xref: /linux/kernel/time/posix-cpu-timers.c (revision 0a670e151a71434765de69590944e18c08ee08cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implement CPU time clocks for the POSIX clock interface.
4  */
5 
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/task_work.h>
19 
20 #include "posix-timers.h"
21 
22 static void posix_cpu_timer_rearm(struct k_itimer *timer);
23 
24 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
25 {
26 	posix_cputimers_init(pct);
27 	if (cpu_limit != RLIM_INFINITY) {
28 		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
29 		pct->timers_active = true;
30 	}
31 }
32 
33 /*
34  * Called after updating RLIMIT_CPU to run cpu timer and update
35  * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
36  * necessary. Needs siglock protection since other code may update the
37  * expiration cache as well.
38  *
39  * Returns 0 on success, -ESRCH on failure.  Can fail if the task is exiting and
40  * we cannot lock_task_sighand.  Cannot fail if task is current.
41  */
42 int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
43 {
44 	u64 nsecs = rlim_new * NSEC_PER_SEC;
45 	unsigned long irq_fl;
46 
47 	if (!lock_task_sighand(task, &irq_fl))
48 		return -ESRCH;
49 	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
50 	unlock_task_sighand(task, &irq_fl);
51 	return 0;
52 }
53 
54 /*
55  * Functions for validating access to tasks.
56  */
57 static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
58 {
59 	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
60 	const pid_t upid = CPUCLOCK_PID(clock);
61 	struct pid *pid;
62 
63 	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
64 		return NULL;
65 
66 	/*
67 	 * If the encoded PID is 0, then the timer is targeted at current
68 	 * or the process to which current belongs.
69 	 */
70 	if (upid == 0)
71 		return thread ? task_pid(current) : task_tgid(current);
72 
73 	pid = find_vpid(upid);
74 	if (!pid)
75 		return NULL;
76 
77 	if (thread) {
78 		struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
79 		return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
80 	}
81 
82 	/*
83 	 * For clock_gettime(PROCESS) allow finding the process by
84 	 * with the pid of the current task.  The code needs the tgid
85 	 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
86 	 * used to find the process.
87 	 */
88 	if (gettime && (pid == task_pid(current)))
89 		return task_tgid(current);
90 
91 	/*
92 	 * For processes require that pid identifies a process.
93 	 */
94 	return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
95 }
96 
97 static inline int validate_clock_permissions(const clockid_t clock)
98 {
99 	int ret;
100 
101 	rcu_read_lock();
102 	ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
103 	rcu_read_unlock();
104 
105 	return ret;
106 }
107 
108 static inline enum pid_type clock_pid_type(const clockid_t clock)
109 {
110 	return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
111 }
112 
113 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
114 {
115 	return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
116 }
117 
118 /*
119  * Update expiry time from increment, and increase overrun count,
120  * given the current clock sample.
121  */
122 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
123 {
124 	u64 delta, incr, expires = timer->it.cpu.node.expires;
125 	int i;
126 
127 	if (!timer->it_interval)
128 		return expires;
129 
130 	if (now < expires)
131 		return expires;
132 
133 	incr = timer->it_interval;
134 	delta = now + incr - expires;
135 
136 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
137 	for (i = 0; incr < delta - incr; i++)
138 		incr = incr << 1;
139 
140 	for (; i >= 0; incr >>= 1, i--) {
141 		if (delta < incr)
142 			continue;
143 
144 		timer->it.cpu.node.expires += incr;
145 		timer->it_overrun += 1LL << i;
146 		delta -= incr;
147 	}
148 	return timer->it.cpu.node.expires;
149 }
150 
151 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
152 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
153 {
154 	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
155 		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
156 		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
157 }
158 
159 static int
160 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
161 {
162 	int error = validate_clock_permissions(which_clock);
163 
164 	if (!error) {
165 		tp->tv_sec = 0;
166 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
167 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
168 			/*
169 			 * If sched_clock is using a cycle counter, we
170 			 * don't have any idea of its true resolution
171 			 * exported, but it is much more than 1s/HZ.
172 			 */
173 			tp->tv_nsec = 1;
174 		}
175 	}
176 	return error;
177 }
178 
179 static int
180 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
181 {
182 	int error = validate_clock_permissions(clock);
183 
184 	/*
185 	 * You can never reset a CPU clock, but we check for other errors
186 	 * in the call before failing with EPERM.
187 	 */
188 	return error ? : -EPERM;
189 }
190 
191 /*
192  * Sample a per-thread clock for the given task. clkid is validated.
193  */
194 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
195 {
196 	u64 utime, stime;
197 
198 	if (clkid == CPUCLOCK_SCHED)
199 		return task_sched_runtime(p);
200 
201 	task_cputime(p, &utime, &stime);
202 
203 	switch (clkid) {
204 	case CPUCLOCK_PROF:
205 		return utime + stime;
206 	case CPUCLOCK_VIRT:
207 		return utime;
208 	default:
209 		WARN_ON_ONCE(1);
210 	}
211 	return 0;
212 }
213 
214 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
215 {
216 	samples[CPUCLOCK_PROF] = stime + utime;
217 	samples[CPUCLOCK_VIRT] = utime;
218 	samples[CPUCLOCK_SCHED] = rtime;
219 }
220 
221 static void task_sample_cputime(struct task_struct *p, u64 *samples)
222 {
223 	u64 stime, utime;
224 
225 	task_cputime(p, &utime, &stime);
226 	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
227 }
228 
229 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
230 				       u64 *samples)
231 {
232 	u64 stime, utime, rtime;
233 
234 	utime = atomic64_read(&at->utime);
235 	stime = atomic64_read(&at->stime);
236 	rtime = atomic64_read(&at->sum_exec_runtime);
237 	store_samples(samples, stime, utime, rtime);
238 }
239 
240 /*
241  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
242  * to avoid race conditions with concurrent updates to cputime.
243  */
244 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
245 {
246 	u64 curr_cputime = atomic64_read(cputime);
247 
248 	do {
249 		if (sum_cputime <= curr_cputime)
250 			return;
251 	} while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime));
252 }
253 
254 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
255 			      struct task_cputime *sum)
256 {
257 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
258 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
259 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
260 }
261 
262 /**
263  * thread_group_sample_cputime - Sample cputime for a given task
264  * @tsk:	Task for which cputime needs to be started
265  * @samples:	Storage for time samples
266  *
267  * Called from sys_getitimer() to calculate the expiry time of an active
268  * timer. That means group cputime accounting is already active. Called
269  * with task sighand lock held.
270  *
271  * Updates @times with an uptodate sample of the thread group cputimes.
