xref: /linux/kernel/time/ntp.c (revision 13d68a16430312fc21990f48326366eb73891202)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NTP state machine interfaces and logic.
4  *
5  * This code was mainly moved from kernel/timer.c and kernel/time.c
6  * Please see those files for relevant copyright info and historical
7  * changelogs.
8  */
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/audit.h>
21 
22 #include "ntp_internal.h"
23 #include "timekeeping_internal.h"
24 
25 
26 /*
27  * NTP timekeeping variables:
28  *
29  * Note: All of the NTP state is protected by the timekeeping locks.
30  */
31 
32 
33 /* USER_HZ period (usecs): */
34 unsigned long			tick_usec = USER_TICK_USEC;
35 
36 /* SHIFTED_HZ period (nsecs): */
37 unsigned long			tick_nsec;
38 
39 static u64			tick_length;
40 static u64			tick_length_base;
41 
42 #define SECS_PER_DAY		86400
43 #define MAX_TICKADJ		500LL		/* usecs */
44 #define MAX_TICKADJ_SCALED \
45 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46 #define MAX_TAI_OFFSET		100000
47 
48 /*
49  * phase-lock loop variables
50  */
51 
52 /*
53  * clock synchronization status
54  *
55  * (TIME_ERROR prevents overwriting the CMOS clock)
56  */
57 static int			time_state = TIME_OK;
58 
59 /* clock status bits:							*/
60 static int			time_status = STA_UNSYNC;
61 
62 /* time adjustment (nsecs):						*/
63 static s64			time_offset;
64 
65 /* pll time constant:							*/
66 static long			time_constant = 2;
67 
68 /* maximum error (usecs):						*/
69 static long			time_maxerror = NTP_PHASE_LIMIT;
70 
71 /* estimated error (usecs):						*/
72 static long			time_esterror = NTP_PHASE_LIMIT;
73 
74 /* frequency offset (scaled nsecs/secs):				*/
75 static s64			time_freq;
76 
77 /* time at last adjustment (secs):					*/
78 static time64_t		time_reftime;
79 
80 static long			time_adjust;
81 
82 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
83 static s64			ntp_tick_adj;
84 
85 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
86 static time64_t			ntp_next_leap_sec = TIME64_MAX;
87 
88 #ifdef CONFIG_NTP_PPS
89 
90 /*
91  * The following variables are used when a pulse-per-second (PPS) signal
92  * is available. They establish the engineering parameters of the clock
93  * discipline loop when controlled by the PPS signal.
94  */
95 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
96 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
97 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
98 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
99 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
100 				   increase pps_shift or consecutive bad
101 				   intervals to decrease it */
102 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
103 
104 static int pps_valid;		/* signal watchdog counter */
105 static long pps_tf[3];		/* phase median filter */
106 static long pps_jitter;		/* current jitter (ns) */
107 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
108 static int pps_shift;		/* current interval duration (s) (shift) */
109 static int pps_intcnt;		/* interval counter */
110 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
111 static long pps_stabil;		/* current stability (scaled ns/s) */
112 
113 /*
114  * PPS signal quality monitors
115  */
116 static long pps_calcnt;		/* calibration intervals */
117 static long pps_jitcnt;		/* jitter limit exceeded */
118 static long pps_stbcnt;		/* stability limit exceeded */
119 static long pps_errcnt;		/* calibration errors */
120 
121 
122 /* PPS kernel consumer compensates the whole phase error immediately.
123  * Otherwise, reduce the offset by a fixed factor times the time constant.
124  */
125 static inline s64 ntp_offset_chunk(s64 offset)
126 {
127 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
128 		return offset;
129 	else
130 		return shift_right(offset, SHIFT_PLL + time_constant);
131 }
132 
133 static inline void pps_reset_freq_interval(void)
134 {
135 	/* the PPS calibration interval may end
136 	   surprisingly early */
137 	pps_shift = PPS_INTMIN;
138 	pps_intcnt = 0;
139 }
140 
141 /**
142  * pps_clear - Clears the PPS state variables
143  */
144 static inline void pps_clear(void)
145 {
146 	pps_reset_freq_interval();
147 	pps_tf[0] = 0;
148 	pps_tf[1] = 0;
149 	pps_tf[2] = 0;
150 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
151 	pps_freq = 0;
152 }
153 
154 /* Decrease pps_valid to indicate that another second has passed since
155  * the last PPS signal. When it reaches 0, indicate that PPS signal is
156  * missing.
