1 /* 2 * NTP state machine interfaces and logic. 3 * 4 * This code was mainly moved from kernel/timer.c and kernel/time.c 5 * Please see those files for relevant copyright info and historical 6 * changelogs. 7 */ 8 #include <linux/capability.h> 9 #include <linux/clocksource.h> 10 #include <linux/workqueue.h> 11 #include <linux/hrtimer.h> 12 #include <linux/jiffies.h> 13 #include <linux/math64.h> 14 #include <linux/timex.h> 15 #include <linux/time.h> 16 #include <linux/mm.h> 17 18 /* 19 * NTP timekeeping variables: 20 */ 21 22 /* USER_HZ period (usecs): */ 23 unsigned long tick_usec = TICK_USEC; 24 25 /* ACTHZ period (nsecs): */ 26 unsigned long tick_nsec; 27 28 u64 tick_length; 29 static u64 tick_length_base; 30 31 static struct hrtimer leap_timer; 32 33 #define MAX_TICKADJ 500LL /* usecs */ 34 #define MAX_TICKADJ_SCALED \ 35 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) 36 37 /* 38 * phase-lock loop variables 39 */ 40 41 /* 42 * clock synchronization status 43 * 44 * (TIME_ERROR prevents overwriting the CMOS clock) 45 */ 46 static int time_state = TIME_OK; 47 48 /* clock status bits: */ 49 int time_status = STA_UNSYNC; 50 51 /* TAI offset (secs): */ 52 static long time_tai; 53 54 /* time adjustment (nsecs): */ 55 static s64 time_offset; 56 57 /* pll time constant: */ 58 static long time_constant = 2; 59 60 /* maximum error (usecs): */ 61 static long time_maxerror = NTP_PHASE_LIMIT; 62 63 /* estimated error (usecs): */ 64 static long time_esterror = NTP_PHASE_LIMIT; 65 66 /* frequency offset (scaled nsecs/secs): */ 67 static s64 time_freq; 68 69 /* time at last adjustment (secs): */ 70 static long time_reftime; 71 72 static long time_adjust; 73 74 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ 75 static s64 ntp_tick_adj; 76 77 /* 78 * NTP methods: 79 */ 80 81 /* 82 * Update (tick_length, tick_length_base, tick_nsec), based 83 * on (tick_usec, ntp_tick_adj, time_freq): 84 */ 85 static void ntp_update_frequency(void) 86 { 87 u64 second_length; 88 u64 new_base; 89 90 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) 91 << NTP_SCALE_SHIFT; 92 93 second_length += ntp_tick_adj; 94 second_length += time_freq; 95 96 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; 97 new_base = div_u64(second_length, NTP_INTERVAL_FREQ); 98 99 /* 100 * Don't wait for the next second_overflow, apply 101 * the change to the tick length immediately: 102 */ 103 tick_length += new_base - tick_length_base; 104 tick_length_base = new_base; 105 } 106 107 static inline s64 ntp_update_offset_fll(s64 offset64, long secs) 108 { 109 time_status &= ~STA_MODE; 110 111 if (secs < MINSEC) 112 return 0; 113 114 if (!(time_status & STA_FLL) && (secs <= MAXSEC)) 115 return 0; 116 117 time_status |= STA_MODE; 118 119 return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); 120 } 121 122 static void ntp_update_offset(long offset) 123 { 124 s64 freq_adj; 125 s64 offset64; 126 long secs; 127 128 if (!(time_status & STA_PLL)) 129 return; 130 131 if (!(time_status & STA_NANO)) 132 offset *= NSEC_PER_USEC; 133 134 /* 135 * Scale the phase adjustment and 136 * clamp to the operating range. 137 */ 138 offset = min(offset, MAXPHASE); 139 offset = max(offset, -MAXPHASE); 140 141 /* 142 * Select how the frequency is to be controlled 143 * and in which mode (PLL or FLL). 144 */ 145 secs = get_seconds() - time_reftime; 146 if (unlikely(time_status & STA_FREQHOLD)) 147 secs = 0; 148 149 time_reftime = get_seconds(); 150 151 offset64 = offset; 152 freq_adj = ntp_update_offset_fll(offset64, secs); 153 154 /* 155 * Clamp update interval to reduce PLL gain with low 156 * sampling rate (e.g. intermittent network connection) 157 * to avoid instability. 