xref: /linux/kernel/time/ntp.c (revision 930cc144a043ff95e56b6888fa51c618b33f89e7)
1 /*
2  * linux/kernel/time/ntp.c
3  *
4  * NTP state machine interfaces and logic.
5  *
6  * This code was mainly moved from kernel/timer.c and kernel/time.c
7  * Please see those files for relevant copyright info and historical
8  * changelogs.
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/timex.h>
14 #include <linux/jiffies.h>
15 #include <linux/hrtimer.h>
16 #include <linux/capability.h>
17 #include <linux/math64.h>
18 #include <linux/clocksource.h>
19 #include <linux/workqueue.h>
20 #include <asm/timex.h>
21 
22 /*
23  * Timekeeping variables
24  */
25 unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */
26 unsigned long tick_nsec;			/* ACTHZ period (nsec) */
27 u64 tick_length;
28 static u64 tick_length_base;
29 
30 static struct hrtimer leap_timer;
31 
32 #define MAX_TICKADJ		500		/* microsecs */
33 #define MAX_TICKADJ_SCALED	(((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
34 				  NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
35 
36 /*
37  * phase-lock loop variables
38  */
39 /* TIME_ERROR prevents overwriting the CMOS clock */
40 static int time_state = TIME_OK;	/* clock synchronization status	*/
41 int time_status = STA_UNSYNC;		/* clock status bits		*/
42 static long time_tai;			/* TAI offset (s)		*/
43 static s64 time_offset;			/* time adjustment (ns)		*/
44 static long time_constant = 2;		/* pll time constant		*/
45 long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/
46 long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/
47 static s64 time_freq;			/* frequency offset (scaled ns/s)*/
48 static long time_reftime;		/* time at last adjustment (s)	*/
49 long time_adjust;
50 static long ntp_tick_adj;
51 
52 static void ntp_update_frequency(void)
53 {
54 	u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
55 				<< NTP_SCALE_SHIFT;
56 	second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;
57 	second_length += time_freq;
58 
59 	tick_length_base = second_length;
60 
61 	tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
62 	tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ);
63 }
64 
65 static void ntp_update_offset(long offset)
66 {
67 	long mtemp;
68 	s64 freq_adj;
69 
70 	if (!(time_status & STA_PLL))
71 		return;
72 
73 	if (!(time_status & STA_NANO))
74 		offset *= NSEC_PER_USEC;
75 
76 	/*
77 	 * Scale the phase adjustment and
78 	 * clamp to the operating range.
79 	 */
80 	offset = min(offset, MAXPHASE);
81 	offset = max(offset, -MAXPHASE);
82 
83 	/*
84 	 * Select how the frequency is to be controlled
85 	 * and in which mode (PLL or FLL).
86 	 */
87 	if (time_status & STA_FREQHOLD || time_reftime == 0)
88 		time_reftime = xtime.tv_sec;
89 	mtemp = xtime.tv_sec - time_reftime;
90 	time_reftime = xtime.tv_sec;
91 
92 	freq_adj = (s64)offset * mtemp;
93 	freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant);
94 	time_status &= ~STA_MODE;
95 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
96 		freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL),
97 				    mtemp);
98 		time_status |= STA_MODE;
99 	}
100 	freq_adj += time_freq;
101 	freq_adj = min(freq_adj, MAXFREQ_SCALED);
102 	time_freq = max(freq_adj, -MAXFREQ_SCALED);
103 
104 	time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
105 }
106 
107 /**
108  * ntp_clear - Clears the NTP state variables
109  *
110  * Must be called while holding a write on the xtime_lock
111  */
112 void ntp_clear(void)
113 {
114 	time_adjust = 0;		/* stop active adjtime() */
115 	time_status |= STA_UNSYNC;
116 	time_maxerror = NTP_PHASE_LIMIT;
117 	time_esterror = NTP_PHASE_LIMIT;
118 
119 	ntp_update_frequency();
120 
121 	tick_length = tick_length_base;
122 	time_offset = 0;
123 }
124 
125 /*
126  * Leap second processing. If in leap-insert state at the end of the
127  * day, the system clock is set back one second; if in leap-delete
128  * state, the system clock is set ahead one second.
129  */
130 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
131 {
132 	enum hrtimer_restart res = HRTIMER_NORESTART;
133 
134 	write_seqlock_irq(&xtime_lock);
135 
136 	switch (time_state) {
137 	case TIME_OK:
138 		break;
139 	case TIME_INS:
140 		xtime.tv_sec--;
141 		wall_to_monotonic.tv_sec++;
142 		time_state = TIME_OOP;
143 		printk(KERN_NOTICE "Clock: "
144 		       "inserting leap second 23:59:60 UTC\n");
145 		leap_timer.expires = ktime_add_ns(leap_timer.expires,
146 						  NSEC_PER_SEC);
147 		res = HRTIMER_RESTART;
148 		break;
149 	case TIME_DEL:
150 		xtime.tv_sec++;
151 		time_tai--;
152 		wall_to_monotonic.tv_sec--;
153 		time_state = TIME_WAIT;
154 		printk(KERN_NOTICE "Clock: "
155 		       "deleting leap second 23:59:59 UTC\n");
156 		break;
157 	case TIME_OOP:
158 		time_tai++;
159 		time_state = TIME_WAIT;
160 		/* fall through */
161 	case TIME_WAIT:
162 		if (!(time_status & (STA_INS | STA_DEL)))
163 			time_state = TIME_OK;
164 		break;
165 	}
166 	update_vsyscall(&xtime, clock);
167 
168 	write_sequnlock_irq(&xtime_lock);
169 
170 	return res;
171 }
172 
173 /*
174  * this routine handles the overflow of the microsecond field
175  *
176  * The tricky bits of code to handle the accurate clock support
177  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
178  * They were originally developed for SUN and DEC kernels.