157  */
158 static inline void pps_dec_valid(void)
159 {
160 	if (pps_valid > 0)
161 		pps_valid--;
162 	else {
163 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
164 				 STA_PPSWANDER | STA_PPSERROR);
165 		pps_clear();
166 	}
167 }
168 
169 static inline void pps_set_freq(s64 freq)
170 {
171 	pps_freq = freq;
172 }
173 
174 static inline int is_error_status(int status)
175 {
176 	return (status & (STA_UNSYNC|STA_CLOCKERR))
177 		/* PPS signal lost when either PPS time or
178 		 * PPS frequency synchronization requested
179 		 */
180 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
181 			&& !(status & STA_PPSSIGNAL))
182 		/* PPS jitter exceeded when
183 		 * PPS time synchronization requested */
184 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
185 			== (STA_PPSTIME|STA_PPSJITTER))
186 		/* PPS wander exceeded or calibration error when
187 		 * PPS frequency synchronization requested
188 		 */
189 		|| ((status & STA_PPSFREQ)
190 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
191 }
192 
193 static inline void pps_fill_timex(struct __kernel_timex *txc)
194 {
195 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
196 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
197 	txc->jitter	   = pps_jitter;
198 	if (!(time_status & STA_NANO))
199 		txc->jitter = pps_jitter / NSEC_PER_USEC;
200 	txc->shift	   = pps_shift;
201 	txc->stabil	   = pps_stabil;
202 	txc->jitcnt	   = pps_jitcnt;
203 	txc->calcnt	   = pps_calcnt;
204 	txc->errcnt	   = pps_errcnt;
205 	txc->stbcnt	   = pps_stbcnt;
206 }
207 
208 #else /* !CONFIG_NTP_PPS */
209 
210 static inline s64 ntp_offset_chunk(s64 offset)
211 {
212 	return shift_right(offset, SHIFT_PLL + time_constant);
213 }
214 
215 static inline void pps_reset_freq_interval(void) {}
216 static inline void pps_clear(void) {}
217 static inline void pps_dec_valid(void) {}
218 static inline void pps_set_freq(s64 freq) {}
219 
220 static inline int is_error_status(int status)
221 {
222 	return status & (STA_UNSYNC|STA_CLOCKERR);
223 }
224 
225 static inline void pps_fill_timex(struct __kernel_timex *txc)
226 {
227 	/* PPS is not implemented, so these are zero */
228 	txc->ppsfreq	   = 0;
229 	txc->jitter	   = 0;
230 	txc->shift	   = 0;
231 	txc->stabil	   = 0;
232 	txc->jitcnt	   = 0;
233 	txc->calcnt	   = 0;
234 	txc->errcnt	   = 0;
235 	txc->stbcnt	   = 0;
236 }
237 
238 #endif /* CONFIG_NTP_PPS */
239 
240 
241 /**
242  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243  *
244  */
245 static inline int ntp_synced(void)
246 {
247 	return !(time_status & STA_UNSYNC);
248 }
249 
250 
251 /*
252  * NTP methods:
253  */
254 
255 /*
256  * Update (tick_length, tick_length_base, tick_nsec), based
257  * on (tick_usec, ntp_tick_adj, time_freq):
258  */
259 static void ntp_update_frequency(void)
260 {
261 	u64 second_length;
262 	u64 new_base;
263 
264 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
265 						<< NTP_SCALE_SHIFT;
266 
267 	second_length		+= ntp_tick_adj;
268 	second_length		+= time_freq;
269 
270 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
271 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
272 
273 	/*
274 	 * Don't wait for the next second_overflow, apply
275 	 * the change to the tick length immediately:
276 	 */
277 	tick_length		+= new_base - tick_length_base;
278 	tick_length_base	 = new_base;
279 }
280 
281 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
282 {
283 	time_status &= ~STA_MODE;
284 
285 	if (secs < MINSEC)
286 		return 0;
287 
288 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
289 		return 0;
290 
291 	time_status |= STA_MODE;
292 
293 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
294 }
295 
296 static void ntp_update_offset(long offset)
297 {
298 	s64 freq_adj;
299 	s64 offset64;
300 	long secs;
301 
302 	if (!(time_status & STA_PLL))
303 		return;
304 
305 	if (!(time_status & STA_NANO)) {
306 		/* Make sure the multiplication below won't overflow */
307 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
308 		offset *= NSEC_PER_USEC;
309 	}
310 
311 	/*
312 	 * Scale the phase adjustment and
313 	 * clamp to the operating range.
