xref: /linux/kernel/time/ntp.c (revision 9ffc93f203c18a70623f21950f1dd473c9ec48cd)
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 
19 #include "tick-internal.h"
20 
21 /*
22  * NTP timekeeping variables:
23  */
24 
25 DEFINE_SPINLOCK(ntp_lock);
26 
27 
28 /* USER_HZ period (usecs): */
29 unsigned long			tick_usec = TICK_USEC;
30 
31 /* ACTHZ period (nsecs): */
32 unsigned long			tick_nsec;
33 
34 static u64			tick_length;
35 static u64			tick_length_base;
36 
37 static struct hrtimer		leap_timer;
38 
39 #define MAX_TICKADJ		500LL		/* usecs */
40 #define MAX_TICKADJ_SCALED \
41 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42 
43 /*
44  * phase-lock loop variables
45  */
46 
47 /*
48  * clock synchronization status
49  *
50  * (TIME_ERROR prevents overwriting the CMOS clock)
51  */
52 static int			time_state = TIME_OK;
53 
54 /* clock status bits:							*/
55 static int			time_status = STA_UNSYNC;
56 
57 /* TAI offset (secs):							*/
58 static long			time_tai;
59 
60 /* time adjustment (nsecs):						*/
61 static s64			time_offset;
62 
63 /* pll time constant:							*/
64 static long			time_constant = 2;
65 
66 /* maximum error (usecs):						*/
67 static long			time_maxerror = NTP_PHASE_LIMIT;
68 
69 /* estimated error (usecs):						*/
70 static long			time_esterror = NTP_PHASE_LIMIT;
71 
72 /* frequency offset (scaled nsecs/secs):				*/
73 static s64			time_freq;
74 
75 /* time at last adjustment (secs):					*/
76 static long			time_reftime;
77 
78 static long			time_adjust;
79 
80 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
81 static s64			ntp_tick_adj;
82 
83 #ifdef CONFIG_NTP_PPS
84 
85 /*
86  * The following variables are used when a pulse-per-second (PPS) signal
87  * is available. They establish the engineering parameters of the clock
88  * discipline loop when controlled by the PPS signal.
89  */
90 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
91 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
92 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
93 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
94 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
95 				   increase pps_shift or consecutive bad
96 				   intervals to decrease it */
97 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
98 
99 static int pps_valid;		/* signal watchdog counter */
100 static long pps_tf[3];		/* phase median filter */
101 static long pps_jitter;		/* current jitter (ns) */
102 static struct timespec pps_fbase; /* beginning of the last freq interval */
103 static int pps_shift;		/* current interval duration (s) (shift) */
104 static int pps_intcnt;		/* interval counter */
105 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
106 static long pps_stabil;		/* current stability (scaled ns/s) */
107 
108 /*
109  * PPS signal quality monitors
110  */
111 static long pps_calcnt;		/* calibration intervals */
112 static long pps_jitcnt;		/* jitter limit exceeded */
113 static long pps_stbcnt;		/* stability limit exceeded */
114 static long pps_errcnt;		/* calibration errors */
115 
116 
117 /* PPS kernel consumer compensates the whole phase error immediately.
118  * Otherwise, reduce the offset by a fixed factor times the time constant.
119  */
120 static inline s64 ntp_offset_chunk(s64 offset)
121 {
122 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
123 		return offset;
124 	else
125 		return shift_right(offset, SHIFT_PLL + time_constant);
126 }
127 
128 static inline void pps_reset_freq_interval(void)
129 {
130 	/* the PPS calibration interval may end
131 	   surprisingly early */
132 	pps_shift = PPS_INTMIN;
133 	pps_intcnt = 0;
134 }
135 
136 /**
137  * pps_clear - Clears the PPS state variables
138  *
139  * Must be called while holding a write on the ntp_lock
140  */
141 static inline void pps_clear(void)
142 {
143 	pps_reset_freq_interval();
144 	pps_tf[0] = 0;
145 	pps_tf[1] = 0;
146 	pps_tf[2] = 0;
147 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
148 	pps_freq = 0;
149 }
150 
151 /* Decrease pps_valid to indicate that another second has passed since
152  * the last PPS signal. When it reaches 0, indicate that PPS signal is
153  * missing.
