xref: /linux/kernel/time/ntp.c (revision 4e15fa8305deecdf20233558ed9f7a8a62b708fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NTP state machine interfaces and logic.
4  *
5  * This code was mainly moved from kernel/timer.c and kernel/time.c
6  * Please see those files for relevant copyright info and historical
7  * changelogs.
8  */
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/audit.h>
21 
22 #include "ntp_internal.h"
23 #include "timekeeping_internal.h"
24 
25 /**
26  * struct ntp_data - Structure holding all NTP related state
27  * @tick_usec:		USER_HZ period in microseconds
28  * @tick_length:	Adjusted tick length
29  * @tick_length_base:	Base value for @tick_length
30  * @time_state:		State of the clock synchronization
31  * @time_status:	Clock status bits
32  * @time_offset:	Time adjustment in nanoseconds
33  * @time_constant:	PLL time constant
34  * @time_maxerror:	Maximum error in microseconds holding the NTP sync distance
35  *			(NTP dispersion + delay / 2)
36  * @time_esterror:	Estimated error in microseconds holding NTP dispersion
37  * @time_freq:		Frequency offset scaled nsecs/secs
38  * @time_reftime:	Time at last adjustment in seconds
39  * @time_adjust:	Adjustment value
40  * @ntp_tick_adj:	Constant boot-param configurable NTP tick adjustment (upscaled)
41  * @ntp_next_leap_sec:	Second value of the next pending leapsecond, or TIME64_MAX if no leap
42  *
43  * @pps_valid:		PPS signal watchdog counter
44  * @pps_tf:		PPS phase median filter
45  * @pps_jitter:		PPS current jitter in nanoseconds
46  * @pps_fbase:		PPS beginning of the last freq interval
47  * @pps_shift:		PPS current interval duration in seconds (shift value)
48  * @pps_intcnt:		PPS interval counter
49  * @pps_freq:		PPS frequency offset in scaled ns/s
50  * @pps_stabil:		PPS current stability in scaled ns/s
51  * @pps_calcnt:		PPS monitor: calibration intervals
52  * @pps_jitcnt:		PPS monitor: jitter limit exceeded
53  * @pps_stbcnt:		PPS monitor: stability limit exceeded
54  * @pps_errcnt:		PPS monitor: calibration errors
55  *
56  * Protected by the timekeeping locks.
57  */
58 struct ntp_data {
59 	unsigned long		tick_usec;
60 	u64			tick_length;
61 	u64			tick_length_base;
62 	int			time_state;
63 	int			time_status;
64 	s64			time_offset;
65 	long			time_constant;
66 	long			time_maxerror;
67 	long			time_esterror;
68 	s64			time_freq;
69 	time64_t		time_reftime;
70 	long			time_adjust;
71 	s64			ntp_tick_adj;
72 	time64_t		ntp_next_leap_sec;
73 #ifdef CONFIG_NTP_PPS
74 	int			pps_valid;
75 	long			pps_tf[3];
76 	long			pps_jitter;
77 	struct timespec64	pps_fbase;
78 	int			pps_shift;
79 	int			pps_intcnt;
80 	s64			pps_freq;
81 	long			pps_stabil;
82 	long			pps_calcnt;
83 	long			pps_jitcnt;
84 	long			pps_stbcnt;
85 	long			pps_errcnt;
86 #endif
87 };
88 
89 static struct ntp_data tk_ntp_data = {
90 	.tick_usec		= USER_TICK_USEC,
91 	.time_state		= TIME_OK,
92 	.time_status		= STA_UNSYNC,
93 	.time_constant		= 2,
94 	.time_maxerror		= NTP_PHASE_LIMIT,
95 	.time_esterror		= NTP_PHASE_LIMIT,
96 	.ntp_next_leap_sec	= TIME64_MAX,
97 };
98 
99 #define SECS_PER_DAY		86400
100 #define MAX_TICKADJ		500LL		/* usecs */
101 #define MAX_TICKADJ_SCALED \
102 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
103 #define MAX_TAI_OFFSET		100000
104 
105 #ifdef CONFIG_NTP_PPS
106 
107 /*
108  * The following variables are used when a pulse-per-second (PPS) signal
109  * is available. They establish the engineering parameters of the clock
110  * discipline loop when controlled by the PPS signal.
111  */
112 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
113 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
114 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
115 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
116 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
117 				   increase pps_shift or consecutive bad
118 				   intervals to decrease it */
119 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
120 
121 /*
122  * PPS kernel consumer compensates the whole phase error immediately.
123  * Otherwise, reduce the offset by a fixed factor times the time constant.