314 	 */
315 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
316 
317 	/*
318 	 * Select how the frequency is to be controlled
319 	 * and in which mode (PLL or FLL).
320 	 */
321 	secs = (long)(__ktime_get_real_seconds() - time_reftime);
322 	if (unlikely(time_status & STA_FREQHOLD))
323 		secs = 0;
324 
325 	time_reftime = __ktime_get_real_seconds();
326 
327 	offset64    = offset;
328 	freq_adj    = ntp_update_offset_fll(offset64, secs);
329 
330 	/*
331 	 * Clamp update interval to reduce PLL gain with low
332 	 * sampling rate (e.g. intermittent network connection)
333 	 * to avoid instability.
334 	 */
335 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
336 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
337 
338 	freq_adj    += (offset64 * secs) <<
339 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
340 
341 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
342 
343 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
344 
345 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
346 }
347 
348 /**
349  * ntp_clear - Clears the NTP state variables
350  */
351 void ntp_clear(void)
352 {
353 	time_adjust	= 0;		/* stop active adjtime() */
354 	time_status	|= STA_UNSYNC;
355 	time_maxerror	= NTP_PHASE_LIMIT;
356 	time_esterror	= NTP_PHASE_LIMIT;
357 
358 	ntp_update_frequency();
359 
360 	tick_length	= tick_length_base;
361 	time_offset	= 0;
362 
363 	ntp_next_leap_sec = TIME64_MAX;
364 	/* Clear PPS state variables */
365 	pps_clear();
366 }
367 
368 
369 u64 ntp_tick_length(void)
370 {
371 	return tick_length;
372 }
373 
374 /**
375  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
376  *
377  * Provides the time of the next leapsecond against CLOCK_REALTIME in
378  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
379  */
380 ktime_t ntp_get_next_leap(void)
381 {
382 	ktime_t ret;
383 
384 	if ((time_state == TIME_INS) && (time_status & STA_INS))
385 		return ktime_set(ntp_next_leap_sec, 0);
386 	ret = KTIME_MAX;
387 	return ret;
388 }
389 
390 /*
391  * this routine handles the overflow of the microsecond field
392  *
393  * The tricky bits of code to handle the accurate clock support
394  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395  * They were originally developed for SUN and DEC kernels.
396  * All the kudos should go to Dave for this stuff.
397  *
398  * Also handles leap second processing, and returns leap offset
399  */
400 int second_overflow(time64_t secs)
401 {
402 	s64 delta;
403 	int leap = 0;
404 	s32 rem;
405 
406 	/*
407 	 * Leap second processing. If in leap-insert state at the end of the
408 	 * day, the system clock is set back one second; if in leap-delete
409 	 * state, the system clock is set ahead one second.