158 */ 159 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant))) 160 secs = 1 << (SHIFT_PLL + 1 + time_constant); 161 162 freq_adj += (offset64 * secs) << 163 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); 164 165 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); 166 167 time_freq = max(freq_adj, -MAXFREQ_SCALED); 168 169 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); 170 } 171 172 /** 173 * ntp_clear - Clears the NTP state variables 174 * 175 * Must be called while holding a write on the xtime_lock 176 */ 177 void ntp_clear(void) 178 { 179 time_adjust = 0; /* stop active adjtime() */ 180 time_status |= STA_UNSYNC; 181 time_maxerror = NTP_PHASE_LIMIT; 182 time_esterror = NTP_PHASE_LIMIT; 183 184 ntp_update_frequency(); 185 186 tick_length = tick_length_base; 187 time_offset = 0; 188 } 189 190 /* 191 * Leap second processing. If in leap-insert state at the end of the 192 * day, the system clock is set back one second; if in leap-delete 193 * state, the system clock is set ahead one second. 194 */ 195 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) 196 { 197 enum hrtimer_restart res = HRTIMER_NORESTART; 198 199 write_seqlock(&xtime_lock); 200 201 switch (time_state) { 202 case TIME_OK: 203 break; 204 case TIME_INS: 205 timekeeping_leap_insert(-1); 206 time_state = TIME_OOP; 207 printk(KERN_NOTICE 208 "Clock: inserting leap second 23:59:60 UTC\n"); 209 hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); 210 res = HRTIMER_RESTART; 211 break; 212 case TIME_DEL: 213 timekeeping_leap_insert(1); 214 time_tai--; 215 time_state = TIME_WAIT; 216 printk(KERN_NOTICE 217 "Clock: deleting leap second 23:59:59 UTC\n"); 218 break; 219 case TIME_OOP: 220 time_tai++; 221 time_state = TIME_WAIT; 222 /* fall through */ 223 case TIME_WAIT: 224 if (!(time_status & (STA_INS | STA_DEL))) 225 time_state = TIME_OK; 226 break; 227 } 228 229 write_sequnlock(&xtime_lock); 230 231 return res; 232 } 233 234 /* 235 * this routine handles the overflow of the microsecond field 236 * 237 * The tricky bits of code to handle the accurate clock support 238 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. 239 * They were originally developed for SUN and DEC kernels. 240 * All the kudos should go to Dave for this stuff. 241 */ 242 void second_overflow(void) 243 { 244 s64 delta; 245 246 /* Bump the maxerror field */ 247 time_maxerror += MAXFREQ / NSEC_PER_USEC; 248 if (time_maxerror > NTP_PHASE_LIMIT) { 249 time_maxerror = NTP_PHASE_LIMIT; 250 time_status |= STA_UNSYNC; 251 } 252 253 /* 254 * Compute the phase adjustment for the next second. The offset is 255 * reduced by a fixed factor times the time constant. 256 */ 257 tick_length = tick_length_base; 258 259 delta = shift_right(time_offset, SHIFT_PLL + time_constant); 260 time_offset -= delta; 261 tick_length += delta; 262 263 if (!time_adjust) 264 return; 265 266 if (time_adjust > MAX_TICKADJ) { 267 time_adjust -= MAX_TICKADJ; 268 tick_length += MAX_TICKADJ_SCALED; 269 return; 270 } 271 272 if (time_adjust < -MAX_TICKADJ) { 273 time_adjust += MAX_TICKADJ; 274 tick_length -= MAX_TICKADJ_SCALED; 275 return; 276 } 277 278 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) 279 << NTP_SCALE_SHIFT; 280 time_adjust = 0; 281 } 282 283 #ifdef CONFIG_GENERIC_CMOS_UPDATE 284 285 /* Disable the cmos update - used by virtualization and embedded */ 286 int no_sync_cmos_clock __read_mostly; 287 288 static void sync_cmos_clock(struct work_struct *work); 289 290 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock); 291 292 static void sync_cmos_clock(struct work_struct *work) 293 { 294 struct timespec now, next; 295 int fail = 1; 296 297 /* 298 * If we have an externally synchronized Linux clock, then update 299 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be 300 * called as close as possible to 500 ms before the new second starts. 