xref: /linux/kernel/time/ntp.c (revision 025b40abe715d638e60516a657d354e8560c1a85)
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 
19 /*
20  * NTP timekeeping variables:
21  */
22 
23 /* USER_HZ period (usecs): */
24 unsigned long			tick_usec = TICK_USEC;
25 
26 /* ACTHZ period (nsecs): */
27 unsigned long			tick_nsec;
28 
29 u64				tick_length;
30 static u64			tick_length_base;
31 
32 static struct hrtimer		leap_timer;
33 
34 #define MAX_TICKADJ		500LL		/* usecs */
35 #define MAX_TICKADJ_SCALED \
36 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
37 
38 /*
39  * phase-lock loop variables
40  */
41 
42 /*
43  * clock synchronization status
44  *
45  * (TIME_ERROR prevents overwriting the CMOS clock)
46  */
47 static int			time_state = TIME_OK;
48 
49 /* clock status bits:							*/
50 int				time_status = STA_UNSYNC;
51 
52 /* TAI offset (secs):							*/
53 static long			time_tai;
54 
55 /* time adjustment (nsecs):						*/
56 static s64			time_offset;
57 
58 /* pll time constant:							*/
59 static long			time_constant = 2;
60 
61 /* maximum error (usecs):						*/
62 static long			time_maxerror = NTP_PHASE_LIMIT;
63 
64 /* estimated error (usecs):						*/
65 static long			time_esterror = NTP_PHASE_LIMIT;
66 
67 /* frequency offset (scaled nsecs/secs):				*/
68 static s64			time_freq;
69 
70 /* time at last adjustment (secs):					*/
71 static long			time_reftime;
72 
73 static long			time_adjust;
74 
75 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
76 static s64			ntp_tick_adj;
77 
78 #ifdef CONFIG_NTP_PPS
79 
80 /*
81  * The following variables are used when a pulse-per-second (PPS) signal
82  * is available. They establish the engineering parameters of the clock
83  * discipline loop when controlled by the PPS signal.
84  */
85 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
86 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
87 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
88 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
89 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
90 				   increase pps_shift or consecutive bad
91 				   intervals to decrease it */
92 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
93 
94 static int pps_valid;		/* signal watchdog counter */
95 static long pps_tf[3];		/* phase median filter */
96 static long pps_jitter;		/* current jitter (ns) */
97 static struct timespec pps_fbase; /* beginning of the last freq interval */
98 static int pps_shift;		/* current interval duration (s) (shift) */
99 static int pps_intcnt;		/* interval counter */
100 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
101 static long pps_stabil;		/* current stability (scaled ns/s) */
102 
103 /*
104  * PPS signal quality monitors
105  */
106 static long pps_calcnt;		/* calibration intervals */
107 static long pps_jitcnt;		/* jitter limit exceeded */
108 static long pps_stbcnt;		/* stability limit exceeded */
109 static long pps_errcnt;		/* calibration errors */
110 
111 
112 /* PPS kernel consumer compensates the whole phase error immediately.
113  * Otherwise, reduce the offset by a fixed factor times the time constant.
114  */
115 static inline s64 ntp_offset_chunk(s64 offset)
116 {
117 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
118 		return offset;
119 	else
120 		return shift_right(offset, SHIFT_PLL + time_constant);
121 }
122 
123 static inline void pps_reset_freq_interval(void)
124 {
125 	/* the PPS calibration interval may end
126 	   surprisingly early */
127 	pps_shift = PPS_INTMIN;
128 	pps_intcnt = 0;
129 }
130 
131 /**
132  * pps_clear - Clears the PPS state variables
133  *
134  * Must be called while holding a write on the xtime_lock
135  */
136 static inline void pps_clear(void)
137 {
138 	pps_reset_freq_interval();
139 	pps_tf[0] = 0;
140 	pps_tf[1] = 0;
141 	pps_tf[2] = 0;
142 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
143 	pps_freq = 0;
144 }
145 
146 /* Decrease pps_valid to indicate that another second has passed since
147  * the last PPS signal. When it reaches 0, indicate that PPS signal is
148  * missing.