410 	 */
411 	switch (time_state) {
412 	case TIME_OK:
413 		if (time_status & STA_INS) {
414 			time_state = TIME_INS;
415 			div_s64_rem(secs, SECS_PER_DAY, &rem);
416 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
417 		} else if (time_status & STA_DEL) {
418 			time_state = TIME_DEL;
419 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
420 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
421 		}
422 		break;
423 	case TIME_INS:
424 		if (!(time_status & STA_INS)) {
425 			ntp_next_leap_sec = TIME64_MAX;
426 			time_state = TIME_OK;
427 		} else if (secs == ntp_next_leap_sec) {
428 			leap = -1;
429 			time_state = TIME_OOP;
430 			printk(KERN_NOTICE
431 				"Clock: inserting leap second 23:59:60 UTC\n");
432 		}
433 		break;
434 	case TIME_DEL:
435 		if (!(time_status & STA_DEL)) {
436 			ntp_next_leap_sec = TIME64_MAX;
437 			time_state = TIME_OK;
438 		} else if (secs == ntp_next_leap_sec) {
439 			leap = 1;
440 			ntp_next_leap_sec = TIME64_MAX;
441 			time_state = TIME_WAIT;
442 			printk(KERN_NOTICE
443 				"Clock: deleting leap second 23:59:59 UTC\n");
444 		}
445 		break;
446 	case TIME_OOP:
447 		ntp_next_leap_sec = TIME64_MAX;
448 		time_state = TIME_WAIT;
449 		break;
450 	case TIME_WAIT:
451 		if (!(time_status & (STA_INS | STA_DEL)))
452 			time_state = TIME_OK;
453 		break;
454 	}
455 
456 
457 	/* Bump the maxerror field */
458 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
459 	if (time_maxerror > NTP_PHASE_LIMIT) {
460 		time_maxerror = NTP_PHASE_LIMIT;
461 		time_status |= STA_UNSYNC;
462 	}
463 
464 	/* Compute the phase adjustment for the next second */
465 	tick_length	 = tick_length_base;
466 
467 	delta		 = ntp_offset_chunk(time_offset);
468 	time_offset	-= delta;
469 	tick_length	+= delta;
470 
471 	/* Check PPS signal */
472 	pps_dec_valid();
473 
474 	if (!time_adjust)
475 		goto out;
476 
477 	if (time_adjust > MAX_TICKADJ) {
478 		time_adjust -= MAX_TICKADJ;
479 		tick_length += MAX_TICKADJ_SCALED;
480 		goto out;
481 	}
482 
483 	if (time_adjust < -MAX_TICKADJ) {
484 		time_adjust += MAX_TICKADJ;
485 		tick_length -= MAX_TICKADJ_SCALED;
486 		goto out;
487 	}
488 
489 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
490 							 << NTP_SCALE_SHIFT;
491 	time_adjust = 0;
492 
493 out:
494 	return leap;
495 }
496 
497 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
498 static void sync_hw_clock(struct work_struct *work);
499 static DECLARE_WORK(sync_work, sync_hw_clock);
500 static struct hrtimer sync_hrtimer;
501 #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
502 
503 static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
504 {
505 	queue_work(system_freezable_power_efficient_wq, &sync_work);
506 
507 	return HRTIMER_NORESTART;
508 }
509 
510 static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
511 {
512 	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
513 
514 	if (retry)
515 		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
516 	else
517 		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
518 
519 	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
520 }
521 
522 /*
523  * Check whether @now is correct versus the required time to update the RTC
524  * and calculate the value which needs to be written to the RTC so that the
525  * next seconds increment of the RTC after the write is aligned with the next
526  * seconds increment of clock REALTIME.
527  *
528  * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
529  *
530  * t2.tv_nsec == 0
531  * tsched = t2 - set_offset_nsec
532  * newval = t2 - NSEC_PER_SEC
533  *
534  * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
535  *
536  * As the execution of this code is not guaranteed to happen exactly at
537  * tsched this allows it to happen within a fuzzy region:
538  *
539  *	abs(now - tsched) < FUZZ
540  *
541  * If @now is not inside the allowed window the function returns false.