301 * This code is run on a timer. If the clock is set, that timer 302 * may not expire at the correct time. Thus, we adjust... 303 */ 304 if (!ntp_synced()) { 305 /* 306 * Not synced, exit, do not restart a timer (if one is 307 * running, let it run out). 308 */ 309 return; 310 } 311 312 getnstimeofday(&now); 313 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) 314 fail = update_persistent_clock(now); 315 316 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2); 317 if (next.tv_nsec <= 0) 318 next.tv_nsec += NSEC_PER_SEC; 319 320 if (!fail) 321 next.tv_sec = 659; 322 else 323 next.tv_sec = 0; 324 325 if (next.tv_nsec >= NSEC_PER_SEC) { 326 next.tv_sec++; 327 next.tv_nsec -= NSEC_PER_SEC; 328 } 329 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next)); 330 } 331 332 static void notify_cmos_timer(void) 333 { 334 if (!no_sync_cmos_clock) 335 schedule_delayed_work(&sync_cmos_work, 0); 336 } 337 338 #else 339 static inline void notify_cmos_timer(void) { } 340 #endif 341 342 /* 343 * Start the leap seconds timer: 344 */ 345 static inline void ntp_start_leap_timer(struct timespec *ts) 346 { 347 long now = ts->tv_sec; 348 349 if (time_status & STA_INS) { 350 time_state = TIME_INS; 351 now += 86400 - now % 86400; 352 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); 353 354 return; 355 } 356 357 if (time_status & STA_DEL) { 358 time_state = TIME_DEL; 359 now += 86400 - (now + 1) % 86400; 360 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); 361 } 362 } 363 364 /* 365 * Propagate a new txc->status value into the NTP state: 366 */ 367 static inline void process_adj_status(struct timex *txc, struct timespec *ts) 368 { 369 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { 370 time_state = TIME_OK; 371 time_status = STA_UNSYNC; 372 } 373 374 /* 375 * If we turn on PLL adjustments then reset the 376 * reference time to current time. 377 */ 378 if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) 379 time_reftime = get_seconds(); 380 381 /* only set allowed bits */ 382 time_status &= STA_RONLY; 383 time_status |= txc->status & ~STA_RONLY; 384 385 switch (time_state) { 386 case TIME_OK: 387 ntp_start_leap_timer(ts); 388 break; 389 case TIME_INS: 390 case TIME_DEL: 391 time_state = TIME_OK; 392 ntp_start_leap_timer(ts); 393 case TIME_WAIT: 394 if (!(time_status & (STA_INS | STA_DEL))) 395 time_state = TIME_OK; 396 break; 397 case TIME_OOP: 398 hrtimer_restart(&leap_timer); 399 break; 400 } 401 } 402 /* 403 * Called with the xtime lock held, so we can access and modify 404 * all the global NTP state: 405 */ 406 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts) 407 { 408 if (txc->modes & ADJ_STATUS) 409 process_adj_status(txc, ts); 410 411 if (txc->modes & ADJ_NANO) 412 time_status |= STA_NANO; 413 414 if (txc->modes & ADJ_MICRO) 415 time_status &= ~STA_NANO; 416 417 if (txc->modes & ADJ_FREQUENCY) { 418 time_freq = txc->freq * PPM_SCALE; 419 time_freq = min(time_freq, MAXFREQ_SCALED); 420 time_freq = max(time_freq, -MAXFREQ_SCALED); 421 } 422 423 if (txc->modes & ADJ_MAXERROR) 424 time_maxerror = txc->maxerror; 425 426 if (txc->modes & ADJ_ESTERROR) 427 time_esterror = txc->esterror; 428 429 if (txc->modes & ADJ_TIMECONST) { 430 time_constant = txc->constant; 431 if (!