149  *
150  * Must be called while holding a write on the xtime_lock
151  */
152 static inline void pps_dec_valid(void)
153 {
154 	if (pps_valid > 0)
155 		pps_valid--;
156 	else {
157 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
158 				 STA_PPSWANDER | STA_PPSERROR);
159 		pps_clear();
160 	}
161 }
162 
163 static inline void pps_set_freq(s64 freq)
164 {
165 	pps_freq = freq;
166 }
167 
168 static inline int is_error_status(int status)
169 {
170 	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
171 		/* PPS signal lost when either PPS time or
172 		 * PPS frequency synchronization requested
173 		 */
174 		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
175 			&& !(time_status & STA_PPSSIGNAL))
176 		/* PPS jitter exceeded when
177 		 * PPS time synchronization requested */
178 		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
179 			== (STA_PPSTIME|STA_PPSJITTER))
180 		/* PPS wander exceeded or calibration error when
181 		 * PPS frequency synchronization requested
182 		 */
183 		|| ((time_status & STA_PPSFREQ)
184 			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
185 }
186 
187 static inline void pps_fill_timex(struct timex *txc)
188 {
189 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
190 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
191 	txc->jitter	   = pps_jitter;
192 	if (!(time_status & STA_NANO))
193 		txc->jitter /= NSEC_PER_USEC;
194 	txc->shift	   = pps_shift;
195 	txc->stabil	   = pps_stabil;
196 	txc->jitcnt	   = pps_jitcnt;
197 	txc->calcnt	   = pps_calcnt;
198 	txc->errcnt	   = pps_errcnt;
199 	txc->stbcnt	   = pps_stbcnt;
200 }
201 
202 #else /* !CONFIG_NTP_PPS */
203 
204 static inline s64 ntp_offset_chunk(s64 offset)
205 {
206 	return shift_right(offset, SHIFT_PLL + time_constant);
207 }
208 
209 static inline void pps_reset_freq_interval(void) {}
210 static inline void pps_clear(void) {}
211 static inline void pps_dec_valid(void) {}
212 static inline void pps_set_freq(s64 freq) {}
213 
214 static inline int is_error_status(int status)
215 {
216 	return status & (STA_UNSYNC|STA_CLOCKERR);
217 }
218 
219 static inline void pps_fill_timex(struct timex *txc)
220 {
221 	/* PPS is not implemented, so these are zero */
222 	txc->ppsfreq	   = 0;
223 	txc->jitter	   = 0;
224 	txc->shift	   = 0;
225 	txc->stabil	   = 0;
226 	txc->jitcnt	   = 0;
227 	txc->calcnt	   = 0;
228 	txc->errcnt	   = 0;
229 	txc->stbcnt	   = 0;
230 }
231 
232 #endif /* CONFIG_NTP_PPS */
233 
234 /*
235  * NTP methods:
236  */
237 
238 /*
239  * Update (tick_length, tick_length_base, tick_nsec), based
240  * on (tick_usec, ntp_tick_adj, time_freq):
241  */
242 static void ntp_update_frequency(void)
243 {
244 	u64 second_length;
245 	u64 new_base;
246 
247 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
248 						<< NTP_SCALE_SHIFT;
249 
250 	second_length		+= ntp_tick_adj;
251 	second_length		+= time_freq;
252 
253 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
254 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
255 
256 	/*
257 	 * Don't wait for the next second_overflow, apply
258 	 * the change to the tick length immediately:
259 	 */
260 	tick_length		+= new_base - tick_length_base;
261 	tick_length_base	 = new_base;
262 }
263 
264 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
265 {
266 	time_status &= ~STA_MODE;
267 
268 	if (secs < MINSEC)
269 		return 0;
270 
271 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
272 		return 0;
273 
274 	time_status |= STA_MODE;
275 
276 	return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
277 }
278 
279 static void ntp_update_offset(long offset)
280 {
281 	s64 freq_adj;
282 	s64 offset64;
283 	long secs;
284 
285 	if (!(time_status & STA_PLL))
286 		return;
287 
288 	if (!(time_status & STA_NANO))
289 		offset *= NSEC_PER_USEC;
290 
291 	/*
292 	 * Scale the phase adjustment and
293 	 * clamp to the operating range.
294 	 */
295 	offset = min(offset, MAXPHASE);
296 	offset = max(offset, -MAXPHASE);
297 
298 	/*
299 	 * Select how the frequency is to be controlled
300 	 * and in which mode (PLL or FLL).
301 	 */
302 	secs = get_seconds() - time_reftime;
303 	if (unlikely(time_status & STA_FREQHOLD))
304 		secs = 0;
305 
306 	time_reftime = get_seconds();
307 
308 	offset64    = offset;
309 	freq_adj    = ntp_update_offset_fll(offset64, secs);
310 
311 	/*
312 	 * Clamp update interval to reduce PLL gain with low
313 	 * sampling rate (e.g. intermittent network connection)
314 	 * to avoid instability.