272  */
273 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
274 {
275 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
276 	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
277 
278 	WARN_ON_ONCE(!pct->timers_active);
279 
280 	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
281 }
282 
283 /**
284  * thread_group_start_cputime - Start cputime and return a sample
285  * @tsk:	Task for which cputime needs to be started
286  * @samples:	Storage for time samples
287  *
288  * The thread group cputime accounting is avoided when there are no posix
289  * CPU timers armed. Before starting a timer it's required to check whether
290  * the time accounting is active. If not, a full update of the atomic
291  * accounting store needs to be done and the accounting enabled.
292  *
293  * Updates @times with an uptodate sample of the thread group cputimes.
294  */
295 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
296 {
297 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
298 	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
299 
300 	lockdep_assert_task_sighand_held(tsk);
301 
302 	/* Check if cputimer isn't running. This is accessed without locking. */
303 	if (!READ_ONCE(pct->timers_active)) {
304 		struct task_cputime sum;
305 
306 		/*
307 		 * The POSIX timer interface allows for absolute time expiry
308 		 * values through the TIMER_ABSTIME flag, therefore we have
309 		 * to synchronize the timer to the clock every time we start it.
310 		 */
311 		thread_group_cputime(tsk, &sum);
312 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
313 
314 		/*
315 		 * We're setting timers_active without a lock. Ensure this
316 		 * only gets written to in one operation. We set it after
317 		 * update_gt_cputime() as a small optimization, but
318 		 * barriers are not required because update_gt_cputime()
319 		 * can handle concurrent updates.
320 		 */
321 		WRITE_ONCE(pct->timers_active, true);
322 	}
323 	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
324 }
325 
326 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
327 {
328 	struct task_cputime ct;
329 
330 	thread_group_cputime(tsk, &ct);
331 	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
332 }
333 
334 /*
335  * Sample a process (thread group) clock for the given task clkid. If the
336  * group's cputime accounting is already enabled, read the atomic
337  * store. Otherwise a full update is required.  clkid is already validated.
338  */
339 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
340 				  bool start)
341 {
342 	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
343 	struct posix_cputimers *pct = &p->signal->posix_cputimers;
344 	u64 samples[CPUCLOCK_MAX];
345 
346 	if (!READ_ONCE(pct->timers_active)) {
347 		if (start)
348 			thread_group_start_cputime(p, samples);
349 		else
350 			__thread_group_cputime(p, samples);
351 	} else {
352 		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
353 	}
354 
355 	return samples[clkid];
356 }
357 
358 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
359 {
360 	const clockid_t clkid = CPUCLOCK_WHICH(clock);
361 	struct task_struct *tsk;
362 	u64 t;
363 
364 	rcu_read_lock();
365 	tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
366 	if (!tsk) {
367 		rcu_read_unlock();
368 		return -EINVAL;
369 	}
370 
371 	if (CPUCLOCK_PERTHREAD(clock))
372 		t = cpu_clock_sample(clkid, tsk);
373 	else
374 		t = cpu_clock_sample_group(clkid, tsk, false);
375 	rcu_read_unlock();
376 
377 	*tp = ns_to_timespec64(t);
378 	return 0;
379 }
380 
381 /*
382  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
383  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
384  * new timer already all-zeros initialized.
385  */
386 static int posix_cpu_timer_create(struct k_itimer *new_timer)
387 {
388 	static struct lock_class_key posix_cpu_timers_key;
389 	struct pid *pid;
390 
391 	rcu_read_lock();
392 	pid = pid_for_clock(new_timer->it_clock, false);
393 	if (!pid) {
394 		rcu_read_unlock();
395 		return -EINVAL;
396 	}
397 
398 	/*
399 	 * If posix timer expiry is handled in task work context then
400 	 * timer::it_lock can be taken without disabling interrupts as all
401 	 * other locking happens in task context. This requires a separate
402 	 * lock class key otherwise regular posix timer expiry would record
403 	 * the lock class being taken in interrupt context and generate a
404 	 * false positive warning.
405 	 */
406 	if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
407 		lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
408 
409 	new_timer->kclock = &clock_posix_cpu;
410 	timerqueue_init(&new_timer->it.cpu.node);
411 	new_timer->it.cpu.pid = get_pid(pid);
412 	rcu_read_unlock();
413 	return 0;
414 }
415 
416 static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
417 					      struct task_struct *tsk)
418 {
419 	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
420 
421 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
422 		return tsk->posix_cputimers.bases + clkidx;
423 	else
424 		return tsk->signal->posix_cputimers.bases + clkidx;
425 }
426 
427 /*
428  * Force recalculating the base earliest expiration on the next tick.
429  * This will also re-evaluate the need to keep around the process wide
430  * cputime counter and tick dependency and eventually shut these down
431  * if necessary.
432  */
433 static void trigger_base_recalc_expires(struct k_itimer *timer,
434 					struct task_struct *tsk)
435 {
436 	struct posix_cputimer_base *base = timer_base(timer, tsk);
437 
438 	base->nextevt = 0;
439 }
440 
441 /*
442  * Dequeue the timer and reset the base if it was its earliest expiration.
443  * It makes sure the next tick recalculates the base next expiration so we
444  * don't keep the costly process wide cputime counter around for a random
445  * amount of time, along with the tick dependency.
446  *
447  * If another timer gets queued between this and the next tick, its
448  * expiration will update the base next event if necessary on the next
449  * tick.
450  */
451 static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
452 {
453 	struct cpu_timer *ctmr = &timer->it.cpu;
454 	struct posix_cputimer_base *base;
455 
456 	if (!cpu_timer_dequeue(ctmr))
457 		return;
458 
459 	base = timer_base(timer, p);
460 	if (cpu_timer_getexpires(ctmr) == base->nextevt)
461 		trigger_base_recalc_expires(timer, p);
462 }
463 
464 
465 /*
466  * Clean up a CPU-clock timer that is about to be destroyed.
467  * This is called from timer deletion with the timer already locked.
468  * If we return TIMER_RETRY, it's necessary to release the timer's lock
469  * and try again.  (This happens when the timer is in the middle of firing.)
470  */
471 static int posix_cpu_timer_del(struct k_itimer *timer)
472 {
473 	struct cpu_timer *ctmr = &timer->it.cpu;
474 	struct sighand_struct *sighand;
475 	struct task_struct *p;
476 	unsigned long flags;
477 	int ret = 0;
478 
479 	rcu_read_lock();
480 	p = cpu_timer_task_rcu(timer);
481 	if (!p)
482 		goto out;
483 
484 	/*
485 	 * Protect against sighand release/switch in exit/exec and process/
486 	 * thread timer list entry concurrent read/writes.