154  *
155  * Must be called while holding a write on the ntp_lock
156  */
157 static inline void pps_dec_valid(void)
158 {
159 	if (pps_valid > 0)
160 		pps_valid--;
161 	else {
162 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
163 				 STA_PPSWANDER | STA_PPSERROR);
164 		pps_clear();
165 	}
166 }
167 
168 static inline void pps_set_freq(s64 freq)
169 {
170 	pps_freq = freq;
171 }
172 
173 static inline int is_error_status(int status)
174 {
175 	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
176 		/* PPS signal lost when either PPS time or
177 		 * PPS frequency synchronization requested
178 		 */
179 		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
180 			&& !(time_status & STA_PPSSIGNAL))
181 		/* PPS jitter exceeded when
182 		 * PPS time synchronization requested */
183 		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
184 			== (STA_PPSTIME|STA_PPSJITTER))
185 		/* PPS wander exceeded or calibration error when
186 		 * PPS frequency synchronization requested
187 		 */
188 		|| ((time_status & STA_PPSFREQ)
189 			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
190 }
191 
192 static inline void pps_fill_timex(struct timex *txc)
193 {
194 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
195 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
196 	txc->jitter	   = pps_jitter;
197 	if (!(time_status & STA_NANO))
198 		txc->jitter /= NSEC_PER_USEC;
199 	txc->shift	   = pps_shift;
200 	txc->stabil	   = pps_stabil;
201 	txc->jitcnt	   = pps_jitcnt;
202 	txc->calcnt	   = pps_calcnt;
203 	txc->errcnt	   = pps_errcnt;
204 	txc->stbcnt	   = pps_stbcnt;
205 }
206 
207 #else /* !CONFIG_NTP_PPS */
208 
209 static inline s64 ntp_offset_chunk(s64 offset)
210 {
211 	return shift_right(offset, SHIFT_PLL + time_constant);
212 }
213 
214 static inline void pps_reset_freq_interval(void) {}
215 static inline void pps_clear(void) {}
216 static inline void pps_dec_valid(void) {}
217 static inline void pps_set_freq(s64 freq) {}
218 
219 static inline int is_error_status(int status)
220 {
221 	return status & (STA_UNSYNC|STA_CLOCKERR);
222 }
223 
224 static inline void pps_fill_timex(struct timex *txc)
225 {
226 	/* PPS is not implemented, so these are zero */
227 	txc->ppsfreq	   = 0;
228 	txc->jitter	   = 0;
229 	txc->shift	   = 0;
230 	txc->stabil	   = 0;
231 	txc->jitcnt	   = 0;
232 	txc->calcnt	   = 0;
233 	txc->errcnt	   = 0;
234 	txc->stbcnt	   = 0;
235 }
236 
237 #endif /* CONFIG_NTP_PPS */
238 
239 
240 /**
241  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
242  *
243  */
244 static inline int ntp_synced(void)
245 {
246 	return !(time_status & STA_UNSYNC);
247 }
248 
249 
250 /*
251  * NTP methods:
252  */
253 
254 /*
255  * Update (tick_length, tick_length_base, tick_nsec), based
256  * on (tick_usec, ntp_tick_adj, time_freq):
257  */
258 static void ntp_update_frequency(void)
259 {
260 	u64 second_length;
261 	u64 new_base;
262 
263 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
264 						<< NTP_SCALE_SHIFT;
265 
266 	second_length		+= ntp_tick_adj;
267 	second_length		+= time_freq;
268 
269 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
270 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
271 
272 	/*
273 	 * Don't wait for the next second_overflow, apply
274 	 * the change to the tick length immediately:
275 	 */
276 	tick_length		+= new_base - tick_length_base;
277 	tick_length_base	 = new_base;
278 }
279 
280 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
281 {
282 	time_status &= ~STA_MODE;
283 
284 	if (secs < MINSEC)
285 		return 0;
286 
287 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
288 		return 0;
289 
290 	time_status |= STA_MODE;
291 
292 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
293 }
294 
295 static void ntp_update_offset(long offset)
296 {
297 	s64 freq_adj;
298 	s64 offset64;
299 	long secs;
300 
301 	if (!(time_status & STA_PLL))
302 		return;
303 
304 	if (!(time_status & STA_NANO))
305 		offset *= NSEC_PER_USEC;
306 
307 	/*
308 	 * Scale the phase adjustment and
309 	 * clamp to the operating range.
310 	 */
311 	offset = min(offset, MAXPHASE);
312 	offset = max(offset, -MAXPHASE);
313 
314 	/*
315 	 * Select how the frequency is to be controlled
316 	 * and in which mode (PLL or FLL).