315 	 */
316 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
317 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
318 
319 	freq_adj    += (offset64 * secs) <<
320 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
321 
322 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
323 
324 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
325 
326 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
327 }
328 
329 /**
330  * ntp_clear - Clears the NTP state variables
331  *
332  * Must be called while holding a write on the xtime_lock
333  */
334 void ntp_clear(void)
335 {
336 	time_adjust	= 0;		/* stop active adjtime() */
337 	time_status	|= STA_UNSYNC;
338 	time_maxerror	= NTP_PHASE_LIMIT;
339 	time_esterror	= NTP_PHASE_LIMIT;
340 
341 	ntp_update_frequency();
342 
343 	tick_length	= tick_length_base;
344 	time_offset	= 0;
345 
346 	/* Clear PPS state variables */
347 	pps_clear();
348 }
349 
350 /*
351  * Leap second processing. If in leap-insert state at the end of the
352  * day, the system clock is set back one second; if in leap-delete
353  * state, the system clock is set ahead one second.
354  */
355 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
356 {
357 	enum hrtimer_restart res = HRTIMER_NORESTART;
358 
359 	write_seqlock(&xtime_lock);
360 
361 	switch (time_state) {
362 	case TIME_OK:
363 		break;
364 	case TIME_INS:
365 		timekeeping_leap_insert(-1);
366 		time_state = TIME_OOP;
367 		printk(KERN_NOTICE
368 			"Clock: inserting leap second 23:59:60 UTC\n");
369 		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
370 		res = HRTIMER_RESTART;
371 		break;
372 	case TIME_DEL:
373 		timekeeping_leap_insert(1);
374 		time_tai--;
375 		time_state = TIME_WAIT;
376 		printk(KERN_NOTICE
377 			"Clock: deleting leap second 23:59:59 UTC\n");
378 		break;
379 	case TIME_OOP:
380 		time_tai++;
381 		time_state = TIME_WAIT;
382 		/* fall through */
383 	case TIME_WAIT:
384 		if (!(time_status & (STA_INS | STA_DEL)))
385 			time_state = TIME_OK;
386 		break;
387 	}
388 
389 	write_sequnlock(&xtime_lock);
390 
391 	return res;
392 }
393 
394 /*
395  * this routine handles the overflow of the microsecond field
396  *
397  * The tricky bits of code to handle the accurate clock support
398  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
399  * They were originally developed for SUN and DEC kernels.
400  * All the kudos should go to Dave for this stuff.
401  */
402 void second_overflow(void)
403 {
404 	s64 delta;
405 
406 	/* Bump the maxerror field */
407 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
408 	if (time_maxerror > NTP_PHASE_LIMIT) {
409 		time_maxerror = NTP_PHASE_LIMIT;
410 		time_status |= STA_UNSYNC;
411 	}
412 
413 	/* Compute the phase adjustment for the next second */
414 	tick_length	 = tick_length_base;
415 
416 	delta		 = ntp_offset_chunk(time_offset);
417 	time_offset	-= delta;
418 	tick_length	+= delta;
419 
420 	/* Check PPS signal */
421 	pps_dec_valid();
422 
423 	if (!time_adjust)
424 		return;
425 
426 	if (time_adjust > MAX_TICKADJ) {
427 		time_adjust -= MAX_TICKADJ;
428 		tick_length += MAX_TICKADJ_SCALED;
429 		return;
430 	}
431 
432 	if (time_adjust < -MAX_TICKADJ) {
433 		time_adjust += MAX_TICKADJ;
434 		tick_length -= MAX_TICKADJ_SCALED;
435 		return;
436 	}
437 
438 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
439 							 << NTP_SCALE_SHIFT;
440 	time_adjust = 0;
441 }
442 
443 #ifdef CONFIG_GENERIC_CMOS_UPDATE
444 
445 /* Disable the cmos update - used by virtualization and embedded */
446 int no_sync_cmos_clock  __read_mostly;
447 
448 static void sync_cmos_clock(struct work_struct *work);
449 
450 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
451 
452 static void sync_cmos_clock(struct work_struct *work)
453 {
454 	struct timespec now, next;
455 	int fail = 1;
456 
457 	/*
458 	 * If we have an externally synchronized Linux clock, then update
459 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
460 	 * called as close as possible to 500 ms before the new second starts.