487 	 */
488 	sighand = lock_task_sighand(p, &flags);
489 	if (unlikely(sighand == NULL)) {
490 		/*
491 		 * This raced with the reaping of the task. The exit cleanup
492 		 * should have removed this timer from the timer queue.
493 		 */
494 		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
495 	} else {
496 		if (timer->it.cpu.firing) {
497 			/*
498 			 * Prevent signal delivery. The timer cannot be dequeued
499 			 * because it is on the firing list which is not protected
500 			 * by sighand->lock. The delivery path is waiting for
501 			 * the timer lock. So go back, unlock and retry.
502 			 */
503 			timer->it.cpu.firing = false;
504 			ret = TIMER_RETRY;
505 		} else {
506 			disarm_timer(timer, p);
507 		}
508 		unlock_task_sighand(p, &flags);
509 	}
510 
511 out:
512 	rcu_read_unlock();
513 
514 	if (!ret) {
515 		put_pid(ctmr->pid);
516 		timer->it_status = POSIX_TIMER_DISARMED;
517 	}
518 	return ret;
519 }
520 
521 static void cleanup_timerqueue(struct timerqueue_head *head)
522 {
523 	struct timerqueue_node *node;
524 	struct cpu_timer *ctmr;
525 
526 	while ((node = timerqueue_getnext(head))) {
527 		timerqueue_del(head, node);
528 		ctmr = container_of(node, struct cpu_timer, node);
529 		ctmr->head = NULL;
530 	}
531 }
532 
533 /*
534  * Clean out CPU timers which are still armed when a thread exits. The
535  * timers are only removed from the list. No other updates are done. The
536  * corresponding posix timers are still accessible, but cannot be rearmed.
537  *
538  * This must be called with the siglock held.
539  */
540 static void cleanup_timers(struct posix_cputimers *pct)
541 {
542 	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
543 	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
544 	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
545 }
546 
547 /*
548  * These are both called with the siglock held, when the current thread
549  * is being reaped.  When the final (leader) thread in the group is reaped,
550  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
551  */
552 void posix_cpu_timers_exit(struct task_struct *tsk)
553 {
554 	cleanup_timers(&tsk->posix_cputimers);
555 }
556 void posix_cpu_timers_exit_group(struct task_struct *tsk)
557 {
558 	cleanup_timers(&tsk->signal->posix_cputimers);
559 }
560 
561 /*
562  * Insert the timer on the appropriate list before any timers that
563  * expire later.  This must be called with the sighand lock held.
564  */
565 static void arm_timer(struct k_itimer *timer, struct task_struct *p)
566 {
567 	struct posix_cputimer_base *base = timer_base(timer, p);
568 	struct cpu_timer *ctmr = &timer->it.cpu;
569 	u64 newexp = cpu_timer_getexpires(ctmr);
570 
571 	timer->it_status = POSIX_TIMER_ARMED;
572 	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
573 		return;
574 
575 	/*
576 	 * We are the new earliest-expiring POSIX 1.b timer, hence
577 	 * need to update expiration cache. Take into account that
578 	 * for process timers we share expiration cache with itimers
579 	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
580 	 */
581 	if (newexp < base->nextevt)
582 		base->nextevt = newexp;
583 
584 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
585 		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
586 	else
587 		tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
588 }
589 
590 /*
591  * The timer is locked, fire it and arrange for its reload.
592  */
593 static void cpu_timer_fire(struct k_itimer *timer)
594 {
595 	struct cpu_timer *ctmr = &timer->it.cpu;
596 
597 	timer->it_status = POSIX_TIMER_DISARMED;
598 
599 	if (unlikely(ctmr->nanosleep)) {
600 		/*
601 		 * This a special case for clock_nanosleep,
602 		 * not a normal timer from sys_timer_create.
603 		 */
604 		wake_up_process(timer->it_process);
605 		cpu_timer_setexpires(ctmr, 0);
606 	} else {
607 		posix_timer_queue_signal(timer);
608 		/* Disable oneshot timers */
609 		if (!timer->it_interval)
610 			cpu_timer_setexpires(ctmr, 0);
611 	}
612 }
613 
614 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now);
615 
616 /*
617  * Guts of sys_timer_settime for CPU timers.
618  * This is called with the timer locked and interrupts disabled.
619  * If we return TIMER_RETRY, it's necessary to release the timer's lock
620  * and try again.  (This happens when the timer is in the middle of firing.)
621  */
622 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
623 			       struct itimerspec64 *new, struct itimerspec64 *old)
624 {
625 	bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
626 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
627 	struct cpu_timer *ctmr = &timer->it.cpu;
628 	u64 old_expires, new_expires, now;
629 	struct sighand_struct *sighand;
630 	struct task_struct *p;
631 	unsigned long flags;
632 	int ret = 0;
633 
634 	rcu_read_lock();
635 	p = cpu_timer_task_rcu(timer);
636 	if (!p) {
637 		/*
638 		 * If p has just been reaped, we can no
639 		 * longer get any information about it at all.
640 		 */
641 		rcu_read_unlock();
642 		return -ESRCH;
643 	}
644 
645 	/*
646 	 * Use the to_ktime conversion because that clamps the maximum
647 	 * value to KTIME_MAX and avoid multiplication overflows.
648 	 */
649 	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
650 
651 	/*
652 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
653 	 * and p->signal->cpu_timers read/write in arm_timer()
654 	 */
655 	sighand = lock_task_sighand(p, &flags);
656 	/*
657 	 * If p has just been reaped, we can no
658 	 * longer get any information about it at all.
659 	 */
660 	if (unlikely(sighand == NULL)) {
661 		rcu_read_unlock();
662 		return -ESRCH;
663 	}
664 
665 	/* Retrieve the current expiry time before disarming the timer */
666 	old_expires = cpu_timer_getexpires(ctmr);
667 
668 	if (unlikely(timer->it.cpu.firing)) {
669 		/*
670 		 * Prevent signal delivery. The timer cannot be dequeued
671 		 * because it is on the firing list which is not protected
672 		 * by sighand->lock. The delivery path is waiting for
673 		 * the timer lock. So go back, unlock and retry.
674 		 */
675 		timer->it.cpu.firing = false;
676 		ret = TIMER_RETRY;
677 	} else {
678 		cpu_timer_dequeue(ctmr);
679 		timer->it_status = POSIX_TIMER_DISARMED;
680 	}
681 
682 	/*
683 	 * Sample the current clock for saving the previous setting
684 	 * and for rearming the timer.