179  * All the kudos should go to Dave for this stuff.
180  */
181 void second_overflow(void)
182 {
183 	s64 time_adj;
184 
185 	/* Bump the maxerror field */
186 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
187 	if (time_maxerror > NTP_PHASE_LIMIT) {
188 		time_maxerror = NTP_PHASE_LIMIT;
189 		time_status |= STA_UNSYNC;
190 	}
191 
192 	/*
193 	 * Compute the phase adjustment for the next second. The offset is
194 	 * reduced by a fixed factor times the time constant.
195 	 */
196 	tick_length = tick_length_base;
197 	time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
198 	time_offset -= time_adj;
199 	tick_length += time_adj;
200 
201 	if (unlikely(time_adjust)) {
202 		if (time_adjust > MAX_TICKADJ) {
203 			time_adjust -= MAX_TICKADJ;
204 			tick_length += MAX_TICKADJ_SCALED;
205 		} else if (time_adjust < -MAX_TICKADJ) {
206 			time_adjust += MAX_TICKADJ;
207 			tick_length -= MAX_TICKADJ_SCALED;
208 		} else {
209 			tick_length += (s64)(time_adjust * NSEC_PER_USEC /
210 					NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT;
211 			time_adjust = 0;
212 		}
213 	}
214 }
215 
216 #ifdef CONFIG_GENERIC_CMOS_UPDATE
217 
218 /* Disable the cmos update - used by virtualization and embedded */
219 int no_sync_cmos_clock  __read_mostly;
220 
221 static void sync_cmos_clock(struct work_struct *work);
222 
223 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
224 
225 static void sync_cmos_clock(struct work_struct *work)
226 {
227 	struct timespec now, next;
228 	int fail = 1;
229 
230 	/*
231 	 * If we have an externally synchronized Linux clock, then update
232 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
233 	 * called as close as possible to 500 ms before the new second starts.
234 	 * This code is run on a timer.  If the clock is set, that timer
235 	 * may not expire at the correct time.  Thus, we adjust...
236 	 */
237 	if (!ntp_synced())
238 		/*
239 		 * Not synced, exit, do not restart a timer (if one is
240 		 * running, let it run out).
241 		 */
242 		return;
243 
244 	getnstimeofday(&now);
245 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
246 		fail = update_persistent_clock(now);
247 
248 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
249 	if (next.tv_nsec <= 0)
250 		next.tv_nsec += NSEC_PER_SEC;
251 
252 	if (!fail)
253 		next.tv_sec = 659;
254 	else
255 		next.tv_sec = 0;
256 
257 	if (next.tv_nsec >= NSEC_PER_SEC) {
258 		next.tv_sec++;
259 		next.tv_nsec -= NSEC_PER_SEC;
260 	}
261 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
262 }
263 
264 static void notify_cmos_timer(void)
265 {
266 	if (!no_sync_cmos_clock)
267 		schedule_delayed_work(&sync_cmos_work, 0);
268 }
269 
270 #else
271 static inline void notify_cmos_timer(void) { }
272 #endif
273 
274 /* adjtimex mainly allows reading (and writing, if superuser) of
275  * kernel time-keeping variables. used by xntpd.