317 	 */
318 	secs = get_seconds() - time_reftime;
319 	if (unlikely(time_status & STA_FREQHOLD))
320 		secs = 0;
321 
322 	time_reftime = get_seconds();
323 
324 	offset64    = offset;
325 	freq_adj    = ntp_update_offset_fll(offset64, secs);
326 
327 	/*
328 	 * Clamp update interval to reduce PLL gain with low
329 	 * sampling rate (e.g. intermittent network connection)
330 	 * to avoid instability.
331 	 */
332 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
333 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
334 
335 	freq_adj    += (offset64 * secs) <<
336 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
337 
338 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
339 
340 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
341 
342 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
343 }
344 
345 /**
346  * ntp_clear - Clears the NTP state variables
347  */
348 void ntp_clear(void)
349 {
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&ntp_lock, flags);
353 
354 	time_adjust	= 0;		/* stop active adjtime() */
355 	time_status	|= STA_UNSYNC;
356 	time_maxerror	= NTP_PHASE_LIMIT;
357 	time_esterror	= NTP_PHASE_LIMIT;
358 
359 	ntp_update_frequency();
360 
361 	tick_length	= tick_length_base;
362 	time_offset	= 0;
363 
364 	/* Clear PPS state variables */
365 	pps_clear();
366 	spin_unlock_irqrestore(&ntp_lock, flags);
367 
368 }
369 
370 
371 u64 ntp_tick_length(void)
372 {
373 	unsigned long flags;
374 	s64 ret;
375 
376 	spin_lock_irqsave(&ntp_lock, flags);
377 	ret = tick_length;
378 	spin_unlock_irqrestore(&ntp_lock, flags);
379 	return ret;
380 }
381 
382 
383 /*
384  * Leap second processing. If in leap-insert state at the end of the
385  * day, the system clock is set back one second; if in leap-delete
386  * state, the system clock is set ahead one second.
387  */
388 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
389 {
390 	enum hrtimer_restart res = HRTIMER_NORESTART;
391 	unsigned long flags;
392 	int leap = 0;
393 
394 	spin_lock_irqsave(&ntp_lock, flags);
395 	switch (time_state) {
396 	case TIME_OK:
397 		break;
398 	case TIME_INS:
399 		leap = -1;
400 		time_state = TIME_OOP;
401 		printk(KERN_NOTICE
402 			"Clock: inserting leap second 23:59:60 UTC\n");
403 		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
404 		res = HRTIMER_RESTART;
405 		break;
406 	case TIME_DEL:
407 		leap = 1;
408 		time_tai--;
409 		time_state = TIME_WAIT;
410 		printk(KERN_NOTICE
411 			"Clock: deleting leap second 23:59:59 UTC\n");
412 		break;
413 	case TIME_OOP:
414 		time_tai++;
415 		time_state = TIME_WAIT;
416 		/* fall through */
417 	case TIME_WAIT:
418 		if (!(time_status & (STA_INS | STA_DEL)))
419 			time_state = TIME_OK;
420 		break;
421 	}
422 	spin_unlock_irqrestore(&ntp_lock, flags);
423 
424 	/*
425 	 * We have to call this outside of the ntp_lock to keep
426 	 * the proper locking hierarchy
427 	 */
428 	if (leap)
429 		timekeeping_leap_insert(leap);
430 
431 	return res;
432 }
433 
434 /*
435  * this routine handles the overflow of the microsecond field
436  *
437  * The tricky bits of code to handle the accurate clock support
438  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
439  * They were originally developed for SUN and DEC kernels.
440  * All the kudos should go to Dave for this stuff.