685 	 */
686 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
687 		now = cpu_clock_sample(clkid, p);
688 	else
689 		now = cpu_clock_sample_group(clkid, p, !sigev_none);
690 
691 	/* Retrieve the previous expiry value if requested. */
692 	if (old) {
693 		old->it_value = (struct timespec64){ };
694 		if (old_expires)
695 			__posix_cpu_timer_get(timer, old, now);
696 	}
697 
698 	/* Retry if the timer expiry is running concurrently */
699 	if (unlikely(ret)) {
700 		unlock_task_sighand(p, &flags);
701 		goto out;
702 	}
703 
704 	/* Convert relative expiry time to absolute */
705 	if (new_expires && !(timer_flags & TIMER_ABSTIME))
706 		new_expires += now;
707 
708 	/* Set the new expiry time (might be 0) */
709 	cpu_timer_setexpires(ctmr, new_expires);
710 
711 	/*
712 	 * Arm the timer if it is not disabled, the new expiry value has
713 	 * not yet expired and the timer requires signal delivery.
714 	 * SIGEV_NONE timers are never armed. In case the timer is not
715 	 * armed, enforce the reevaluation of the timer base so that the
716 	 * process wide cputime counter can be disabled eventually.
717 	 */
718 	if (likely(!sigev_none)) {
719 		if (new_expires && now < new_expires)
720 			arm_timer(timer, p);
721 		else
722 			trigger_base_recalc_expires(timer, p);
723 	}
724 
725 	unlock_task_sighand(p, &flags);
726 
727 	posix_timer_set_common(timer, new);
728 
729 	/*
730 	 * If the new expiry time was already in the past the timer was not
731 	 * queued. Fire it immediately even if the thread never runs to
732 	 * accumulate more time on this clock.
733 	 */
734 	if (!sigev_none && new_expires && now >= new_expires)
735 		cpu_timer_fire(timer);
736 out:
737 	rcu_read_unlock();
738 	return ret;
739 }
740 
741 static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp, u64 now)
742 {
743 	bool sigev_none = timer->it_sigev_notify == SIGEV_NONE;
744 	u64 expires, iv = timer->it_interval;
745 
746 	/*
747 	 * Make sure that interval timers are moved forward for the
748 	 * following cases:
749 	 *  - SIGEV_NONE timers which are never armed
750 	 *  - Timers which expired, but the signal has not yet been
751 	 *    delivered
752 	 */
753 	if (iv && timer->it_status != POSIX_TIMER_ARMED)
754 		expires = bump_cpu_timer(timer, now);
755 	else
756 		expires = cpu_timer_getexpires(&timer->it.cpu);
757 
758 	/*
759 	 * Expired interval timers cannot have a remaining time <= 0.
760 	 * The kernel has to move them forward so that the next
761 	 * timer expiry is > @now.
762 	 */
763 	if (now < expires) {
764 		itp->it_value = ns_to_timespec64(expires - now);
765 	} else {
766 		/*
767 		 * A single shot SIGEV_NONE timer must return 0, when it is
768 		 * expired! Timers which have a real signal delivery mode
769 		 * must return a remaining time greater than 0 because the
770 		 * signal has not yet been delivered.
771 		 */
772 		if (!sigev_none)
773 			itp->it_value.tv_nsec = 1;
774 	}
775 }
776 
777 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
778 {
779 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
780 	struct task_struct *p;
781 	u64 now;
782 
783 	rcu_read_lock();
784 	p = cpu_timer_task_rcu(timer);
785 	if (p && cpu_timer_getexpires(&timer->it.cpu)) {
786 		itp->it_interval = ktime_to_timespec64(timer->it_interval);
787 
788 		if (CPUCLOCK_PERTHREAD(timer->it_clock))
789 			now = cpu_clock_sample(clkid, p);
790 		else
791 			now = cpu_clock_sample_group(clkid, p, false);
792 
793 		__posix_cpu_timer_get(timer, itp, now);
794 	}
795 	rcu_read_unlock();
796 }
797 
798 #define MAX_COLLECTED	20
799 
800 static u64 collect_timerqueue(struct timerqueue_head *head,
801 			      struct list_head *firing, u64 now)
802 {
803 	struct timerqueue_node *next;
804 	int i = 0;
805 
806 	while ((next = timerqueue_getnext(head))) {
807 		struct cpu_timer *ctmr;
808 		u64 expires;
809 
810 		ctmr = container_of(next, struct cpu_timer, node);
811 		expires = cpu_timer_getexpires(ctmr);
812 		/* Limit the number of timers to expire at once */
813 		if (++i == MAX_COLLECTED || now < expires)
814 			return expires;
815 
816 		ctmr->firing = true;
817 		/* See posix_cpu_timer_wait_running() */
818 		rcu_assign_pointer(ctmr->handling, current);
819 		cpu_timer_dequeue(ctmr);
820 		list_add_tail(&ctmr->elist, firing);
821 	}
822 
823 	return U64_MAX;
824 }
825 
826 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
827 				    struct list_head *firing)
828 {
829 	struct posix_cputimer_base *base = pct->bases;
830 	int i;
831 
832 	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
833 		base->nextevt = collect_timerqueue(&base->tqhead, firing,
834 						    samples[i]);
835 	}
836 }
837 
838 static inline void check_dl_overrun(struct task_struct *tsk)
839 {
840 	if (tsk->dl.dl_overrun) {
841 		tsk->dl.dl_overrun = 0;
842 		send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
843 	}
844 }
845 
846 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
847 {
848 	if (time < limit)
849 		return false;
850 
851 	if (print_fatal_signals) {
852 		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
853 			rt ? "RT" : "CPU", hard ? "hard" : "soft",
854 			current->comm, task_pid_nr(current));
855 	}
856 	send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID);
857 	return true;
858 }
859 
860 /*
861  * Check for any per-thread CPU timers that have fired and move them off
862  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
863  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
864  */
865 static void check_thread_timers(struct task_struct *tsk,
866 				struct list_head *firing)
867 {
868 	struct posix_cputimers *pct = &tsk->posix_cputimers;
869 	u64 samples[CPUCLOCK_MAX];
870 	unsigned long soft;
871 
872 	if (dl_task(tsk))
873 		check_dl_overrun(tsk);
874 
875 	if (expiry_cache_is_inactive(pct))
876 		return;
877 
878 	task_sample_cputime(tsk, samples);
879 	collect_posix_cputimers(pct, samples, firing);
880 
881 	/*
882 	 * Check for the special case thread timers.