(time_status & STA_NANO)) 432 time_constant += 4; 433 time_constant = min(time_constant, (long)MAXTC); 434 time_constant = max(time_constant, 0l); 435 } 436 437 if (txc->modes & ADJ_TAI && txc->constant > 0) 438 time_tai = txc->constant; 439 440 if (txc->modes & ADJ_OFFSET) 441 ntp_update_offset(txc->offset); 442 443 if (txc->modes & ADJ_TICK) 444 tick_usec = txc->tick; 445 446 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) 447 ntp_update_frequency(); 448 } 449 450 /* 451 * adjtimex mainly allows reading (and writing, if superuser) of 452 * kernel time-keeping variables. used by xntpd. 453 */ 454 int do_adjtimex(struct timex *txc) 455 { 456 struct timespec ts; 457 int result; 458 459 /* Validate the data before disabling interrupts */ 460 if (txc->modes & ADJ_ADJTIME) { 461 /* singleshot must not be used with any other mode bits */ 462 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 463 return -EINVAL; 464 if (!(txc->modes & ADJ_OFFSET_READONLY) && 465 !capable(CAP_SYS_TIME)) 466 return -EPERM; 467 } else { 468 /* In order to modify anything, you gotta be super-user! */ 469 if (txc->modes && !capable(CAP_SYS_TIME)) 470 return -EPERM; 471 472 /* 473 * if the quartz is off by more than 10% then 474 * something is VERY wrong! 475 */ 476 if (txc->modes & ADJ_TICK && 477 (txc->tick < 900000/USER_HZ || 478 txc->tick > 1100000/USER_HZ)) 479 return -EINVAL; 480 481 if (txc->modes & ADJ_STATUS && time_state != TIME_OK) 482 hrtimer_cancel(&leap_timer); 483 } 484 485 getnstimeofday(&ts); 486 487 write_seqlock_irq(&xtime_lock); 488 489 if (txc->modes & ADJ_ADJTIME) { 490 long save_adjust = time_adjust; 491 492 if (!(txc->modes & ADJ_OFFSET_READONLY)) { 493 /* adjtime() is independent from ntp_adjtime() */ 494 time_adjust = txc->offset; 495 ntp_update_frequency(); 496 } 497 txc->offset = save_adjust; 498 } else { 499 500 /* If there are input parameters, then process them: */ 501 if (txc->modes) 502 process_adjtimex_modes(txc, &ts); 503 504 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, 505 NTP_SCALE_SHIFT); 506 if (!(time_status & STA_NANO)) 507 txc->offset /= NSEC_PER_USEC; 508 } 509 510 result = time_state; /* mostly `TIME_OK' */ 511 if (time_status & (STA_UNSYNC|STA_CLOCKERR)) 512 result = TIME_ERROR; 513 514 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * 515 PPM_SCALE_INV, NTP_SCALE_SHIFT); 516 txc->maxerror = time_maxerror; 517 txc->esterror = time_esterror; 518 txc->status = time_status; 519 txc->constant = time_constant; 520 txc->precision = 1; 521 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; 522 txc->tick = tick_usec; 523 txc->tai = time_tai; 524 525 /* PPS is not implemented, so these are zero */ 526 txc->ppsfreq = 0; 527 txc->jitter = 0; 528 txc->shift = 0; 529 txc->stabil = 0; 530 txc->jitcnt = 0; 531 txc->calcnt = 0; 532 txc->errcnt = 0; 533 txc->stbcnt = 0; 534 535 write_sequnlock_irq(&xtime_lock); 536 537 txc->time.tv_sec = ts.tv_sec; 538 txc->time.tv_usec = ts.tv_nsec; 539 if (!(time_status & STA_NANO)) 540 txc->time.tv_usec /= NSEC_PER_USEC; 541 542 notify_cmos_timer(); 543 544 return result; 545 } 546 547 static int __init ntp_tick_adj_setup(char *str) 548 { 549 ntp_tick_adj = simple_strtol(str, NULL, 0); 550 ntp_tick_adj <<= NTP_SCALE_SHIFT; 551 552 return 1; 553 } 554 555 __setup("ntp_tick_adj=", ntp_tick_adj_setup); 556 557 void __init ntp_init(void) 558 { 559 ntp_clear(); 560 hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 561 leap_timer.function = ntp_leap_second; 562 } 563