441  */
442 void second_overflow(void)
443 {
444 	s64 delta;
445 	unsigned long flags;
446 
447 	spin_lock_irqsave(&ntp_lock, flags);
448 
449 	/* Bump the maxerror field */
450 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
451 	if (time_maxerror > NTP_PHASE_LIMIT) {
452 		time_maxerror = NTP_PHASE_LIMIT;
453 		time_status |= STA_UNSYNC;
454 	}
455 
456 	/* Compute the phase adjustment for the next second */
457 	tick_length	 = tick_length_base;
458 
459 	delta		 = ntp_offset_chunk(time_offset);
460 	time_offset	-= delta;
461 	tick_length	+= delta;
462 
463 	/* Check PPS signal */
464 	pps_dec_valid();
465 
466 	if (!time_adjust)
467 		goto out;
468 
469 	if (time_adjust > MAX_TICKADJ) {
470 		time_adjust -= MAX_TICKADJ;
471 		tick_length += MAX_TICKADJ_SCALED;
472 		goto out;
473 	}
474 
475 	if (time_adjust < -MAX_TICKADJ) {
476 		time_adjust += MAX_TICKADJ;
477 		tick_length -= MAX_TICKADJ_SCALED;
478 		goto out;
479 	}
480 
481 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
482 							 << NTP_SCALE_SHIFT;
483 	time_adjust = 0;
484 out:
485 	spin_unlock_irqrestore(&ntp_lock, flags);
486 }
487 
488 #ifdef CONFIG_GENERIC_CMOS_UPDATE
489 
490 /* Disable the cmos update - used by virtualization and embedded */
491 int no_sync_cmos_clock  __read_mostly;
492 
493 static void sync_cmos_clock(struct work_struct *work);
494 
495 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
496 
497 static void sync_cmos_clock(struct work_struct *work)
498 {
499 	struct timespec now, next;
500 	int fail = 1;
501 
502 	/*
503 	 * If we have an externally synchronized Linux clock, then update
504 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
505 	 * called as close as possible to 500 ms before the new second starts.
506 	 * This code is run on a timer.  If the clock is set, that timer
507 	 * may not expire at the correct time.  Thus, we adjust...
508 	 */
509 	if (!ntp_synced()) {
510 		/*
511 		 * Not synced, exit, do not restart a timer (if one is
512 		 * running, let it run out).
513 		 */
514 		return;
515 	}
516 
517 	getnstimeofday(&now);
518 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
519 		fail = update_persistent_clock(now);
520 
521 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
522 	if (next.tv_nsec <= 0)
523 		next.tv_nsec += NSEC_PER_SEC;
524 
525 	if (!fail)
526 		next.tv_sec = 659;
527 	else
528 		next.tv_sec = 0;
529 
530 	if (next.tv_nsec >= NSEC_PER_SEC) {
531 		next.tv_sec++;
532 		next.tv_nsec -= NSEC_PER_SEC;
533 	}
534 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
535 }
536 
537 static void notify_cmos_timer(void)
538 {
539 	if (!no_sync_cmos_clock)
540 		schedule_delayed_work(&sync_cmos_work, 0);
541 }
542 
543 #else
544 static inline void notify_cmos_timer(void) { }
545 #endif
546 
547 /*
548  * Start the leap seconds timer:
549  */
550 static inline void ntp_start_leap_timer(struct timespec *ts)
551 {
552 	long now = ts->tv_sec;
553 
554 	if (time_status & STA_INS) {
555 		time_state = TIME_INS;
556 		now += 86400 - now % 86400;
557 		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
558 
559 		return;
560 	}
561 
562 	if (time_status & STA_DEL) {
563 		time_state = TIME_DEL;
564 		now += 86400 - (now + 1) % 86400;
565 		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
566 	}
567 }
568 
569 /*
570  * Propagate a new txc->status value into the NTP state:
571  */
572 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
573 {
574 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
575 		time_state = TIME_OK;
576 		time_status = STA_UNSYNC;
577 		/* restart PPS frequency calibration */
578 		pps_reset_freq_interval();
579 	}
580 
581 	/*
582 	 * If we turn on PLL adjustments then reset the
583 	 * reference time to current time.