542  */
543 static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
544 				  struct timespec64 *to_set,
545 				  const struct timespec64 *now)
546 {
547 	/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
548 	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
549 	struct timespec64 delay = {.tv_sec = -1,
550 				   .tv_nsec = set_offset_nsec};
551 
552 	*to_set = timespec64_add(*now, delay);
553 
554 	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
555 		to_set->tv_nsec = 0;
556 		return true;
557 	}
558 
559 	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
560 		to_set->tv_sec++;
561 		to_set->tv_nsec = 0;
562 		return true;
563 	}
564 	return false;
565 }
566 
567 #ifdef CONFIG_GENERIC_CMOS_UPDATE
568 int __weak update_persistent_clock64(struct timespec64 now64)
569 {
570 	return -ENODEV;
571 }
572 #else
573 static inline int update_persistent_clock64(struct timespec64 now64)
574 {
575 	return -ENODEV;
576 }
577 #endif
578 
579 #ifdef CONFIG_RTC_SYSTOHC
580 /* Save NTP synchronized time to the RTC */
581 static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
582 {
583 	struct rtc_device *rtc;
584 	struct rtc_time tm;
585 	int err = -ENODEV;
586 
587 	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
588 	if (!rtc)
589 		return -ENODEV;
590 
591 	if (!rtc->ops || !rtc->ops->set_time)
592 		goto out_close;
593 
594 	/* First call might not have the correct offset */
595 	if (*offset_nsec == rtc->set_offset_nsec) {
596 		rtc_time64_to_tm(to_set->tv_sec, &tm);
597 		err = rtc_set_time(rtc, &tm);
598 	} else {
599 		/* Store the update offset and let the caller try again */
600 		*offset_nsec = rtc->set_offset_nsec;
601 		err = -EAGAIN;
602 	}
603 out_close:
604 	rtc_class_close(rtc);
605 	return err;
606 }
607 #else
608 static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
609 {
610 	return -ENODEV;
611 }
612 #endif
613 
614 /*
615  * If we have an externally synchronized Linux clock, then update RTC clock
616  * accordingly every ~11 minutes. Generally RTCs can only store second
617  * precision, but many RTCs will adjust the phase of their second tick to
618  * match the moment of update. This infrastructure arranges to call to the RTC
619  * set at the correct moment to phase synchronize the RTC second tick over
620  * with the kernel clock.
621  */
622 static void sync_hw_clock(struct work_struct *work)
623 {
624 	/*
625 	 * The default synchronization offset is 500ms for the deprecated
626 	 * update_persistent_clock64() under the assumption that it uses
627 	 * the infamous CMOS clock (MC146818).
628 	 */
629 	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
630 	struct timespec64 now, to_set;
631 	int res = -EAGAIN;
632 
633 	/*
634 	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
635 	 * managed to schedule the work between the timer firing and the
636 	 * work being able to rearm the timer. Wait for the timer to expire.
637 	 */
638 	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
639 		return;
640 
641 	ktime_get_real_ts64(&now);
642 	/* If @now is not in the allowed window, try again */
643 	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
644 		goto rearm;
645 
646 	/* Take timezone adjusted RTCs into account */
647 	if (persistent_clock_is_local)
648 		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
649 
650 	/* Try the legacy RTC first. */
651 	res = update_persistent_clock64(to_set);
652 	if (res != -ENODEV)
653 		goto rearm;
654 
655 	/* Try the RTC class */
656 	res = update_rtc(&to_set, &offset_nsec);
657 	if (res == -ENODEV)
658 		return;
659 rearm:
660 	sched_sync_hw_clock(offset_nsec, res != 0);
661 }
662 
663 void ntp_notify_cmos_timer(bool offset_set)
664 {
665 	/*
666 	 * If the time jumped (using ADJ_SETOFFSET) cancels sync timer,
667 	 * which may have been running if the time was synchronized
668 	 * prior to the ADJ_SETOFFSET call.
669 	 */
670 	if (offset_set)
671 		hrtimer_cancel(&sync_hrtimer);
672 
673 	/*
674 	 * When the work is currently executed but has not yet the timer
675 	 * rearmed this queues the work immediately again. No big issue,
676 	 * just a pointless work scheduled.
677 	 */
678 	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
679 		queue_work(system_freezable_power_efficient_wq, &sync_work);
680 }
681 
682 static void __init ntp_init_cmos_sync(void)
683 {
684 	hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
685 	sync_hrtimer.function = sync_timer_callback;
686 }
687 #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
688 static inline void __init ntp_init_cmos_sync(void) { }
689 #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
690 
691 /*
692  * Propagate a new txc->status value into the NTP state:
693  */
694 static inline void process_adj_status(const struct __kernel_timex *txc)
695 {
696 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
697 		time_state = TIME_OK;
698 		time_status = STA_UNSYNC;
699 		ntp_next_leap_sec = TIME64_MAX;
700 		/* restart PPS frequency calibration */
701 		pps_reset_freq_interval();
702 	}
703 
704 	/*
705 	 * If we turn on PLL adjustments then reset the
706 	 * reference time to current time.
