1 /* 2 * linux/kernel/time/ntp.c 3 * 4 * NTP state machine interfaces and logic. 5 * 6 * This code was mainly moved from kernel/timer.c and kernel/time.c 7 * Please see those files for relevant copyright info and historical 8 * changelogs. 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/time.h> 13 #include <linux/timex.h> 14 #include <linux/jiffies.h> 15 #include <linux/hrtimer.h> 16 17 #include <asm/div64.h> 18 #include <asm/timex.h> 19 20 /* 21 * Timekeeping variables 22 */ 23 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ 24 unsigned long tick_nsec; /* ACTHZ period (nsec) */ 25 static u64 tick_length, tick_length_base; 26 27 #define MAX_TICKADJ 500 /* microsecs */ 28 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ 29 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ) 30 31 /* 32 * phase-lock loop variables 33 */ 34 /* TIME_ERROR prevents overwriting the CMOS clock */ 35 static int time_state = TIME_OK; /* clock synchronization status */ 36 int time_status = STA_UNSYNC; /* clock status bits */ 37 static s64 time_offset; /* time adjustment (ns) */ 38 static long time_constant = 2; /* pll time constant */ 39 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ 40 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ 41 long time_freq; /* frequency offset (scaled ppm)*/ 42 static long time_reftime; /* time at last adjustment (s) */ 43 long time_adjust; 44 45 #define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE) 46 #define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \ 47 (s64)CLOCK_TICK_RATE) 48 49 static void ntp_update_frequency(void) 50 { 51 u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) 52 << TICK_LENGTH_SHIFT; 53 second_length += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT; 54 second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC); 55 56 tick_length_base = second_length; 57 58 do_div(second_length, HZ); 59 tick_nsec = second_length >> TICK_LENGTH_SHIFT; 60 61 do_div(tick_length_base, NTP_INTERVAL_FREQ); 62 } 63 64 /** 65 * ntp_clear - Clears the NTP state variables 66 * 67 * Must be called while holding a write on the xtime_lock 68 */ 69 void ntp_clear(void) 70 { 71 time_adjust = 0; /* stop active adjtime() */ 72 time_status |= STA_UNSYNC; 73 time_maxerror = NTP_PHASE_LIMIT; 74 time_esterror = NTP_PHASE_LIMIT; 75 76 ntp_update_frequency(); 77 78 tick_length = tick_length_base; 79 time_offset = 0; 80 } 81 82 /* 83 * this routine handles the overflow of the microsecond field 84 * 85 * The tricky bits of code to handle the accurate clock support 86 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. 87 * They were originally developed for SUN and DEC kernels. 88 * All the kudos should go to Dave for this stuff. 89 */ 90 void second_overflow(void) 91 { 92 long time_adj; 93 94 /* Bump the maxerror field */ 95 time_maxerror += MAXFREQ >> SHIFT_USEC; 96 if (time_maxerror > NTP_PHASE_LIMIT) { 97 time_maxerror = NTP_PHASE_LIMIT; 98 time_status |= STA_UNSYNC; 99 } 100 101 /* 102 * Leap second processing. If in leap-insert state at the end of the 103 * day, the system clock is set back one second; if in leap-delete 104 * state, the system clock is set ahead one second. The microtime() 105 * routine or external clock driver will insure that reported time is 106 * always monotonic. The ugly divides should be replaced. 