276  */
277 int do_adjtimex(struct timex *txc)
278 {
279 	struct timespec ts;
280 	int result;
281 
282 	/* Validate the data before disabling interrupts */
283 	if (txc->modes & ADJ_ADJTIME) {
284 		/* singleshot must not be used with any other mode bits */
285 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
286 			return -EINVAL;
287 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
288 		    !capable(CAP_SYS_TIME))
289 			return -EPERM;
290 	} else {
291 		/* In order to modify anything, you gotta be super-user! */
292 		 if (txc->modes && !capable(CAP_SYS_TIME))
293 			return -EPERM;
294 
295 		/* if the quartz is off by more than 10% something is VERY wrong! */
296 		if (txc->modes & ADJ_TICK &&
297 		    (txc->tick <  900000/USER_HZ ||
298 		     txc->tick > 1100000/USER_HZ))
299 				return -EINVAL;
300 
301 		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
302 			hrtimer_cancel(&leap_timer);
303 	}
304 
305 	getnstimeofday(&ts);
306 
307 	write_seqlock_irq(&xtime_lock);
308 
309 	/* If there are input parameters, then process them */
310 	if (txc->modes & ADJ_ADJTIME) {
311 		long save_adjust = time_adjust;
312 
313 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
314 			/* adjtime() is independent from ntp_adjtime() */
315 			time_adjust = txc->offset;
316 			ntp_update_frequency();
317 		}
318 		txc->offset = save_adjust;
319 		goto adj_done;
320 	}
321 	if (txc->modes) {
322 		long sec;
323 
324 		if (txc->modes & ADJ_STATUS) {
325 			if ((time_status & STA_PLL) &&
326 			    !(txc->status & STA_PLL)) {
327 				time_state = TIME_OK;
328 				time_status = STA_UNSYNC;
329 			}
330 			/* only set allowed bits */
331 			time_status &= STA_RONLY;
332 			time_status |= txc->status & ~STA_RONLY;
333 
334 			switch (time_state) {
335 			case TIME_OK:
336 			start_timer:
337 				sec = ts.tv_sec;
338 				if (time_status & STA_INS) {
339 					time_state = TIME_INS;
340 					sec += 86400 - sec % 86400;
341 					hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
342 				} else if (time_status & STA_DEL) {
343 					time_state = TIME_DEL;
344 					sec += 86400 - (sec + 1) % 86400;
345 					hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
346 				}
347 				break;
348 			case TIME_INS:
349 			case TIME_DEL:
350 				time_state = TIME_OK;
351 				goto start_timer;
352 				break;
353 			case TIME_WAIT:
354 				if (!(time_status & (STA_INS | STA_DEL)))
355 					time_state = TIME_OK;
356 				break;
357 			case TIME_OOP:
358 				hrtimer_restart(&leap_timer);
359 				break;
360 			}
361 		}
362 
363 		if (txc->modes & ADJ_NANO)
364 			time_status |= STA_NANO;
365 		if (txc->modes & ADJ_MICRO)
366 			time_status &= ~STA_NANO;
367 
368 		if (txc->modes & ADJ_FREQUENCY) {
369 			time_freq = (s64)txc->freq * PPM_SCALE;
370 			time_freq = min(time_freq, MAXFREQ_SCALED);
371 			time_freq = max(time_freq, -MAXFREQ_SCALED);
372 		}
373 
374 		if (txc->modes & ADJ_MAXERROR)
375 			time_maxerror = txc->maxerror;
376 		if (txc->modes & ADJ_ESTERROR)
377 			time_esterror = txc->esterror;
378 
379 		if (txc->modes & ADJ_TIMECONST) {
380 			time_constant = txc->constant;
381 			if (!(time_status & STA_NANO))
382 				time_constant += 4;
383 			time_constant = min(time_constant, (long)MAXTC);
384 			time_constant = max(time_constant, 0l);
385 		}
386 
387 		if (txc->modes & ADJ_TAI && txc->constant > 0)
388 			time_tai = txc->constant;
389 
390 		if (txc->modes & ADJ_OFFSET)
391 			ntp_update_offset(txc->offset);
392 		if (txc->modes & ADJ_TICK)
393 			tick_usec = txc->tick;
394 
395 		if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
396 			ntp_update_frequency();
397 	}
398 
399 	txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
400 				  NTP_SCALE_SHIFT);
401 	if (!(time_status & STA_NANO))
402 		txc->offset /= NSEC_PER_USEC;
403 
404 adj_done:
405 	result = time_state;	/* mostly `TIME_OK' */
406 	if (time_status & (STA_UNSYNC|STA_CLOCKERR))
407 		result = TIME_ERROR;
408 
409 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
410 					 (s64)PPM_SCALE_INV, NTP_SCALE_SHIFT);
411 	txc->maxerror	   = time_maxerror;
412 	txc->esterror	   = time_esterror;
413 	txc->status	   = time_status;
414 	txc->constant	   = time_constant;
415 	txc->precision	   = 1;
416 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
417 	txc->tick	   = tick_usec;
418 	txc->tai	   = time_tai;
419 
420 	/* PPS is not implemented, so these are zero */
421 	txc->ppsfreq	   = 0;
422 	txc->jitter	   = 0;
423 	txc->shift	   = 0;
424 	txc->stabil	   = 0;
425 	txc->jitcnt	   = 0;
426 	txc->calcnt	   = 0;
427 	txc->errcnt	   = 0;
428 	txc->stbcnt	   = 0;
429 	write_sequnlock_irq(&xtime_lock);
430 
431 	txc->time.tv_sec = ts.tv_sec;
432 	txc->time.tv_usec = ts.tv_nsec;
433 	if (!(time_status & STA_NANO))
434 		txc->time.tv_usec /= NSEC_PER_USEC;
435 
436 	notify_cmos_timer();
437 
438 	return result;
439 }
440 
441 static int __init ntp_tick_adj_setup(char *str)
442 {
443 	ntp_tick_adj = simple_strtol(str, NULL, 0);
444 	return 1;
445 }
446 
447 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
448 
449 void __init ntp_init(void)
450 {
451 	ntp_clear();
452 	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
453 	leap_timer.function = ntp_leap_second;
454 }
455