707 	 */
708 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
709 		time_reftime = __ktime_get_real_seconds();
710 
711 	/* only set allowed bits */
712 	time_status &= STA_RONLY;
713 	time_status |= txc->status & ~STA_RONLY;
714 }
715 
716 
717 static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
718 					  s32 *time_tai)
719 {
720 	if (txc->modes & ADJ_STATUS)
721 		process_adj_status(txc);
722 
723 	if (txc->modes & ADJ_NANO)
724 		time_status |= STA_NANO;
725 
726 	if (txc->modes & ADJ_MICRO)
727 		time_status &= ~STA_NANO;
728 
729 	if (txc->modes & ADJ_FREQUENCY) {
730 		time_freq = txc->freq * PPM_SCALE;
731 		time_freq = min(time_freq, MAXFREQ_SCALED);
732 		time_freq = max(time_freq, -MAXFREQ_SCALED);
733 		/* update pps_freq */
734 		pps_set_freq(time_freq);
735 	}
736 
737 	if (txc->modes & ADJ_MAXERROR)
738 		time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
739 
740 	if (txc->modes & ADJ_ESTERROR)
741 		time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
742 
743 	if (txc->modes & ADJ_TIMECONST) {
744 		time_constant = clamp(txc->constant, 0, MAXTC);
745 		if (!(time_status & STA_NANO))
746 			time_constant += 4;
747 		time_constant = clamp(time_constant, 0, MAXTC);
748 	}
749 
750 	if (txc->modes & ADJ_TAI &&
751 			txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
752 		*time_tai = txc->constant;
753 
754 	if (txc->modes & ADJ_OFFSET)
755 		ntp_update_offset(txc->offset);
756 
757 	if (txc->modes & ADJ_TICK)
758 		tick_usec = txc->tick;
759 
760 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
761 		ntp_update_frequency();
762 }
763 
764 
765 /*
766  * adjtimex mainly allows reading (and writing, if superuser) of
767  * kernel time-keeping variables. used by xntpd.
768  */
769 int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
770 		  s32 *time_tai, struct audit_ntp_data *ad)
771 {
772 	int result;
773 
774 	if (txc->modes & ADJ_ADJTIME) {
775 		long save_adjust = time_adjust;
776 
777 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
778 			/* adjtime() is independent from ntp_adjtime() */
779 			time_adjust = txc->offset;
780 			ntp_update_frequency();
781 
782 			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
783 			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	time_adjust);
784 		}
785 		txc->offset = save_adjust;
786 	} else {
787 		/* If there are input parameters, then process them: */
788 		if (txc->modes) {
789 			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	time_offset);
790 			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	time_freq);
791 			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	time_status);
792 			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
793 			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	tick_usec);
794 
795 			process_adjtimex_modes(txc, time_tai);
796 
797 			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	time_offset);
798 			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	time_freq);
799 			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	time_status);
800 			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
801 			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	tick_usec);
802 		}
803 
804 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
805 				  NTP_SCALE_SHIFT);
806 		if (!(time_status & STA_NANO))
807 			txc->offset = (u32)txc->offset / NSEC_PER_USEC;
808 	}
809 
810 	result = time_state;	/* mostly `TIME_OK' */
811 	/* check for errors */
812 	if (is_error_status(time_status))
813 		result = TIME_ERROR;
814 
815 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
816 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
817 	txc->maxerror	   = time_maxerror;
818 	txc->esterror	   = time_esterror;
819 	txc->status	   = time_status;
820 	txc->constant	   = time_constant;
821 	txc->precision	   = 1;
822 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
