433 1434 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED)) 1435 return; 1436 1437 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt; 1438 now = cpu_clock_sample_group(clkid, tsk, true); 1439 1440 if (oldval) { 1441 /* 1442 * We are setting itimer. The *oldval is absolute and we update 1443 * it to be relative, *newval argument is relative and we update 1444 * it to be absolute. 1445 */ 1446 if (*oldval) { 1447 if (*oldval <= now) { 1448 /* Just about to fire. */ 1449 *oldval = TICK_NSEC; 1450 } else { 1451 *oldval -= now; 1452 } 1453 } 1454 1455 if (*newval) 1456 *newval += now; 1457 } 1458 1459 /* 1460 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF 1461 * expiry cache is also used by RLIMIT_CPU!. 1462 */ 1463 if (*newval < *nextevt) 1464 *nextevt = *newval; 1465 1466 tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER); 1467 } 1468 1469 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1470 const struct timespec64 *rqtp) 1471 { 1472 struct itimerspec64 it; 1473 struct k_itimer timer; 1474 u64 expires; 1475 int error; 1476 1477 /* 1478 * Set up a temporary timer and then wait for it to go off. 1479 */ 1480 memset(&timer, 0, sizeof timer); 1481 spin_lock_init(&timer.it_lock); 1482 timer.it_clock = which_clock; 1483 timer.it_overrun = -1; 1484 error = posix_cpu_timer_create(&timer); 1485 timer.it_process = current; 1486 timer.it.cpu.nanosleep = true; 1487 1488 if (!error) { 1489 static struct itimerspec64 zero_it; 1490 struct restart_block *restart; 1491 1492 memset(&it, 0, sizeof(it)); 1493 it.it_value = *rqtp; 1494 1495 spin_lock_irq(&timer.it_lock); 1496 error = posix_cpu_timer_set(&timer, flags, &it, NULL); 1497 if (error) { 1498 spin_unlock_irq(&timer.it_lock); 1499 return error; 1500 } 1501 1502 while (!signal_pending(current)) { 1503 if (!cpu_timer_getexpires(&timer.it.cpu)) { 1504 /* 1505 * Our timer fired and was reset, below 1506 * deletion can not fail. 1507 */ 1508 posix_cpu_timer_del(&timer); 1509 spin_unlock_irq(&timer.it_lock); 1510 return 0; 1511 } 1512 1513 /* 1514 * Block until cpu_timer_fire (or a signal) wakes us. 1515 */ 1516 __set_current_state(TASK_INTERRUPTIBLE); 1517 spin_unlock_irq(&timer.it_lock); 1518 schedule(); 1519 spin_lock_irq(&timer.it_lock); 1520 } 1521 1522 /* 1523 * We were interrupted by a signal. 1524 */ 1525 expires = cpu_timer_getexpires(&timer.it.cpu); 1526 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); 1527 if (!error) { 1528 /* Timer is now unarmed, deletion can not fail. */ 1529 posix_cpu_timer_del(&timer); 1530 } else { 1531 while (error == TIMER_RETRY) { 1532 posix_cpu_timer_wait_running_nsleep(&timer); 1533 error = posix_cpu_timer_del(&timer); 1534 } 1535 } 1536 1537 spin_unlock_irq(&timer.it_lock); 1538 1539 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { 1540 /* 1541 * It actually did fire already. 1542 */ 1543 return 0; 1544 } 1545 1546 error = -ERESTART_RESTARTBLOCK; 1547 /* 1548 * Report back to the user the time still remaining. 1549 */ 1550 restart = ¤t->restart_block; 1551 restart->nanosleep.expires = expires; 1552 if (restart->nanosleep.type != TT_NONE) 1553 error = nanosleep_copyout(restart, &it.it_value); 1554 } 1555 1556 return error; 1557 } 1558 1559 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1560 1561 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1562 const struct timespec64 *rqtp) 1563 { 1564 struct restart_block *restart_block = ¤t->restart_block; 1565 int error; 1566 1567 /* 1568 * Diagnose required errors first. 1569 */ 1570 if (CPUCLOCK_PERTHREAD(which_clock) && 1571 (CPUCLOCK_PID(which_clock) == 0 || 1572 CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) 1573 return -EINVAL; 1574 1575 error = do_cpu_nanosleep(which_clock, flags, rqtp); 1576 1577 if (error == -ERESTART_RESTARTBLOCK) { 1578 1579 if (flags & TIMER_ABSTIME) 1580 return -ERESTARTNOHAND; 1581 1582 restart_block->nanosleep.clockid = which_clock; 1583 set_restart_fn(restart_block, posix_cpu_nsleep_restart); 1584 } 1585 return error; 1586 } 1587 1588 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1589 { 1590 clockid_t which_clock = restart_block->nanosleep.clockid; 1591 struct timespec64 t; 1592 1593 t = ns_to_timespec64(restart_block->nanosleep.expires); 1594 1595 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); 1596 } 1597 1598 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED) 1599 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED) 1600 1601 static int process_cpu_clock_getres(const clockid_t which_clock, 1602 struct timespec64 *tp) 1603 { 1604 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1605 } 1606 static int process_cpu_clock_get(const clockid_t which_clock, 1607 struct timespec64 *tp) 1608 { 1609 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1610 } 1611 static int process_cpu_timer_create(struct k_itimer *timer) 1612 { 1613 timer->it_clock = PROCESS_CLOCK; 1614 return posix_cpu_timer_create(timer); 1615 } 1616 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1617 const struct timespec64 *rqtp) 1618 { 1619 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); 1620 } 1621 static int thread_cpu_clock_getres(const clockid_t which_clock, 1622 struct timespec64 *tp) 1623 { 1624 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1625 } 1626 static int thread_cpu_clock_get(const clockid_t which_clock, 1627 struct timespec64 *tp) 1628 { 1629 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1630 } 1631 static int thread_cpu_timer_create(struct k_itimer *timer) 1632 { 1633 timer->it_clock = THREAD_CLOCK; 1634 return posix_cpu_timer_create(timer); 1635 } 1636 1637 const struct k_clock clock_posix_cpu = { 1638 .clock_getres = posix_cpu_clock_getres, 1639 .clock_set = posix_cpu_clock_set, 1640 .clock_get_timespec = posix_cpu_clock_get, 1641 .timer_create = posix_cpu_timer_create, 1642 .nsleep = posix_cpu_nsleep, 1643 .timer_set = posix_cpu_timer_set, 1644 .timer_del = posix_cpu_timer_del, 1645 .timer_get = posix_cpu_timer_get, 1646 .timer_rearm = posix_cpu_timer_rearm, 1647 .timer_wait_running = posix_cpu_timer_wait_running, 1648 }; 1649 1650 const struct k_clock clock_process = { 1651 .clock_getres = process_cpu_clock_getres, 1652 .clock_get_timespec = process_cpu_clock_get, 1653 .timer_create = process_cpu_timer_create, 1654 .nsleep = process_cpu_nsleep, 1655 }; 1656 1657 const struct k_clock clock_thread = { 1658 .clock_getres = thread_cpu_clock_getres, 1659 .clock_get_timespec = thread_cpu_clock_get, 1660 .timer_create = thread_cpu_timer_create, 1661 }; 1662