584 	 */
585 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
586 		time_reftime = get_seconds();
587 
588 	/* only set allowed bits */
589 	time_status &= STA_RONLY;
590 	time_status |= txc->status & ~STA_RONLY;
591 
592 	switch (time_state) {
593 	case TIME_OK:
594 		ntp_start_leap_timer(ts);
595 		break;
596 	case TIME_INS:
597 	case TIME_DEL:
598 		time_state = TIME_OK;
599 		ntp_start_leap_timer(ts);
600 	case TIME_WAIT:
601 		if (!(time_status & (STA_INS | STA_DEL)))
602 			time_state = TIME_OK;
603 		break;
604 	case TIME_OOP:
605 		hrtimer_restart(&leap_timer);
606 		break;
607 	}
608 }
609 /*
610  * Called with the xtime lock held, so we can access and modify
611  * all the global NTP state:
612  */
613 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
614 {
615 	if (txc->modes & ADJ_STATUS)
616 		process_adj_status(txc, ts);
617 
618 	if (txc->modes & ADJ_NANO)
619 		time_status |= STA_NANO;
620 
621 	if (txc->modes & ADJ_MICRO)
622 		time_status &= ~STA_NANO;
623 
624 	if (txc->modes & ADJ_FREQUENCY) {
625 		time_freq = txc->freq * PPM_SCALE;
626 		time_freq = min(time_freq, MAXFREQ_SCALED);
627 		time_freq = max(time_freq, -MAXFREQ_SCALED);
628 		/* update pps_freq */
629 		pps_set_freq(time_freq);
630 	}
631 
632 	if (txc->modes & ADJ_MAXERROR)
633 		time_maxerror = txc->maxerror;
634 
635 	if (txc->modes & ADJ_ESTERROR)
636 		time_esterror = txc->esterror;
637 
638 	if (txc->modes & ADJ_TIMECONST) {
639 		time_constant = txc->constant;
640 		if (!(time_status & STA_NANO))
641 			time_constant += 4;
642 		time_constant = min(time_constant, (long)MAXTC);
643 		time_constant = max(time_constant, 0l);
644 	}
645 
646 	if (txc->modes & ADJ_TAI && txc->constant > 0)
647 		time_tai = txc->constant;
648 
649 	if (txc->modes & ADJ_OFFSET)
650 		ntp_update_offset(txc->offset);
651 
652 	if (txc->modes & ADJ_TICK)
653 		tick_usec = txc->tick;
654 
655 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
656 		ntp_update_frequency();
657 }
658 
659 /*
660  * adjtimex mainly allows reading (and writing, if superuser) of
661  * kernel time-keeping variables. used by xntpd.
662  */
663 int do_adjtimex(struct timex *txc)
664 {
665 	struct timespec ts;
666 	int result;
667 
668 	/* Validate the data before disabling interrupts */
669 	if (txc->modes & ADJ_ADJTIME) {
670 		/* singleshot must not be used with any other mode bits */
671 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
672 			return -EINVAL;
673 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
674 		    !capable(CAP_SYS_TIME))
675 			return -EPERM;
676 	} else {
677 		/* In order to modify anything, you gotta be super-user! */
678 		 if (txc->modes && !capable(CAP_SYS_TIME))
679 			return -EPERM;
680 
681 		/*
682 		 * if the quartz is off by more than 10% then
683 		 * something is VERY wrong!
684 		 */
685 		if (txc->modes & ADJ_TICK &&
686 		    (txc->tick <  900000/USER_HZ ||
687 		     txc->tick > 1100000/USER_HZ))
688 			return -EINVAL;
689 
690 		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
691 			hrtimer_cancel(&leap_timer);
692 	}
693 
694 	if (txc->modes & ADJ_SETOFFSET) {
695 		struct timespec delta;
696 		delta.tv_sec  = txc->time.tv_sec;
697 		delta.tv_nsec = txc->time.tv_usec;
698 		if (!capable(CAP_SYS_TIME))
699 			return -EPERM;
700 		if (!(txc->modes & ADJ_NANO))
701 			delta.tv_nsec *= 1000;
702 		result = timekeeping_inject_offset(&delta);
703 		if (result)
704 			return result;
705 	}
706 
707 	getnstimeofday(&ts);
708 
709 	spin_lock_irq(&ntp_lock);
710 
711 	if (txc->modes & ADJ_ADJTIME) {
712 		long save_adjust = time_adjust;
713 
714 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
715 			/* adjtime() is independent from ntp_adjtime() */
716 			time_adjust = txc->offset;
717 			ntp_update_frequency();
718 		}
719 		txc->offset = save_adjust;
720 	} else {
721 
722 		/* If there are input parameters, then process them: */
723 		if (txc->modes)
724 			process_adjtimex_modes(txc, &ts);
725 
726 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
727 				  NTP_SCALE_SHIFT);