823 	txc->tick	   = tick_usec;
824 	txc->tai	   = *time_tai;
825 
826 	/* fill PPS status fields */
827 	pps_fill_timex(txc);
828 
829 	txc->time.tv_sec = ts->tv_sec;
830 	txc->time.tv_usec = ts->tv_nsec;
831 	if (!(time_status & STA_NANO))
832 		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
833 
834 	/* Handle leapsec adjustments */
835 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
836 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
837 			result = TIME_OOP;
838 			txc->tai++;
839 			txc->time.tv_sec--;
840 		}
841 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
842 			result = TIME_WAIT;
843 			txc->tai--;
844 			txc->time.tv_sec++;
845 		}
846 		if ((time_state == TIME_OOP) &&
847 					(ts->tv_sec == ntp_next_leap_sec)) {
848 			result = TIME_WAIT;
849 		}
850 	}
851 
852 	return result;
853 }
854 
855 #ifdef	CONFIG_NTP_PPS
856 
857 /* actually struct pps_normtime is good old struct timespec, but it is
858  * semantically different (and it is the reason why it was invented):
859  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
860  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
861 struct pps_normtime {
862 	s64		sec;	/* seconds */
863 	long		nsec;	/* nanoseconds */
864 };
865 
866 /* normalize the timestamp so that nsec is in the
867    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
868 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
869 {
870 	struct pps_normtime norm = {
871 		.sec = ts.tv_sec,
872 		.nsec = ts.tv_nsec
873 	};
874 
875 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
876 		norm.nsec -= NSEC_PER_SEC;
877 		norm.sec++;
878 	}
879 
880 	return norm;
881 }
882 
883 /* get current phase correction and jitter */
884 static inline long pps_phase_filter_get(long *jitter)
885 {
886 	*jitter = pps_tf[0] - pps_tf[1];
887 	if (*jitter < 0)
888 		*jitter = -*jitter;
889 
890 	/* TODO: test various filters */
891 	return pps_tf[0];
892 }
893 
894 /* add the sample to the phase filter */
895 static inline void pps_phase_filter_add(long err)
896 {
897 	pps_tf[2] = pps_tf[1];
898 	pps_tf[1] = pps_tf[0];
899 	pps_tf[0] = err;
900 }
901 
902 /* decrease frequency calibration interval length.
903  * It is halved after four consecutive unstable intervals.
904  */
905 static inline void pps_dec_freq_interval(void)
906 {
907 	if (--pps_intcnt <= -PPS_INTCOUNT) {
908 		pps_intcnt = -PPS_INTCOUNT;
909 		if (pps_shift > PPS_INTMIN) {
910 			pps_shift--;
911 			pps_intcnt = 0;
912 		}
913 	}
914 }
915 
916 /* increase frequency calibration interval length.
917  * It is doubled after four consecutive stable intervals.
918  */
919 static inline void pps_inc_freq_interval(void)
920 {
921 	if (++pps_intcnt >= PPS_INTCOUNT) {
922 		pps_intcnt = PPS_INTCOUNT;
923 		if (pps_shift < PPS_INTMAX) {
924 			pps_shift++;
925 			pps_intcnt = 0;
926 		}
927 	}
928 }
929 
930 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
931  * timestamps
932  *
933  * At the end of the calibration interval the difference between the
934  * first and last MONOTONIC_RAW clock timestamps divided by the length
935  * of the interval becomes the frequency update. If the interval was
936  * too long, the data are discarded.
937  * Returns the difference between old and new frequency values.
938  */
939 static long hardpps_update_freq(struct pps_normtime freq_norm)
940 {
941 	long delta, delta_mod;
942 	s64 ftemp;
943 
944 	/* check if the frequency interval was too long */
945 	if (freq_norm.sec > (2 << pps_shift)) {
946 		time_status |= STA_PPSERROR;
947 		pps_errcnt++;
948 		pps_dec_freq_interval();
949 		printk_deferred(KERN_ERR
950 			"hardpps: PPSERROR: interval too long - %lld s\n",
951 			freq_norm.sec);
952 		return 0;
953 	}
954 
955 	/* here the raw frequency offset and wander (stability) is
956 	 * calculated. If the wander is less than the wander threshold
957 	 * the interval is increased; otherwise it is decreased.