883 	 */
884 	soft = task_rlimit(tsk, RLIMIT_RTTIME);
885 	if (soft != RLIM_INFINITY) {
886 		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
887 		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
888 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
889 
890 		/* At the hard limit, send SIGKILL. No further action. */
891 		if (hard != RLIM_INFINITY &&
892 		    check_rlimit(rttime, hard, SIGKILL, true, true))
893 			return;
894 
895 		/* At the soft limit, send a SIGXCPU every second */
896 		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
897 			soft += USEC_PER_SEC;
898 			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
899 		}
900 	}
901 
902 	if (expiry_cache_is_inactive(pct))
903 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
904 }
905 
906 static inline void stop_process_timers(struct signal_struct *sig)
907 {
908 	struct posix_cputimers *pct = &sig->posix_cputimers;
909 
910 	/* Turn off the active flag. This is done without locking. */
911 	WRITE_ONCE(pct->timers_active, false);
912 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
913 }
914 
915 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
916 			     u64 *expires, u64 cur_time, int signo)
917 {
918 	if (!it->expires)
919 		return;
920 
921 	if (cur_time >= it->expires) {
922 		if (it->incr)
923 			it->expires += it->incr;
924 		else
925 			it->expires = 0;
926 
927 		trace_itimer_expire(signo == SIGPROF ?
928 				    ITIMER_PROF : ITIMER_VIRTUAL,
929 				    task_tgid(tsk), cur_time);
930 		send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
931 	}
932 
933 	if (it->expires && it->expires < *expires)
934 		*expires = it->expires;
935 }
936 
937 /*
938  * Check for any per-thread CPU timers that have fired and move them
939  * off the tsk->*_timers list onto the firing list.  Per-thread timers
940  * have already been taken off.
941  */
942 static void check_process_timers(struct task_struct *tsk,
943 				 struct list_head *firing)
944 {
945 	struct signal_struct *const sig = tsk->signal;
946 	struct posix_cputimers *pct = &sig->posix_cputimers;
947 	u64 samples[CPUCLOCK_MAX];
948 	unsigned long soft;
949 
950 	/*
951 	 * If there are no active process wide timers (POSIX 1.b, itimers,
952 	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
953 	 * processing when there is already another task handling them.
954 	 */
955 	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
956 		return;
957 
958 	/*
959 	 * Signify that a thread is checking for process timers.
960 	 * Write access to this field is protected by the sighand lock.
961 	 */
962 	pct->expiry_active = true;
963 
964 	/*
965 	 * Collect the current process totals. Group accounting is active
966 	 * so the sample can be taken directly.
967 	 */
968 	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
969 	collect_posix_cputimers(pct, samples, firing);
970 
971 	/*
972 	 * Check for the special case process timers.
973 	 */
974 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
975 			 &pct->bases[CPUCLOCK_PROF].nextevt,
976 			 samples[CPUCLOCK_PROF], SIGPROF);
977 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
978 			 &pct->bases[CPUCLOCK_VIRT].nextevt,
979 			 samples[CPUCLOCK_VIRT], SIGVTALRM);
980 
981 	soft = task_rlimit(tsk, RLIMIT_CPU);
982 	if (soft != RLIM_INFINITY) {
983 		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
984 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
985 		u64 ptime = samples[CPUCLOCK_PROF];
986 		u64 softns = (u64)soft * NSEC_PER_SEC;
987 		u64 hardns = (u64)hard * NSEC_PER_SEC;
988 
989 		/* At the hard limit, send SIGKILL. No further action. */
990 		if (hard != RLIM_INFINITY &&
991 		    check_rlimit(ptime, hardns, SIGKILL, false, true))
992 			return;
993 
994 		/* At the soft limit, send a SIGXCPU every second */
995 		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
996 			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
997 			softns += NSEC_PER_SEC;
998 		}
999 
1000 		/* Update the expiry cache */
1001 		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
1002 			pct->bases[CPUCLOCK_PROF].nextevt = softns;
1003 	}
1004 
1005 	if (expiry_cache_is_inactive(pct))
1006 		stop_process_timers(sig);
1007 
1008 	pct->expiry_active = false;
1009 }
1010 
1011 /*
1012  * This is called from the signal code (via posixtimer_rearm)
1013  * when the last timer signal was delivered and we have to reload the timer.
1014  */
1015 static void posix_cpu_timer_rearm(struct k_itimer *timer)
1016 {
1017 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
1018 	struct task_struct *p;
1019 	struct sighand_struct *sighand;
1020 	unsigned long flags;
1021 	u64 now;
1022 
1023 	rcu_read_lock();
1024 	p = cpu_timer_task_rcu(timer);
1025 	if (!p)
1026 		goto out;
1027 
1028 	/* Protect timer list r/w in arm_timer() */
1029 	sighand = lock_task_sighand(p, &flags);
1030 	if (unlikely(sighand == NULL))
1031 		goto out;
1032 
1033 	/*
1034 	 * Fetch the current sample and update the timer's expiry time.
1035 	 */
1036 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
1037 		now = cpu_clock_sample(clkid, p);
1038 	else
1039 		now = cpu_clock_sample_group(clkid, p, true);
1040 
1041 	bump_cpu_timer(timer, now);
1042 
1043 	/*
1044 	 * Now re-arm for the new expiry time.
1045 	 */
1046 	arm_timer(timer, p);
1047 	unlock_task_sighand(p, &flags);
1048 out:
1049 	rcu_read_unlock();
1050 }
1051 
1052 /**
1053  * task_cputimers_expired - Check whether posix CPU timers are expired
1054  *
1055  * @samples:	Array of current samples for the CPUCLOCK clocks
1056  * @pct:	Pointer to a posix_cputimers container
1057  *
1058  * Returns true if any member of @samples is greater than the corresponding
1059  * member of @pct->bases[CLK].nextevt. False otherwise
1060  */
1061 static inline bool
1062 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1063 {
1064 	int i;
1065 
1066 	for (i = 0; i < CPUCLOCK_MAX; i++) {
1067 		if (samples[i] >= pct->bases[i].nextevt)
1068 			return true;
1069 	}
1070 	return false;
1071 }
1072 
1073 /**
1074  * fastpath_timer_check - POSIX CPU timers fast path.
1075  *
1076  * @tsk:	The task (thread) being checked.
1077  *
1078  * Check the task and thread group timers.  If both are zero (there are no
1079  * timers set) return false.  Otherwise snapshot the task and thread group
1080  * timers and compare them with the corresponding expiration times.  Return
1081  * true if a timer has expired, else return false.