728 		if (!(time_status & STA_NANO))
729 			txc->offset /= NSEC_PER_USEC;
730 	}
731 
732 	result = time_state;	/* mostly `TIME_OK' */
733 	/* check for errors */
734 	if (is_error_status(time_status))
735 		result = TIME_ERROR;
736 
737 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
738 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
739 	txc->maxerror	   = time_maxerror;
740 	txc->esterror	   = time_esterror;
741 	txc->status	   = time_status;
742 	txc->constant	   = time_constant;
743 	txc->precision	   = 1;
744 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
745 	txc->tick	   = tick_usec;
746 	txc->tai	   = time_tai;
747 
748 	/* fill PPS status fields */
749 	pps_fill_timex(txc);
750 
751 	spin_unlock_irq(&ntp_lock);
752 
753 	txc->time.tv_sec = ts.tv_sec;
754 	txc->time.tv_usec = ts.tv_nsec;
755 	if (!(time_status & STA_NANO))
756 		txc->time.tv_usec /= NSEC_PER_USEC;
757 
758 	notify_cmos_timer();
759 
760 	return result;
761 }
762 
763 #ifdef	CONFIG_NTP_PPS
764 
765 /* actually struct pps_normtime is good old struct timespec, but it is
766  * semantically different (and it is the reason why it was invented):
767  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
768  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
769 struct pps_normtime {
770 	__kernel_time_t	sec;	/* seconds */
771 	long		nsec;	/* nanoseconds */
772 };
773 
774 /* normalize the timestamp so that nsec is in the
775    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
776 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
777 {
778 	struct pps_normtime norm = {
779 		.sec = ts.tv_sec,
780 		.nsec = ts.tv_nsec
781 	};
782 
783 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
784 		norm.nsec -= NSEC_PER_SEC;
785 		norm.sec++;
786 	}
787 
788 	return norm;
789 }
790 
791 /* get current phase correction and jitter */
792 static inline long pps_phase_filter_get(long *jitter)
793 {
794 	*jitter = pps_tf[0] - pps_tf[1];
795 	if (*jitter < 0)
796 		*jitter = -*jitter;
797 
798 	/* TODO: test various filters */
799 	return pps_tf[0];
800 }
801 
802 /* add the sample to the phase filter */
803 static inline void pps_phase_filter_add(long err)
804 {
805 	pps_tf[2] = pps_tf[1];
806 	pps_tf[1] = pps_tf[0];
807 	pps_tf[0] = err;
808 }
809 
810 /* decrease frequency calibration interval length.
811  * It is halved after four consecutive unstable intervals.
812  */
813 static inline void pps_dec_freq_interval(void)
814 {
815 	if (--pps_intcnt <= -PPS_INTCOUNT) {
816 		pps_intcnt = -PPS_INTCOUNT;
817 		if (pps_shift > PPS_INTMIN) {
818 			pps_shift--;
819 			pps_intcnt = 0;
820 		}
821 	}
822 }
823 
824 /* increase frequency calibration interval length.
825  * It is doubled after four consecutive stable intervals.
826  */
827 static inline void pps_inc_freq_interval(void)
828 {
829 	if (++pps_intcnt >= PPS_INTCOUNT) {
830 		pps_intcnt = PPS_INTCOUNT;
831 		if (pps_shift < PPS_INTMAX) {
832 			pps_shift++;
833 			pps_intcnt = 0;
834 		}
835 	}
836 }
837 
838 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
839  * timestamps
840  *
841  * At the end of the calibration interval the difference between the
842  * first and last MONOTONIC_RAW clock timestamps divided by the length
843  * of the interval becomes the frequency update. If the interval was
844  * too long, the data are discarded.
845  * Returns the difference between old and new frequency values.
846  */
847 static long hardpps_update_freq(struct pps_normtime freq_norm)
848 {
849 	long delta, delta_mod;
850 	s64 ftemp;
851 
852 	/* check if the frequency interval was too long */
853 	if (freq_norm.sec > (2 << pps_shift)) {
854 		time_status |= STA_PPSERROR;
855 		pps_errcnt++;
856 		pps_dec_freq_interval();
857 		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
858 				freq_norm.sec);
859 		return 0;
860 	}
861 
862 	/* here the raw frequency offset and wander (stability) is
863 	 * calculated. If the wander is less than the wander threshold
864 	 * the interval is increased; otherwise it is decreased.