124  */
125 static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
126 {
127 	if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
128 		return offset;
129 	else
130 		return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
131 }
132 
133 static inline void pps_reset_freq_interval(struct ntp_data *ntpdata)
134 {
135 	/* The PPS calibration interval may end surprisingly early */
136 	ntpdata->pps_shift = PPS_INTMIN;
137 	ntpdata->pps_intcnt = 0;
138 }
139 
140 /**
141  * pps_clear - Clears the PPS state variables
142  * @ntpdata:	Pointer to ntp data
143  */
144 static inline void pps_clear(struct ntp_data *ntpdata)
145 {
146 	pps_reset_freq_interval(ntpdata);
147 	ntpdata->pps_tf[0] = 0;
148 	ntpdata->pps_tf[1] = 0;
149 	ntpdata->pps_tf[2] = 0;
150 	ntpdata->pps_fbase.tv_sec = ntpdata->pps_fbase.tv_nsec = 0;
151 	ntpdata->pps_freq = 0;
152 }
153 
154 /*
155  * Decrease pps_valid to indicate that another second has passed since the
156  * last PPS signal. When it reaches 0, indicate that PPS signal is missing.
157  */
158 static inline void pps_dec_valid(struct ntp_data *ntpdata)
159 {
160 	if (ntpdata->pps_valid > 0) {
161 		ntpdata->pps_valid--;
162 	} else {
163 		ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
164 					  STA_PPSWANDER | STA_PPSERROR);
165 		pps_clear(ntpdata);
166 	}
167 }
168 
169 static inline void pps_set_freq(struct ntp_data *ntpdata)
170 {
171 	ntpdata->pps_freq = ntpdata->time_freq;
172 }
173 
174 static inline bool is_error_status(int status)
175 {
176 	return (status & (STA_UNSYNC|STA_CLOCKERR))
177 		/*
178 		 * PPS signal lost when either PPS time or PPS frequency
179 		 * synchronization requested
180 		 */
181 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
182 			&& !(status & STA_PPSSIGNAL))
183 		/*
184 		 * PPS jitter exceeded when PPS time synchronization
185 		 * requested
186 		 */
187 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
188 			== (STA_PPSTIME|STA_PPSJITTER))
189 		/*
190 		 * PPS wander exceeded or calibration error when PPS
191 		 * frequency synchronization requested
192 		 */
193 		|| ((status & STA_PPSFREQ)
194 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
195 }
196 
197 static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
198 {
199 	txc->ppsfreq	   = shift_right((ntpdata->pps_freq >> PPM_SCALE_INV_SHIFT) *
200 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
201 	txc->jitter	   = ntpdata->pps_jitter;
202 	if (!(ntpdata->time_status & STA_NANO))
203 		txc->jitter = ntpdata->pps_jitter / NSEC_PER_USEC;
204 	txc->shift	   = ntpdata->pps_shift;
205 	txc->stabil	   = ntpdata->pps_stabil;
206 	txc->jitcnt	   = ntpdata->pps_jitcnt;
207 	txc->calcnt	   = ntpdata->pps_calcnt;
208 	txc->errcnt	   = ntpdata->pps_errcnt;
209 	txc->stbcnt	   = ntpdata->pps_stbcnt;
210 }
211 
212 #else /* !CONFIG_NTP_PPS */
213 
214 static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
215 {
216 	return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
217 }
218 
219 static inline void pps_reset_freq_interval(struct ntp_data *ntpdata) {}
220 static inline void pps_clear(struct ntp_data *ntpdata) {}
221 static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
222 static inline void pps_set_freq(struct ntp_data *ntpdata) {}
223 
224 static inline bool is_error_status(int status)
225 {
226 	return status & (STA_UNSYNC|STA_CLOCKERR);
227 }
228 
229 static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
230 {
231 	/* PPS is not implemented, so these are zero */
232 	txc->ppsfreq	   = 0;
233 	txc->jitter	   = 0;
234 	txc->shift	   = 0;
235 	txc->stabil	   = 0;
236 	txc->jitcnt	   = 0;
237 	txc->calcnt	   = 0;
238 	txc->errcnt	   = 0;
239 	txc->stbcnt	   = 0;
240 }
241 
242 #endif /* CONFIG_NTP_PPS */
243 
244 /*
245  * Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and
246  * time_freq:
247  */
248 static void ntp_update_frequency(struct ntp_data *ntpdata)
249 {
250 	u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec;
251 
252 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT;
253 
254 	second_length		+= ntpdata->ntp_tick_adj;
255 	second_length		+= ntpdata->time_freq;
256 
257 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
258 
259 	/*
260 	 * Don't wait for the next second_overflow, apply the change to the
261 	 * tick length immediately:
262 	 */
263 	ntpdata->tick_length		+= new_base - ntpdata->tick_length_base;
264 	ntpdata->tick_length_base	 = new_base;
265 }
266 
267 static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
268 {
269 	ntpdata->time_status &= ~STA_MODE;
270 
271 	if (secs < MINSEC)
272 		return 0;
273 
274 	if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
275 		return 0;
276 
277 	ntpdata->time_status |= STA_MODE;
278 
279 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
280 }
281 
282 static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
283 {
284 	s64 freq_adj, offset64;
285 	long secs, real_secs;
286 
287 	if (!(ntpdata->time_status & STA_PLL))
288 		return;
289 
290 	if (!(ntpdata->time_status & STA_NANO)) {
291 		/* Make sure the multiplication below won't overflow */
292 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
293 		offset *= NSEC_PER_USEC;
294 	}
295 
296 	/* Scale the phase adjustment and clamp to the operating range. */
297 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
298 
299 	/*
300 	 * Select how the frequency is to be controlled
301 	 * and in which mode (PLL or FLL).