1082  */
1083 static inline bool fastpath_timer_check(struct task_struct *tsk)
1084 {
1085 	struct posix_cputimers *pct = &tsk->posix_cputimers;
1086 	struct signal_struct *sig;
1087 
1088 	if (!expiry_cache_is_inactive(pct)) {
1089 		u64 samples[CPUCLOCK_MAX];
1090 
1091 		task_sample_cputime(tsk, samples);
1092 		if (task_cputimers_expired(samples, pct))
1093 			return true;
1094 	}
1095 
1096 	sig = tsk->signal;
1097 	pct = &sig->posix_cputimers;
1098 	/*
1099 	 * Check if thread group timers expired when timers are active and
1100 	 * no other thread in the group is already handling expiry for
1101 	 * thread group cputimers. These fields are read without the
1102 	 * sighand lock. However, this is fine because this is meant to be
1103 	 * a fastpath heuristic to determine whether we should try to
1104 	 * acquire the sighand lock to handle timer expiry.
1105 	 *
1106 	 * In the worst case scenario, if concurrently timers_active is set
1107 	 * or expiry_active is cleared, but the current thread doesn't see
1108 	 * the change yet, the timer checks are delayed until the next
1109 	 * thread in the group gets a scheduler interrupt to handle the
1110 	 * timer. This isn't an issue in practice because these types of
1111 	 * delays with signals actually getting sent are expected.
1112 	 */
1113 	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1114 		u64 samples[CPUCLOCK_MAX];
1115 
1116 		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1117 					   samples);
1118 
1119 		if (task_cputimers_expired(samples, pct))
1120 			return true;
1121 	}
1122 
1123 	if (dl_task(tsk) && tsk->dl.dl_overrun)
1124 		return true;
1125 
1126 	return false;
1127 }
1128 
1129 static void handle_posix_cpu_timers(struct task_struct *tsk);
1130 
1131 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1132 static void posix_cpu_timers_work(struct callback_head *work)
1133 {
1134 	struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work);
1135 
1136 	mutex_lock(&cw->mutex);
1137 	handle_posix_cpu_timers(current);
1138 	mutex_unlock(&cw->mutex);
1139 }
1140 
1141 /*
1142  * Invoked from the posix-timer core when a cancel operation failed because
1143  * the timer is marked firing. The caller holds rcu_read_lock(), which
1144  * protects the timer and the task which is expiring it from being freed.
1145  */
1146 static void posix_cpu_timer_wait_running(struct k_itimer *timr)
1147 {
1148 	struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling);
1149 
1150 	/* Has the handling task completed expiry already? */
1151 	if (!tsk)
1152 		return;
1153 
1154 	/* Ensure that the task cannot go away */
1155 	get_task_struct(tsk);
1156 	/* Now drop the RCU protection so the mutex can be locked */
1157 	rcu_read_unlock();
1158 	/* Wait on the expiry mutex */
1159 	mutex_lock(&tsk->posix_cputimers_work.mutex);
1160 	/* Release it immediately again. */
1161 	mutex_unlock(&tsk->posix_cputimers_work.mutex);
1162 	/* Drop the task reference. */
1163 	put_task_struct(tsk);
1164 	/* Relock RCU so the callsite is balanced */
1165 	rcu_read_lock();
1166 }
1167 
1168 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
1169 {
1170 	/* Ensure that timr->it.cpu.handling task cannot go away */
1171 	rcu_read_lock();
1172 	spin_unlock_irq(&timr->it_lock);
1173 	posix_cpu_timer_wait_running(timr);
1174 	rcu_read_unlock();
1175 	/* @timr is on stack and is valid */
1176 	spin_lock_irq(&timr->it_lock);
1177 }
1178 
1179 /*
1180  * Clear existing posix CPU timers task work.
1181  */
1182 void clear_posix_cputimers_work(struct task_struct *p)
1183 {
1184 	/*
1185 	 * A copied work entry from the old task is not meaningful, clear it.
1186 	 * N.B. init_task_work will not do this.
1187 	 */
1188 	memset(&p->posix_cputimers_work.work, 0,
1189 	       sizeof(p->posix_cputimers_work.work));
1190 	init_task_work(&p->posix_cputimers_work.work,
1191 		       posix_cpu_timers_work);
1192 	mutex_init(&p->posix_cputimers_work.mutex);
1193 	p->posix_cputimers_work.scheduled = false;
1194 }
1195 
1196 /*
1197  * Initialize posix CPU timers task work in init task. Out of line to
1198  * keep the callback static and to avoid header recursion hell.
1199  */
1200 void __init posix_cputimers_init_work(void)
1201 {
1202 	clear_posix_cputimers_work(current);
1203 }
1204 
1205 /*
1206  * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1207  * in hard interrupt context or in task context with interrupts
1208  * disabled. Aside of that the writer/reader interaction is always in the
1209  * context of the current task, which means they are strict per CPU.
1210  */
1211 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1212 {
1213 	return tsk->posix_cputimers_work.scheduled;
1214 }
1215 
1216 static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1217 {
1218 	if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1219 		return;
1220 
1221 	/* Schedule task work to actually expire the timers */
1222 	tsk->posix_cputimers_work.scheduled = true;
1223 	task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1224 }
1225 
1226 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1227 						unsigned long start)
1228 {
1229 	bool ret = true;
1230 
1231 	/*
1232 	 * On !RT kernels interrupts are disabled while collecting expired
1233 	 * timers, so no tick can happen and the fast path check can be
1234 	 * reenabled without further checks.
1235 	 */
1236 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1237 		tsk->posix_cputimers_work.scheduled = false;
1238 		return true;
1239 	}
1240 
1241 	/*
1242 	 * On RT enabled kernels ticks can happen while the expired timers
1243 	 * are collected under sighand lock. But any tick which observes
1244 	 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1245 	 * checks. So reenabling the tick work has do be done carefully:
1246 	 *
1247 	 * Disable interrupts and run the fast path check if jiffies have
1248 	 * advanced since the collecting of expired timers started. If
1249 	 * jiffies have not advanced or the fast path check did not find
1250 	 * newly expired timers, reenable the fast path check in the timer
1251 	 * interrupt. If there are newly expired timers, return false and
1252 	 * let the collection loop repeat.