865 	 */
866 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
867 			freq_norm.sec);
868 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
869 	pps_freq = ftemp;
870 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
871 		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
872 		time_status |= STA_PPSWANDER;
873 		pps_stbcnt++;
874 		pps_dec_freq_interval();
875 	} else {	/* good sample */
876 		pps_inc_freq_interval();
877 	}
878 
879 	/* the stability metric is calculated as the average of recent
880 	 * frequency changes, but is used only for performance
881 	 * monitoring
882 	 */
883 	delta_mod = delta;
884 	if (delta_mod < 0)
885 		delta_mod = -delta_mod;
886 	pps_stabil += (div_s64(((s64)delta_mod) <<
887 				(NTP_SCALE_SHIFT - SHIFT_USEC),
888 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
889 
890 	/* if enabled, the system clock frequency is updated */
891 	if ((time_status & STA_PPSFREQ) != 0 &&
892 	    (time_status & STA_FREQHOLD) == 0) {
893 		time_freq = pps_freq;
894 		ntp_update_frequency();
895 	}
896 
897 	return delta;
898 }
899 
900 /* correct REALTIME clock phase error against PPS signal */
901 static void hardpps_update_phase(long error)
902 {
903 	long correction = -error;
904 	long jitter;
905 
906 	/* add the sample to the median filter */
907 	pps_phase_filter_add(correction);
908 	correction = pps_phase_filter_get(&jitter);
909 
910 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
911 	 * threshold, the sample is discarded; otherwise, if so enabled,
912 	 * the time offset is updated.
913 	 */
914 	if (jitter > (pps_jitter << PPS_POPCORN)) {
915 		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
916 		       jitter, (pps_jitter << PPS_POPCORN));
917 		time_status |= STA_PPSJITTER;
918 		pps_jitcnt++;
919 	} else if (time_status & STA_PPSTIME) {
920 		/* correct the time using the phase offset */
921 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
922 				NTP_INTERVAL_FREQ);
923 		/* cancel running adjtime() */
924 		time_adjust = 0;
925 	}
926 	/* update jitter */
927 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
928 }
929 
930 /*
931  * hardpps() - discipline CPU clock oscillator to external PPS signal
932  *
933  * This routine is called at each PPS signal arrival in order to
934  * discipline the CPU clock oscillator to the PPS signal. It takes two
935  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
936  * is used to correct clock phase error and the latter is used to
937  * correct the frequency.
938  *
939  * This code is based on David Mills's reference nanokernel
940  * implementation. It was mostly rewritten but keeps the same idea.
941  */
942 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
943 {
944 	struct pps_normtime pts_norm, freq_norm;
945 	unsigned long flags;
946 
947 	pts_norm = pps_normalize_ts(*phase_ts);
948 
949 	spin_lock_irqsave(&ntp_lock, flags);
950 
951 	/* clear the error bits, they will be set again if needed */
952 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
953 
954 	/* indicate signal presence */
955 	time_status |= STA_PPSSIGNAL;
956 	pps_valid = PPS_VALID;
957 
958 	/* when called for the first time,
959 	 * just start the frequency interval */
960 	if (unlikely(pps_fbase.tv_sec == 0)) {
961 		pps_fbase = *raw_ts;
962 		spin_unlock_irqrestore(&ntp_lock, flags);
963 		return;
964 	}
965 
966 	/* ok, now we have a base for frequency calculation */
967 	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
968 
969 	/* check that the signal is in the range
970 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
971 	if ((freq_norm.sec == 0) ||
972 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
973 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
974 		time_status |= STA_PPSJITTER;
975 		/* restart the frequency calibration interval */
976 		pps_fbase = *raw_ts;
977 		spin_unlock_irqrestore(&ntp_lock, flags);
978 		pr_err("hardpps: PPSJITTER: bad pulse\n");
979 		return;
980 	}
981 
982 	/* signal is ok */
983 
984 	/* check if the current frequency interval is finished */
985 	if (freq_norm.sec >= (1 << pps_shift)) {
986 		pps_calcnt++;
987 		/* restart the frequency calibration interval */
988 		pps_fbase = *raw_ts;
989 		hardpps_update_freq(freq_norm);
990 	}
991 
992 	hardpps_update_phase(pts_norm.nsec);
993 
994 	spin_unlock_irqrestore(&ntp_lock, flags);
995 }
996 EXPORT_SYMBOL(hardpps);
997 
998 #endif	/* CONFIG_NTP_PPS */
999 
1000 static int __init ntp_tick_adj_setup(char *str)
1001 {
1002 	ntp_tick_adj = simple_strtol(str, NULL, 0);
1003 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1004 
1005 	return 1;
1006 }
1007 
1008 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1009 
1010 void __init ntp_init(void)
1011 {
1012 	ntp_clear();
1013 	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1014 	leap_timer.function = ntp_leap_second;
1015 }
1016