302 	 */
303 	real_secs = __ktime_get_real_seconds();
304 	secs = (long)(real_secs - ntpdata->time_reftime);
305 	if (unlikely(ntpdata->time_status & STA_FREQHOLD))
306 		secs = 0;
307 
308 	ntpdata->time_reftime = real_secs;
309 
310 	offset64    = offset;
311 	freq_adj    = ntp_update_offset_fll(ntpdata, offset64, secs);
312 
313 	/*
314 	 * Clamp update interval to reduce PLL gain with low
315 	 * sampling rate (e.g. intermittent network connection)
316 	 * to avoid instability.
317 	 */
318 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant)))
319 		secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant);
320 
321 	freq_adj    += (offset64 * secs) <<
322 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant));
323 
324 	freq_adj    = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED);
325 
326 	ntpdata->time_freq   = max(freq_adj, -MAXFREQ_SCALED);
327 
328 	ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
329 }
330 
331 static void __ntp_clear(struct ntp_data *ntpdata)
332 {
333 	/* Stop active adjtime() */
334 	ntpdata->time_adjust	= 0;
335 	ntpdata->time_status	|= STA_UNSYNC;
336 	ntpdata->time_maxerror	= NTP_PHASE_LIMIT;
337 	ntpdata->time_esterror	= NTP_PHASE_LIMIT;
338 
339 	ntp_update_frequency(ntpdata);
340 
341 	ntpdata->tick_length	= ntpdata->tick_length_base;
342 	ntpdata->time_offset	= 0;
343 
344 	ntpdata->ntp_next_leap_sec = TIME64_MAX;
345 	/* Clear PPS state variables */
346 	pps_clear(ntpdata);
347 }
348 
349 /**
350  * ntp_clear - Clears the NTP state variables
351  */
352 void ntp_clear(void)
353 {
354 	__ntp_clear(&tk_ntp_data);
355 }
356 
357 
358 u64 ntp_tick_length(void)
359 {
360 	return tk_ntp_data.tick_length;
361 }
362 
363 /**
364  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
365  *
366  * Provides the time of the next leapsecond against CLOCK_REALTIME in
367  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
368  */
369 ktime_t ntp_get_next_leap(void)
370 {
371 	struct ntp_data *ntpdata = &tk_ntp_data;
372 	ktime_t ret;
373 
374 	if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
375 		return ktime_set(ntpdata->ntp_next_leap_sec, 0);
376 	ret = KTIME_MAX;
377 	return ret;
378 }
379 
380 /*
381  * This routine handles the overflow of the microsecond field
382  *
383  * The tricky bits of code to handle the accurate clock support
384  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
385  * They were originally developed for SUN and DEC kernels.
386  * All the kudos should go to Dave for this stuff.
387  *
388  * Also handles leap second processing, and returns leap offset
389  */
390 int second_overflow(time64_t secs)
391 {
392 	struct ntp_data *ntpdata = &tk_ntp_data;
393 	s64 delta;
394 	int leap = 0;
395 	s32 rem;
396 
397 	/*
398 	 * Leap second processing. If in leap-insert state at the end of the
399 	 * day, the system clock is set back one second; if in leap-delete
400 	 * state, the system clock is set ahead one second.