1253 	 */
1254 	local_irq_disable();
1255 	if (start != jiffies && fastpath_timer_check(tsk))
1256 		ret = false;
1257 	else
1258 		tsk->posix_cputimers_work.scheduled = false;
1259 	local_irq_enable();
1260 
1261 	return ret;
1262 }
1263 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1264 static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1265 {
1266 	lockdep_posixtimer_enter();
1267 	handle_posix_cpu_timers(tsk);
1268 	lockdep_posixtimer_exit();
1269 }
1270 
1271 static void posix_cpu_timer_wait_running(struct k_itimer *timr)
1272 {
1273 	cpu_relax();
1274 }
1275 
1276 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
1277 {
1278 	spin_unlock_irq(&timr->it_lock);
1279 	cpu_relax();
1280 	spin_lock_irq(&timr->it_lock);
1281 }
1282 
1283 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1284 {
1285 	return false;
1286 }
1287 
1288 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1289 						unsigned long start)
1290 {
1291 	return true;
1292 }
1293 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1294 
1295 static void handle_posix_cpu_timers(struct task_struct *tsk)
1296 {
1297 	struct k_itimer *timer, *next;
1298 	unsigned long flags, start;
1299 	LIST_HEAD(firing);
1300 
1301 	if (!lock_task_sighand(tsk, &flags))
1302 		return;
1303 
1304 	do {
1305 		/*
1306 		 * On RT locking sighand lock does not disable interrupts,
1307 		 * so this needs to be careful vs. ticks. Store the current
1308 		 * jiffies value.
1309 		 */
1310 		start = READ_ONCE(jiffies);
1311 		barrier();
1312 
1313 		/*
1314 		 * Here we take off tsk->signal->cpu_timers[N] and
1315 		 * tsk->cpu_timers[N] all the timers that are firing, and
1316 		 * put them on the firing list.
1317 		 */
1318 		check_thread_timers(tsk, &firing);
1319 
1320 		check_process_timers(tsk, &firing);
1321 
1322 		/*
1323 		 * The above timer checks have updated the expiry cache and
1324 		 * because nothing can have queued or modified timers after
1325 		 * sighand lock was taken above it is guaranteed to be
1326 		 * consistent. So the next timer interrupt fastpath check
1327 		 * will find valid data.
1328 		 *
1329 		 * If timer expiry runs in the timer interrupt context then
1330 		 * the loop is not relevant as timers will be directly
1331 		 * expired in interrupt context. The stub function below
1332 		 * returns always true which allows the compiler to
1333 		 * optimize the loop out.
1334 		 *
1335 		 * If timer expiry is deferred to task work context then
1336 		 * the following rules apply:
1337 		 *
1338 		 * - On !RT kernels no tick can have happened on this CPU
1339 		 *   after sighand lock was acquired because interrupts are
1340 		 *   disabled. So reenabling task work before dropping
1341 		 *   sighand lock and reenabling interrupts is race free.
1342 		 *
1343 		 * - On RT kernels ticks might have happened but the tick
1344 		 *   work ignored posix CPU timer handling because the
1345 		 *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1346 		 *   must be done very carefully including a check whether
1347 		 *   ticks have happened since the start of the timer
1348 		 *   expiry checks. posix_cpu_timers_enable_work() takes
1349 		 *   care of that and eventually lets the expiry checks
1350 		 *   run again.
1351 		 */
1352 	} while (!posix_cpu_timers_enable_work(tsk, start));
1353 
1354 	/*
1355 	 * We must release sighand lock before taking any timer's lock.
1356 	 * There is a potential race with timer deletion here, as the
1357 	 * siglock now protects our private firing list.  We have set
1358 	 * the firing flag in each timer, so that a deletion attempt
1359 	 * that gets the timer lock before we do will give it up and
1360 	 * spin until we've taken care of that timer below.
1361 	 */
1362 	unlock_task_sighand(tsk, &flags);
1363 
1364 	/*
1365 	 * Now that all the timers on our list have the firing flag,
1366 	 * no one will touch their list entries but us.  We'll take
1367 	 * each timer's lock before clearing its firing flag, so no
1368 	 * timer call will interfere.
1369 	 */
1370 	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1371 		bool cpu_firing;
1372 
1373 		/*
1374 		 * spin_lock() is sufficient here even independent of the
1375 		 * expiry context. If expiry happens in hard interrupt
1376 		 * context it's obvious. For task work context it's safe
1377 		 * because all other operations on timer::it_lock happen in
1378 		 * task context (syscall or exit).
1379 		 */
1380 		spin_lock(&timer->it_lock);
1381 		list_del_init(&timer->it.cpu.elist);
1382 		cpu_firing = timer->it.cpu.firing;
1383 		timer->it.cpu.firing = false;
1384 		/*
1385 		 * If the firing flag is cleared then this raced with a
1386 		 * timer rearm/delete operation. So don't generate an
1387 		 * event.
1388 		 */
1389 		if (likely(cpu_firing))
1390 			cpu_timer_fire(timer);
1391 		/* See posix_cpu_timer_wait_running() */
1392 		rcu_assign_pointer(timer->it.cpu.handling, NULL);
1393 		spin_unlock(&timer->it_lock);
1394 	}
1395 }
1396 
1397 /*
1398  * This is called from the timer interrupt handler.  The irq handler has
1399  * already updated our counts.  We need to check if any timers fire now.
1400  * Interrupts are disabled.
1401  */
1402 void run_posix_cpu_timers(void)
1403 {
1404 	struct task_struct *tsk = current;
1405 
1406 	lockdep_assert_irqs_disabled();
1407 
1408 	/*
1409 	 * If the actual expiry is deferred to task work context and the
1410 	 * work is already scheduled there is no point to do anything here.
1411 	 */
1412 	if (posix_cpu_timers_work_scheduled(tsk))
1413 		return;
1414 
1415 	/*
1416 	 * The fast path checks that there are no expired thread or thread
1417 	 * group timers.  If that's so, just return.
1418 	 */
1419 	if (!fastpath_timer_check(tsk))
1420 		return;
1421 
1422 	__run_posix_cpu_timers(tsk);
1423 }
1424 
1425 /*
1426  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1427  * The tsk->sighand->siglock must be held by the caller.
1428  */
1429 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1430 			   u64 *newval, u64 *oldval)
1431 {
1432 	u64 now, *nextevt;
1433 
1434 	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1435 		return;
1436 
1437 	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1438 	now = cpu_clock_sample_group(clkid, tsk, true);
1439 
1440 	if (oldval) {
1441 		/*
1442 		 * We are setting itimer. The *oldval is absolute and we update
1443 		 * it to be relative, *newval argument is relative and we update
1444 		 * it to be absolute.
1445 		 */
1446 		if (*oldval) {
1447 			if (*oldval <= now) {
1448 				/* Just about to fire. */
1449 				*oldval = TICK_NSEC;
1450 			} else {
1451 				*oldval -= now;
1452 			}
1453 		}
1454 
1455 		if (*newval)
1456 			*newval += now;
1457 	}
1458 
1459 	/*
1460 	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1461 	 * expiry cache is also used by RLIMIT_CPU!.