107 */ 108 switch (time_state) { 109 case TIME_OK: 110 if (time_status & STA_INS) 111 time_state = TIME_INS; 112 else if (time_status & STA_DEL) 113 time_state = TIME_DEL; 114 break; 115 case TIME_INS: 116 if (xtime.tv_sec % 86400 == 0) { 117 xtime.tv_sec--; 118 wall_to_monotonic.tv_sec++; 119 /* 120 * The timer interpolator will make time change 121 * gradually instead of an immediate jump by one second 122 */ 123 time_interpolator_update(-NSEC_PER_SEC); 124 time_state = TIME_OOP; 125 clock_was_set(); 126 printk(KERN_NOTICE "Clock: inserting leap second " 127 "23:59:60 UTC\n"); 128 } 129 break; 130 case TIME_DEL: 131 if ((xtime.tv_sec + 1) % 86400 == 0) { 132 xtime.tv_sec++; 133 wall_to_monotonic.tv_sec--; 134 /* 135 * Use of time interpolator for a gradual change of 136 * time 137 */ 138 time_interpolator_update(NSEC_PER_SEC); 139 time_state = TIME_WAIT; 140 clock_was_set(); 141 printk(KERN_NOTICE "Clock: deleting leap second " 142 "23:59:59 UTC\n"); 143 } 144 break; 145 case TIME_OOP: 146 time_state = TIME_WAIT; 147 break; 148 case TIME_WAIT: 149 if (!(time_status & (STA_INS | STA_DEL))) 150 time_state = TIME_OK; 151 } 152 153 /* 154 * Compute the phase adjustment for the next second. The offset is 155 * reduced by a fixed factor times the time constant. 156 */ 157 tick_length = tick_length_base; 158 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); 159 time_offset -= time_adj; 160 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE); 161 162 if (unlikely(time_adjust)) { 163 if (time_adjust > MAX_TICKADJ) { 164 time_adjust -= MAX_TICKADJ; 165 tick_length += MAX_TICKADJ_SCALED; 166 } else if (time_adjust < -MAX_TICKADJ) { 167 time_adjust += MAX_TICKADJ; 168 tick_length -= MAX_TICKADJ_SCALED; 169 } else { 170 tick_length += (s64)(time_adjust * NSEC_PER_USEC / 171 NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT; 172 time_adjust = 0; 173 } 174 } 175 } 176 177 /* 178 * Return how long ticks are at the moment, that is, how much time 179 * update_wall_time_one_tick will add to xtime next time we call it 180 * (assuming no calls to do_adjtimex in the meantime). 181 * The return value is in fixed-point nanoseconds shifted by the 182 * specified number of bits to the right of the binary point. 183 * This function has no side-effects. 184 */ 185 u64 current_tick_length(void) 186 { 187 return tick_length; 188 } 189 190 191 void __attribute__ ((weak)) notify_arch_cmos_timer(void) 192 { 193 return; 194 } 195 196 /* adjtimex mainly allows reading (and writing, if superuser) of 197 * kernel time-keeping variables. used by xntpd. 198 */ 199 int do_adjtimex(struct timex *txc) 200 { 201 long mtemp, save_adjust, rem; 202 s64 freq_adj, temp64; 203 int result; 204 205 /* In order to modify anything, you gotta be super-user! */ 206 if (txc->modes && !capable(CAP_SYS_TIME)) 207 return -EPERM; 208 209 /* Now we validate the data before disabling interrupts */ 210 211 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) 212 /* singleshot must not be used with any other mode bits */ 213 if (txc->modes != ADJ_OFFSET_SINGLESHOT) 214 return -EINVAL; 215 216 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET)) 217 /* adjustment Offset limited to +- .512 seconds */ 218 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE ) 219 return -EINVAL; 220 221 /* if the quartz is off by more than 10% something is VERY wrong ! */ 222 if (txc->modes & ADJ_TICK) 223 if (txc->tick < 900000/USER_HZ || 224 txc->tick > 1100000/USER_HZ) 225 return -EINVAL; 226 227 write_seqlock_irq(&xtime_lock); 228 result = time_state; /* mostly `TIME_OK' */ 229 230 /* Save for later - semantics of adjtime is to return old value */ 231 save_adjust = time_adjust; 232 233 #if 0 /* STA_CLOCKERR is never set yet */ 234 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */ 235 #endif 236 /* If there are input parameters, then process them */ 237 if (txc->modes) 238 { 239 if (txc->modes & ADJ_STATUS) /* only set allowed bits */ 240 time_status = (txc->status & ~STA_RONLY) | 241 (time_status & STA_RONLY); 242 243 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */ 244 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) { 245 result = -EINVAL; 246 goto leave; 247 } 248 time_freq = ((s64)txc->freq * NSEC_PER_USEC) 249 >> (SHIFT_USEC - SHIFT_NSEC); 250 } 251 252 if (txc->modes & ADJ_MAXERROR) { 253 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) { 254 result = -EINVAL; 255 goto leave; 256 } 257 time_maxerror = txc->maxerror; 258 } 259 260 if (txc->modes & ADJ_ESTERROR) { 261 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) { 262 result = -EINVAL; 263 goto leave; 264 } 265 time_esterror = txc->esterror; 266 } 267 268 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */ 269 if (txc->constant < 0) { /* NTP v4 uses values > 6 */ 270 result = -EINVAL; 271 goto leave; 272 } 273 time_constant = min(txc->constant + 4, (long)MAXTC); 274 } 275 276 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ 277 if (txc->modes == ADJ_OFFSET_SINGLESHOT) { 278 /* adjtime() is independent from ntp_adjtime() */ 279 time_adjust = txc->offset; 280 } 281 else if (time_status & STA_PLL) { 282 time_offset = txc->offset * NSEC_PER_USEC; 283 284 /* 285 * Scale the phase adjustment and 286 * clamp to the operating range. 287 */ 288 time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC); 289 time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC); 290 291 /* 292 * Select whether the frequency is to be controlled 293 * and in which mode (PLL or FLL). Clamp to the operating 294 * range. Ugly multiply/divide should be replaced someday. 295 */ 296 297 if (time_status & STA_FREQHOLD || time_reftime == 0) 298 time_reftime = xtime.tv_sec; 299 mtemp = xtime.tv_sec - time_reftime; 300 time_reftime = xtime.tv_sec; 301 302 freq_adj = time_offset * mtemp; 303 freq_adj = shift_right(freq_adj, time_constant * 2 + 304 (SHIFT_PLL + 2) * 2 - SHIFT_NSEC); 305 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { 306 temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL); 307 if (time_offset < 0) { 308 temp64 = -temp64; 309 do_div(temp64, mtemp); 310 freq_adj -= temp64; 311 } else { 312 do_div(temp64, mtemp); 313 freq_adj += temp64; 314 } 315 } 316 freq_adj += time_freq; 317 freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC); 318 time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC); 319 time_offset = div_long_long_rem_signed(time_offset, 320 NTP_INTERVAL_FREQ, 321 &rem); 322 time_offset <<= SHIFT_UPDATE; 323 } /* STA_PLL */ 324 } /* txc->modes & ADJ_OFFSET */ 325 if (txc->modes & ADJ_TICK) 326 tick_usec = txc->tick; 327 328 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) 329 ntp_update_frequency(); 330 } /* txc->modes */ 331 leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) 332 result = TIME_ERROR; 333 334 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) 335 txc->offset = save_adjust; 336 else 337 txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) * 338 NTP_INTERVAL_FREQ / 1000; 339 txc->freq = (time_freq / NSEC_PER_USEC) << 340 (SHIFT_USEC - SHIFT_NSEC); 341 txc->maxerror = time_maxerror; 342 txc->esterror = time_esterror; 343 txc->status = time_status; 344 txc->constant = time_constant; 345 txc->precision = 1; 346 txc->tolerance = MAXFREQ; 347 txc->tick = tick_usec; 348 349 /* PPS is not implemented, so these are zero */ 350 txc->ppsfreq = 0; 351 txc->jitter = 0; 352 txc->shift = 0; 353 txc->stabil = 0; 354 txc->jitcnt = 0; 355 txc->calcnt = 0; 356 txc->errcnt = 0; 357 txc->stbcnt = 0; 358 write_sequnlock_irq(&xtime_lock); 359 do_gettimeofday(&txc->time); 360 notify_arch_cmos_timer(); 361 return(result); 362 } 363