401 	 */
402 	switch (ntpdata->time_state) {
403 	case TIME_OK:
404 		if (ntpdata->time_status & STA_INS) {
405 			ntpdata->time_state = TIME_INS;
406 			div_s64_rem(secs, SECS_PER_DAY, &rem);
407 			ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
408 		} else if (ntpdata->time_status & STA_DEL) {
409 			ntpdata->time_state = TIME_DEL;
410 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
411 			ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
412 		}
413 		break;
414 	case TIME_INS:
415 		if (!(ntpdata->time_status & STA_INS)) {
416 			ntpdata->ntp_next_leap_sec = TIME64_MAX;
417 			ntpdata->time_state = TIME_OK;
418 		} else if (secs == ntpdata->ntp_next_leap_sec) {
419 			leap = -1;
420 			ntpdata->time_state = TIME_OOP;
421 			pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
422 		}
423 		break;
424 	case TIME_DEL:
425 		if (!(ntpdata->time_status & STA_DEL)) {
426 			ntpdata->ntp_next_leap_sec = TIME64_MAX;
427 			ntpdata->time_state = TIME_OK;
428 		} else if (secs == ntpdata->ntp_next_leap_sec) {
429 			leap = 1;
430 			ntpdata->ntp_next_leap_sec = TIME64_MAX;
431 			ntpdata->time_state = TIME_WAIT;
432 			pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
433 		}
434 		break;
435 	case TIME_OOP:
436 		ntpdata->ntp_next_leap_sec = TIME64_MAX;
437 		ntpdata->time_state = TIME_WAIT;
438 		break;
439 	case TIME_WAIT:
440 		if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
441 			ntpdata->time_state = TIME_OK;
442 		break;
443 	}
444 
445 	/* Bump the maxerror field */
446 	ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC;
447 	if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) {
448 		ntpdata->time_maxerror = NTP_PHASE_LIMIT;
449 		ntpdata->time_status |= STA_UNSYNC;
450 	}
451 
452 	/* Compute the phase adjustment for the next second */
453 	ntpdata->tick_length	 = ntpdata->tick_length_base;
454 
455 	delta			 = ntp_offset_chunk(ntpdata, ntpdata->time_offset);
456 	ntpdata->time_offset	-= delta;
457 	ntpdata->tick_length	+= delta;
458 
459 	/* Check PPS signal */
460 	pps_dec_valid(ntpdata);
461 
462 	if (!ntpdata->time_adjust)
463 		goto out;
464 
465 	if (ntpdata->time_adjust > MAX_TICKADJ) {
466 		ntpdata->time_adjust -= MAX_TICKADJ;
467 		ntpdata->tick_length += MAX_TICKADJ_SCALED;
468 		goto out;
469 	}
470 
471 	if (ntpdata->time_adjust < -MAX_TICKADJ) {
472 		ntpdata->time_adjust += MAX_TICKADJ;
473 		ntpdata->tick_length -= MAX_TICKADJ_SCALED;
474 		goto out;
475 	}
476 
477 	ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
478 				<< NTP_SCALE_SHIFT;
479 	ntpdata->time_adjust = 0;
480 
481 out:
482 	return leap;
483 }
484 
485 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
486 static void sync_hw_clock(struct work_struct *work);
487 static DECLARE_WORK(sync_work, sync_hw_clock);
488 static struct hrtimer sync_hrtimer;
489 #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
490 
491 static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
492 {
493 	queue_work(system_freezable_power_efficient_wq, &sync_work);
494 
495 	return HRTIMER_NORESTART;
496 }
497 
498 static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
499 {
500 	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
501 
502 	if (retry)
503 		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
504 	else
505 		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
506 
507 	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
508 }
509 
510 /*
511  * Check whether @now is correct versus the required time to update the RTC
512  * and calculate the value which needs to be written to the RTC so that the
513  * next seconds increment of the RTC after the write is aligned with the next
514  * seconds increment of clock REALTIME.
515  *
516  * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
517  *
518  * t2.tv_nsec == 0
519  * tsched = t2 - set_offset_nsec
520  * newval = t2 - NSEC_PER_SEC
521  *
522  * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
523  *
524  * As the execution of this code is not guaranteed to happen exactly at
525  * tsched this allows it to happen within a fuzzy region:
526  *
527  *	abs(now - tsched) < FUZZ
528  *
529  * If @now is not inside the allowed window the function returns false.