958 	 */
959 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
960 			freq_norm.sec);
961 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
962 	pps_freq = ftemp;
963 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
964 		printk_deferred(KERN_WARNING
965 				"hardpps: PPSWANDER: change=%ld\n", delta);
966 		time_status |= STA_PPSWANDER;
967 		pps_stbcnt++;
968 		pps_dec_freq_interval();
969 	} else {	/* good sample */
970 		pps_inc_freq_interval();
971 	}
972 
973 	/* the stability metric is calculated as the average of recent
974 	 * frequency changes, but is used only for performance
975 	 * monitoring
976 	 */
977 	delta_mod = delta;
978 	if (delta_mod < 0)
979 		delta_mod = -delta_mod;
980 	pps_stabil += (div_s64(((s64)delta_mod) <<
981 				(NTP_SCALE_SHIFT - SHIFT_USEC),
982 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
983 
984 	/* if enabled, the system clock frequency is updated */
985 	if ((time_status & STA_PPSFREQ) != 0 &&
986 	    (time_status & STA_FREQHOLD) == 0) {
987 		time_freq = pps_freq;
988 		ntp_update_frequency();
989 	}
990 
991 	return delta;
992 }
993 
994 /* correct REALTIME clock phase error against PPS signal */
995 static void hardpps_update_phase(long error)
996 {
997 	long correction = -error;
998 	long jitter;
999 
1000 	/* add the sample to the median filter */
1001 	pps_phase_filter_add(correction);
1002 	correction = pps_phase_filter_get(&jitter);
1003 
1004 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
1005 	 * threshold, the sample is discarded; otherwise, if so enabled,
1006 	 * the time offset is updated.
1007 	 */
1008 	if (jitter > (pps_jitter << PPS_POPCORN)) {
1009 		printk_deferred(KERN_WARNING
1010 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1011 				jitter, (pps_jitter << PPS_POPCORN));
1012 		time_status |= STA_PPSJITTER;
1013 		pps_jitcnt++;
1014 	} else if (time_status & STA_PPSTIME) {
1015 		/* correct the time using the phase offset */
1016 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1017 				NTP_INTERVAL_FREQ);
1018 		/* cancel running adjtime() */
1019 		time_adjust = 0;
1020 	}
1021 	/* update jitter */
1022 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
1023 }
1024 
1025 /*
1026  * __hardpps() - discipline CPU clock oscillator to external PPS signal
1027  *
1028  * This routine is called at each PPS signal arrival in order to
1029  * discipline the CPU clock oscillator to the PPS signal. It takes two
1030  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1031  * is used to correct clock phase error and the latter is used to
1032  * correct the frequency.
1033  *
1034  * This code is based on David Mills's reference nanokernel
1035  * implementation. It was mostly rewritten but keeps the same idea.
1036  */
1037 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1038 {
1039 	struct pps_normtime pts_norm, freq_norm;
1040 
1041 	pts_norm = pps_normalize_ts(*phase_ts);
1042 
1043 	/* clear the error bits, they will be set again if needed */
1044 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1045 
1046 	/* indicate signal presence */
1047 	time_status |= STA_PPSSIGNAL;
1048 	pps_valid = PPS_VALID;
1049 
1050 	/* when called for the first time,
1051 	 * just start the frequency interval */
1052 	if (unlikely(pps_fbase.tv_sec == 0)) {
1053 		pps_fbase = *raw_ts;
1054 		return;
1055 	}
1056 
1057 	/* ok, now we have a base for frequency calculation */
1058 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1059 
1060 	/* check that the signal is in the range
1061 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1062 	if ((freq_norm.sec == 0) ||
1063 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1064 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1065 		time_status |= STA_PPSJITTER;
1066 		/* restart the frequency calibration interval */
1067 		pps_fbase = *raw_ts;
1068 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1069 		return;
1070 	}
1071 
1072 	/* signal is ok */
1073 
1074 	/* check if the current frequency interval is finished */
1075 	if (freq_norm.sec >= (1 << pps_shift)) {
1076 		pps_calcnt++;
1077 		/* restart the frequency calibration interval */
1078 		pps_fbase = *raw_ts;
1079 		hardpps_update_freq(freq_norm);
1080 	}
1081 
1082 	hardpps_update_phase(pts_norm.nsec);
1083 
1084 }
1085 #endif	/* CONFIG_NTP_PPS */
1086 
1087 static int __init ntp_tick_adj_setup(char *str)
1088 {
1089 	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1090 	if (rc)
1091 		return rc;
1092 
1093 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1094 	return 1;
1095 }
1096 
1097 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1098 
1099 void __init ntp_init(void)
1100 {
1101 	ntp_clear();
1102 	ntp_init_cmos_sync();
1103 }
1104