1462 	 */
1463 	if (*newval < *nextevt)
1464 		*nextevt = *newval;
1465 
1466 	tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
1467 }
1468 
1469 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1470 			    const struct timespec64 *rqtp)
1471 {
1472 	struct itimerspec64 it;
1473 	struct k_itimer timer;
1474 	u64 expires;
1475 	int error;
1476 
1477 	/*
1478 	 * Set up a temporary timer and then wait for it to go off.
1479 	 */
1480 	memset(&timer, 0, sizeof timer);
1481 	spin_lock_init(&timer.it_lock);
1482 	timer.it_clock = which_clock;
1483 	timer.it_overrun = -1;
1484 	error = posix_cpu_timer_create(&timer);
1485 	timer.it_process = current;
1486 	timer.it.cpu.nanosleep = true;
1487 
1488 	if (!error) {
1489 		static struct itimerspec64 zero_it;
1490 		struct restart_block *restart;
1491 
1492 		memset(&it, 0, sizeof(it));
1493 		it.it_value = *rqtp;
1494 
1495 		spin_lock_irq(&timer.it_lock);
1496 		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1497 		if (error) {
1498 			spin_unlock_irq(&timer.it_lock);
1499 			return error;
1500 		}
1501 
1502 		while (!signal_pending(current)) {
1503 			if (!cpu_timer_getexpires(&timer.it.cpu)) {
1504 				/*
1505 				 * Our timer fired and was reset, below
1506 				 * deletion can not fail.
1507 				 */
1508 				posix_cpu_timer_del(&timer);
1509 				spin_unlock_irq(&timer.it_lock);
1510 				return 0;
1511 			}
1512 
1513 			/*
1514 			 * Block until cpu_timer_fire (or a signal) wakes us.
1515 			 */
1516 			__set_current_state(TASK_INTERRUPTIBLE);
1517 			spin_unlock_irq(&timer.it_lock);
1518 			schedule();
1519 			spin_lock_irq(&timer.it_lock);
1520 		}
1521 
1522 		/*
1523 		 * We were interrupted by a signal.
1524 		 */
1525 		expires = cpu_timer_getexpires(&timer.it.cpu);
1526 		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1527 		if (!error) {
1528 			/* Timer is now unarmed, deletion can not fail. */
1529 			posix_cpu_timer_del(&timer);
1530 		} else {
1531 			while (error == TIMER_RETRY) {
1532 				posix_cpu_timer_wait_running_nsleep(&timer);
1533 				error = posix_cpu_timer_del(&timer);
1534 			}
1535 		}
1536 
1537 		spin_unlock_irq(&timer.it_lock);
1538 
1539 		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1540 			/*
1541 			 * It actually did fire already.
1542 			 */
1543 			return 0;
1544 		}
1545 
1546 		error = -ERESTART_RESTARTBLOCK;
1547 		/*
1548 		 * Report back to the user the time still remaining.
1549 		 */
1550 		restart = &current->restart_block;
1551 		restart->nanosleep.expires = expires;
1552 		if (restart->nanosleep.type != TT_NONE)
1553 			error = nanosleep_copyout(restart, &it.it_value);
1554 	}
1555 
1556 	return error;
1557 }
1558 
1559 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1560 
1561 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1562 			    const struct timespec64 *rqtp)
1563 {
1564 	struct restart_block *restart_block = &current->restart_block;
1565 	int error;
1566 
1567 	/*
1568 	 * Diagnose required errors first.
1569 	 */
1570 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1571 	    (CPUCLOCK_PID(which_clock) == 0 ||
1572 	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1573 		return -EINVAL;
1574 
1575 	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1576 
1577 	if (error == -ERESTART_RESTARTBLOCK) {
1578 
1579 		if (flags & TIMER_ABSTIME)
1580 			return -ERESTARTNOHAND;
1581 
1582 		restart_block->nanosleep.clockid = which_clock;
1583 		set_restart_fn(restart_block, posix_cpu_nsleep_restart);
1584 	}
1585 	return error;
1586 }
1587 
1588 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1589 {
1590 	clockid_t which_clock = restart_block->nanosleep.clockid;
1591 	struct timespec64 t;
1592 
1593 	t = ns_to_timespec64(restart_block->nanosleep.expires);
1594 
1595 	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1596 }
1597 
1598 #define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
1599 #define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
1600 
1601 static int process_cpu_clock_getres(const clockid_t which_clock,
1602 				    struct timespec64 *tp)
1603 {
1604 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1605 }
1606 static int process_cpu_clock_get(const clockid_t which_clock,
1607 				 struct timespec64 *tp)
1608 {
1609 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1610 }
1611 static int process_cpu_timer_create(struct k_itimer *timer)
1612 {
1613 	timer->it_clock = PROCESS_CLOCK;
1614 	return posix_cpu_timer_create(timer);
1615 }
1616 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1617 			      const struct timespec64 *rqtp)
1618 {
1619 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1620 }
1621 static int thread_cpu_clock_getres(const clockid_t which_clock,
1622 				   struct timespec64 *tp)
1623 {
1624 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1625 }
1626 static int thread_cpu_clock_get(const clockid_t which_clock,
1627 				struct timespec64 *tp)
1628 {
1629 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1630 }
1631 static int thread_cpu_timer_create(struct k_itimer *timer)
1632 {
1633 	timer->it_clock = THREAD_CLOCK;
1634 	return posix_cpu_timer_create(timer);
1635 }
1636 
1637 const struct k_clock clock_posix_cpu = {
1638 	.clock_getres		= posix_cpu_clock_getres,
1639 	.clock_set		= posix_cpu_clock_set,
1640 	.clock_get_timespec	= posix_cpu_clock_get,
1641 	.timer_create		= posix_cpu_timer_create,
1642 	.nsleep			= posix_cpu_nsleep,
1643 	.timer_set		= posix_cpu_timer_set,
1644 	.timer_del		= posix_cpu_timer_del,
1645 	.timer_get		= posix_cpu_timer_get,
1646 	.timer_rearm		= posix_cpu_timer_rearm,
1647 	.timer_wait_running	= posix_cpu_timer_wait_running,
1648 };
1649 
1650 const struct k_clock clock_process = {
1651 	.clock_getres		= process_cpu_clock_getres,
1652 	.clock_get_timespec	= process_cpu_clock_get,
1653 	.timer_create		= process_cpu_timer_create,
1654 	.nsleep			= process_cpu_nsleep,
1655 };
1656 
1657 const struct k_clock clock_thread = {
1658 	.clock_getres		= thread_cpu_clock_getres,
1659 	.clock_get_timespec	= thread_cpu_clock_get,
1660 	.timer_create		= thread_cpu_timer_create,
1661 };
1662