530  */
531 static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
532 				  struct timespec64 *to_set,
533 				  const struct timespec64 *now)
534 {
535 	/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
536 	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
537 	struct timespec64 delay = {.tv_sec = -1,
538 				   .tv_nsec = set_offset_nsec};
539 
540 	*to_set = timespec64_add(*now, delay);
541 
542 	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
543 		to_set->tv_nsec = 0;
544 		return true;
545 	}
546 
547 	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
548 		to_set->tv_sec++;
549 		to_set->tv_nsec = 0;
550 		return true;
551 	}
552 	return false;
553 }
554 
555 #ifdef CONFIG_GENERIC_CMOS_UPDATE
556 int __weak update_persistent_clock64(struct timespec64 now64)
557 {
558 	return -ENODEV;
559 }
560 #else
561 static inline int update_persistent_clock64(struct timespec64 now64)
562 {
563 	return -ENODEV;
564 }
565 #endif
566 
567 #ifdef CONFIG_RTC_SYSTOHC
568 /* Save NTP synchronized time to the RTC */
569 static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
570 {
571 	struct rtc_device *rtc;
572 	struct rtc_time tm;
573 	int err = -ENODEV;
574 
575 	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
576 	if (!rtc)
577 		return -ENODEV;
578 
579 	if (!rtc->ops || !rtc->ops->set_time)
580 		goto out_close;
581 
582 	/* First call might not have the correct offset */
583 	if (*offset_nsec == rtc->set_offset_nsec) {
584 		rtc_time64_to_tm(to_set->tv_sec, &tm);
585 		err = rtc_set_time(rtc, &tm);
586 	} else {
587 		/* Store the update offset and let the caller try again */
588 		*offset_nsec = rtc->set_offset_nsec;
589 		err = -EAGAIN;
590 	}
591 out_close:
592 	rtc_class_close(rtc);
593 	return err;
594 }
595 #else
596 static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
597 {
598 	return -ENODEV;
599 }
600 #endif
601 
602 /**
603  * ntp_synced - Tells whether the NTP status is not UNSYNC
604  * Returns:	true if not UNSYNC, false otherwise
605  */
606 static inline bool ntp_synced(void)
607 {
608 	return !(tk_ntp_data.time_status & STA_UNSYNC);
609 }
610 
611 /*
612  * If we have an externally synchronized Linux clock, then update RTC clock
613  * accordingly every ~11 minutes. Generally RTCs can only store second
614  * precision, but many RTCs will adjust the phase of their second tick to
615  * match the moment of update. This infrastructure arranges to call to the RTC
616  * set at the correct moment to phase synchronize the RTC second tick over
617  * with the kernel clock.
618  */
619 static void sync_hw_clock(struct work_struct *work)
620 {
621 	/*
622 	 * The default synchronization offset is 500ms for the deprecated
623 	 * update_persistent_clock64() under the assumption that it uses
624 	 * the infamous CMOS clock (MC146818).
625 	 */
626 	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
627 	struct timespec64 now, to_set;
628 	int res = -EAGAIN;
629 
630 	/*
631 	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
632 	 * managed to schedule the work between the timer firing and the
633 	 * work being able to rearm the timer. Wait for the timer to expire.
634 	 */
635 	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
636 		return;
637 
638 	ktime_get_real_ts64(&now);
639 	/* If @now is not in the allowed window, try again */
640 	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
641 		goto rearm;
642 
643 	/* Take timezone adjusted RTCs into account */
644 	if (persistent_clock_is_local)
645 		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
646 
647 	/* Try the legacy RTC first. */
648 	res = update_persistent_clock64(to_set);
649 	if (res != -ENODEV)
650 		goto rearm;
651 
652 	/* Try the RTC class */
653 	res = update_rtc(&to_set, &offset_nsec);
654 	if (res == -ENODEV)
655 		return;
656 rearm:
657 	sched_sync_hw_clock(offset_nsec, res != 0);
658 }
659 
660 void ntp_notify_cmos_timer(bool offset_set)
661 {
662 	/*
663 	 * If the time jumped (using ADJ_SETOFFSET) cancels sync timer,
664 	 * which may have been running if the time was synchronized
665 	 * prior to the ADJ_SETOFFSET call.
666 	 */
667 	if (offset_set)
668 		hrtimer_cancel(&sync_hrtimer);
669 
670 	/*
671 	 * When the work is currently executed but has not yet the timer
672 	 * rearmed this queues the work immediately again. No big issue,
673 	 * just a pointless work scheduled.
674 	 */
675 	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
676 		queue_work(system_freezable_power_efficient_wq, &sync_work);
677 }
678 
679 static void __init ntp_init_cmos_sync(void)
680 {
681 	hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
682 	sync_hrtimer.function = sync_timer_callback;
683 }
684 #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
685 static inline void __init ntp_init_cmos_sync(void) { }
686 #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
687 
688 /*
689  * Propagate a new txc->status value into the NTP state:
690  */
691 static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
692 {
693 	if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
694 		ntpdata->time_state = TIME_OK;
695 		ntpdata->time_status = STA_UNSYNC;
696 		ntpdata->ntp_next_leap_sec = TIME64_MAX;
697 		/* Restart PPS frequency calibration */
698 		pps_reset_freq_interval(ntpdata);
699 	}
700 
701 	/*
702 	 * If we turn on PLL adjustments then reset the
703 	 * reference time to current time.
704 	 */
705 	if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
706 		ntpdata->time_reftime = __ktime_get_real_seconds();
707 
708 	/* only set allowed bits */
709 	ntpdata->time_status &= STA_RONLY;
710 	ntpdata->time_status |= txc->status & ~STA_RONLY;
711 }
712 
713 static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
714 					  s32 *time_tai)
715 {
716 	if (txc->modes & ADJ_STATUS)
717 		process_adj_status(ntpdata, txc);
718 
719 	if (txc->modes & ADJ_NANO)
720 		ntpdata->time_status |= STA_NANO;
721 
722 	if (txc->modes & ADJ_MICRO)
723 		ntpdata->time_status &= ~STA_NANO;
724 
725 	if (txc->modes & ADJ_FREQUENCY) {
726 		ntpdata->time_freq = txc->freq * PPM_SCALE;
727 		ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED);
728 		ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED);
729 		/* Update pps_freq */
730 		pps_set_freq(ntpdata);
731 	}
732 
733 	if (txc->modes & ADJ_MAXERROR)
734 		ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
735 
736 	if (txc->modes & ADJ_ESTERROR)
737 		ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
738 
739 	if (txc->modes & ADJ_TIMECONST) {
740 		ntpdata->time_constant = clamp(txc->constant, 0, MAXTC);
741 		if (!(ntpdata->time_status & STA_NANO))
742 			ntpdata->time_constant += 4;
743 		ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC);
744 	}
745 
746 	if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
747 		*time_tai = txc->constant;
748 
749 	if (txc->modes & ADJ_OFFSET)
750 		ntp_update_offset(ntpdata, txc->offset);
751 
752 	if (txc->modes & ADJ_TICK)
753 		ntpdata->tick_usec = txc->tick;
754 
755 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
756 		ntp_update_frequency(ntpdata);
757 }
758 
759 /*
760  * adjtimex() mainly allows reading (and writing, if superuser) of
761  * kernel time-keeping variables. used by xntpd.
762  */
763 int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
764 		  s32 *time_tai, struct audit_ntp_data *ad)
765 {
766 	struct ntp_data *ntpdata = &tk_ntp_data;
767 	int result;
768 
769 	if (txc->modes & ADJ_ADJTIME) {
770 		long save_adjust = ntpdata->time_adjust;
771 
772 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
773 			/* adjtime() is independent from ntp_adjtime() */
774 			ntpdata->time_adjust = txc->offset;
775 			ntp_update_frequency(ntpdata);
776 
777 			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
778 			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	ntpdata->time_adjust);
779 		}
780 		txc->offset = save_adjust;
781 	} else {
782 		/* If there are input parameters, then process them: */
783 		if (txc->modes) {
784 			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	ntpdata->time_offset);
785 			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	ntpdata->time_freq);
786 			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	ntpdata->time_status);
787 			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
788 			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	ntpdata->tick_usec);
789 
790 			process_adjtimex_modes(ntpdata, txc, time_tai);
791 
792 			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	ntpdata->time_offset);
793 			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	ntpdata->time_freq);
794 			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	ntpdata->time_status);
795 			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
796 			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	ntpdata->tick_usec);
797 		}
798 
799 		txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT);
800 		if (!(ntpdata->time_status & STA_NANO))
801 			txc->offset = div_s64(txc->offset, NSEC_PER_USEC);
802 	}
803 
804 	result = ntpdata->time_state;
805 	if (is_error_status(ntpdata->time_status))
806 		result = TIME_ERROR;
807 
808 	txc->freq	   = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) *
809 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
810 	txc->maxerror	   = ntpdata->time_maxerror;
811 	txc->esterror	   = ntpdata->time_esterror;
812 	txc->status	   = ntpdata->time_status;
813 	txc->constant	   = ntpdata->time_constant;
814 	txc->precision	   = 1;
815 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
816 	txc->tick	   = ntpdata->tick_usec;
817 	txc->tai	   = *time_tai;
818 
819 	/* Fill PPS status fields */
820 	pps_fill_timex(ntpdata, txc);
821 
822 	txc->time.tv_sec = ts->tv_sec;
823 	txc->time.tv_usec = ts->tv_nsec;
824 	if (!(ntpdata->time_status & STA_NANO))
825 		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
826 
827 	/* Handle leapsec adjustments */
828 	if (unlikely(ts->tv_sec >= ntpdata->ntp_next_leap_sec)) {
829 		if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
830 			result = TIME_OOP;
831 			txc->tai++;
832 			txc->time.tv_sec--;
833 		}
834 		if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
835 			result = TIME_WAIT;
836 			txc->tai--;
837 			txc->time.tv_sec++;
838 		}
839 		if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntpdata->ntp_next_leap_sec))
840 			result = TIME_WAIT;
841 	}
842 
843 	return result;
844 }
845 
846 #ifdef	CONFIG_NTP_PPS
847 
848 /*
849  * struct pps_normtime is basically a struct timespec, but it is
850  * semantically different (and it is the reason why it was invented):
851  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
852  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC)
853  */
854 struct pps_normtime {
855 	s64		sec;	/* seconds */
856 	long		nsec;	/* nanoseconds */
857 };
858 
859 /*
860  * Normalize the timestamp so that nsec is in the
861  * [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval
862  */
863 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
864 {
865 	struct pps_normtime norm = {
866 		.sec = ts.tv_sec,
867 		.nsec = ts.tv_nsec
868 	};
869 
870 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
871 		norm.nsec -= NSEC_PER_SEC;
872 		norm.sec++;
873 	}
874 
875 	return norm;
876 }
877 
878 /* Get current phase correction and jitter */
879 static inline long pps_phase_filter_get(struct ntp_data *ntpdata, long *jitter)
880 {
881 	*jitter = ntpdata->pps_tf[0] - ntpdata->pps_tf[1];
882 	if (*jitter < 0)
883 		*jitter = -*jitter;
884 
885 	/* TODO: test various filters */
886 	return ntpdata->pps_tf[0];
887 }
888 
889 /* Add the sample to the phase filter */
890 static inline void pps_phase_filter_add(struct ntp_data *ntpdata, long err)
891 {
892 	ntpdata->pps_tf[2] = ntpdata->pps_tf[1];
893 	ntpdata->pps_tf[1] = ntpdata->pps_tf[0];
894 	ntpdata->pps_tf[0] = err;
895 }
896 
897 /*
898  * Decrease frequency calibration interval length. It is halved after four
899  * consecutive unstable intervals.
900  */
901 static inline void pps_dec_freq_interval(struct ntp_data *ntpdata)
902 {
903 	if (--ntpdata->pps_intcnt <= -PPS_INTCOUNT) {
904 		ntpdata->pps_intcnt = -PPS_INTCOUNT;
905 		if (ntpdata->pps_shift > PPS_INTMIN) {
906 			ntpdata->pps_shift--;
907 			ntpdata->pps_intcnt = 0;
908 		}
909 	}
910 }
911 
912 /*
913  * Increase frequency calibration interval length. It is doubled after
914  * four consecutive stable intervals.
915  */
916 static inline void pps_inc_freq_interval(struct ntp_data *ntpdata)
917 {
918 	if (++ntpdata->pps_intcnt >= PPS_INTCOUNT) {
919 		ntpdata->pps_intcnt = PPS_INTCOUNT;
920 		if (ntpdata->pps_shift < PPS_INTMAX) {
921 			ntpdata->pps_shift++;
922 			ntpdata->pps_intcnt = 0;
923 		}
924 	}
925 }
926 
927 /*
928  * Update clock frequency based on MONOTONIC_RAW clock PPS signal
929  * timestamps
930  *
931  * At the end of the calibration interval the difference between the
932  * first and last MONOTONIC_RAW clock timestamps divided by the length
933  * of the interval becomes the frequency update. If the interval was
934  * too long, the data are discarded.
935  * Returns the difference between old and new frequency values.
936  */
937 static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm)
938 {
939 	long delta, delta_mod;
940 	s64 ftemp;
941 
942 	/* Check if the frequency interval was too long */
943 	if (freq_norm.sec > (2 << ntpdata->pps_shift)) {
944 		ntpdata->time_status |= STA_PPSERROR;
945 		ntpdata->pps_errcnt++;
946 		pps_dec_freq_interval(ntpdata);
947 		printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
948 				freq_norm.sec);
949 		return 0;
950 	}
951 
952 	/*
953 	 * Here the raw frequency offset and wander (stability) is
954 	 * calculated. If the wander is less than the wander threshold the
955 	 * interval is increased; otherwise it is decreased.
956 	 */
957 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
958 			freq_norm.sec);
959 	delta = shift_right(ftemp - ntpdata->pps_freq, NTP_SCALE_SHIFT);
960 	ntpdata->pps_freq = ftemp;
961 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
962 		printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
963 		ntpdata->time_status |= STA_PPSWANDER;
964 		ntpdata->pps_stbcnt++;
965 		pps_dec_freq_interval(ntpdata);
966 	} else {
967 		/* Good sample */
968 		pps_inc_freq_interval(ntpdata);
969 	}
970 
971 	/*
972 	 * The stability metric is calculated as the average of recent
973 	 * frequency changes, but is used only for performance monitoring
974 	 */
975 	delta_mod = delta;
976 	if (delta_mod < 0)
977 		delta_mod = -delta_mod;
978 	ntpdata->pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC),
979 				     NSEC_PER_USEC) - ntpdata->pps_stabil) >> PPS_INTMIN;
980 
981 	/* If enabled, the system clock frequency is updated */
982 	if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
983 		ntpdata->time_freq = ntpdata->pps_freq;
984 		ntp_update_frequency(ntpdata);
985 	}
986 
987 	return delta;
988 }
989 
990 /* Correct REALTIME clock phase error against PPS signal */
991 static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
992 {
993 	long correction = -error;
994 	long jitter;
995 
996 	/* Add the sample to the median filter */
997 	pps_phase_filter_add(ntpdata, correction);
998 	correction = pps_phase_filter_get(ntpdata, &jitter);
999 
1000 	/*
1001 	 * Nominal jitter is due to PPS signal noise. If it exceeds the
1002 	 * threshold, the sample is discarded; otherwise, if so enabled,
1003 	 * the time offset is updated.
1004 	 */
1005 	if (jitter > (ntpdata->pps_jitter << PPS_POPCORN)) {
1006 		printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1007 				jitter, (ntpdata->pps_jitter << PPS_POPCORN));
1008 		ntpdata->time_status |= STA_PPSJITTER;
1009 		ntpdata->pps_jitcnt++;
1010 	} else if (ntpdata->time_status & STA_PPSTIME) {
1011 		/* Correct the time using the phase offset */
1012 		ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1013 					       NTP_INTERVAL_FREQ);
1014 		/* Cancel running adjtime() */
1015 		ntpdata->time_adjust = 0;
1016 	}
1017 	/* Update jitter */
1018 	ntpdata->pps_jitter += (jitter - ntpdata->pps_jitter) >> PPS_INTMIN;
1019 }
1020 
1021 /*
1022  * __hardpps() - discipline CPU clock oscillator to external PPS signal
1023  *
1024  * This routine is called at each PPS signal arrival in order to
1025  * discipline the CPU clock oscillator to the PPS signal. It takes two
1026  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1027  * is used to correct clock phase error and the latter is used to
1028  * correct the frequency.
1029  *
1030  * This code is based on David Mills's reference nanokernel
1031  * implementation. It was mostly rewritten but keeps the same idea.
1032  */
1033 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1034 {
1035 	struct pps_normtime pts_norm, freq_norm;
1036 	struct ntp_data *ntpdata = &tk_ntp_data;
1037 
1038 	pts_norm = pps_normalize_ts(*phase_ts);
1039 
1040 	/* Clear the error bits, they will be set again if needed */
1041 	ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1042 
1043 	/* indicate signal presence */
1044 	ntpdata->time_status |= STA_PPSSIGNAL;
1045 	ntpdata->pps_valid = PPS_VALID;
1046 
1047 	/*
1048 	 * When called for the first time, just start the frequency
1049 	 * interval
1050 	 */
1051 	if (unlikely(ntpdata->pps_fbase.tv_sec == 0)) {
1052 		ntpdata->pps_fbase = *raw_ts;
1053 		return;
1054 	}
1055 
1056 	/* Ok, now we have a base for frequency calculation */
1057 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, ntpdata->pps_fbase));
1058 
1059 	/*
1060 	 * Check that the signal is in the range
1061 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it
1062 	 */
1063 	if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1064 	    (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1065 		ntpdata->time_status |= STA_PPSJITTER;
1066 		/* Restart the frequency calibration interval */
1067 		ntpdata->pps_fbase = *raw_ts;
1068 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1069 		return;
1070 	}
1071 
1072 	/* Signal is ok. Check if the current frequency interval is finished */
1073 	if (freq_norm.sec >= (1 << ntpdata->pps_shift)) {
1074 		ntpdata->pps_calcnt++;
1075 		/* Restart the frequency calibration interval */
1076 		ntpdata->pps_fbase = *raw_ts;
1077 		hardpps_update_freq(ntpdata, freq_norm);
1078 	}
1079 
1080 	hardpps_update_phase(ntpdata, pts_norm.nsec);
1081 
1082 }
1083 #endif	/* CONFIG_NTP_PPS */
1084 
1085 static int __init ntp_tick_adj_setup(char *str)
1086 {
1087 	int rc = kstrtos64(str, 0, &tk_ntp_data.ntp_tick_adj);
1088 	if (rc)
1089 		return rc;
1090 
1091 	tk_ntp_data.ntp_tick_adj <<= NTP_SCALE_SHIFT;
1092 	return 1;
1093 }
1094 
1095 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1096 
1097 void __init ntp_init(void)
1098 {
1099 	ntp_clear();
1100 	ntp_init_cmos_sync();
1101 }
1102