461 	 * This code is run on a timer.  If the clock is set, that timer
462 	 * may not expire at the correct time.  Thus, we adjust...
463 	 */
464 	if (!ntp_synced()) {
465 		/*
466 		 * Not synced, exit, do not restart a timer (if one is
467 		 * running, let it run out).
468 		 */
469 		return;
470 	}
471 
472 	getnstimeofday(&now);
473 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
474 		fail = update_persistent_clock(now);
475 
476 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
477 	if (next.tv_nsec <= 0)
478 		next.tv_nsec += NSEC_PER_SEC;
479 
480 	if (!fail)
481 		next.tv_sec = 659;
482 	else
483 		next.tv_sec = 0;
484 
485 	if (next.tv_nsec >= NSEC_PER_SEC) {
486 		next.tv_sec++;
487 		next.tv_nsec -= NSEC_PER_SEC;
488 	}
489 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
490 }
491 
492 static void notify_cmos_timer(void)
493 {
494 	if (!no_sync_cmos_clock)
495 		schedule_delayed_work(&sync_cmos_work, 0);
496 }
497 
498 #else
499 static inline void notify_cmos_timer(void) { }
500 #endif
501 
502 /*
503  * Start the leap seconds timer:
504  */
505 static inline void ntp_start_leap_timer(struct timespec *ts)
506 {
507 	long now = ts->tv_sec;
508 
509 	if (time_status & STA_INS) {
510 		time_state = TIME_INS;
511 		now += 86400 - now % 86400;
512 		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
513 
514 		return;
515 	}
516 
517 	if (time_status & STA_DEL) {
518 		time_state = TIME_DEL;
519 		now += 86400 - (now + 1) % 86400;
520 		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
521 	}
522 }
523 
524 /*
525  * Propagate a new txc->status value into the NTP state:
526  */
527 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
528 {
529 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
530 		time_state = TIME_OK;
531 		time_status = STA_UNSYNC;
532 		/* restart PPS frequency calibration */
533 		pps_reset_freq_interval();
534 	}
535 
536 	/*
537 	 * If we turn on PLL adjustments then reset the
538 	 * reference time to current time.
539 	 */
540 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
541 		time_reftime = get_seconds();
542 
543 	/* only set allowed bits */
544 	time_status &= STA_RONLY;
545 	time_status |= txc->status & ~STA_RONLY;
546 
547 	switch (time_state) {
548 	case TIME_OK:
549 		ntp_start_leap_timer(ts);
550 		break;
551 	case TIME_INS:
552 	case TIME_DEL:
553 		time_state = TIME_OK;
554 		ntp_start_leap_timer(ts);
555 	case TIME_WAIT:
556 		if (!(time_status & (STA_INS | STA_DEL)))
557 			time_state = TIME_OK;
558 		break;
559 	case TIME_OOP:
560 		hrtimer_restart(&leap_timer);
561 		break;
562 	}
563 }
564 /*
565  * Called with the xtime lock held, so we can access and modify
566  * all the global NTP state:
567  */
568 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
569 {
570 	if (txc->modes & ADJ_STATUS)
571 		process_adj_status(txc, ts);
572 
573 	if (txc->modes & ADJ_NANO)
574 		time_status |= STA_NANO;
575 
576 	if (txc->modes & ADJ_MICRO)
577 		time_status &= ~STA_NANO;
578 
579 	if (txc->modes & ADJ_FREQUENCY) {
580 		time_freq = txc->freq * PPM_SCALE;
581 		time_freq = min(time_freq, MAXFREQ_SCALED);
582 		time_freq = max(time_freq, -MAXFREQ_SCALED);
583 		/* update pps_freq */
584 		pps_set_freq(time_freq);
585 	}
586 
587 	if (txc->modes & ADJ_MAXERROR)
588 		time_maxerror = txc->maxerror;
589 
590 	if (txc->modes & ADJ_ESTERROR)
591 		time_esterror = txc->esterror;
592 
593 	if (txc->modes & ADJ_TIMECONST) {
594 		time_constant = txc->constant;
595 		if (!(time_status & STA_NANO))
596 			time_constant += 4;
597 		time_constant = min(time_constant, (long)MAXTC);
598 		time_constant = max(time_constant, 0l);
599 	}
600 
601 	if (txc->modes & ADJ_TAI && txc->constant > 0)
602 		time_tai = txc->constant;
603 
604 	if (txc->modes & ADJ_OFFSET)
605 		ntp_update_offset(txc->offset);
606 
607 	if (txc->modes & ADJ_TICK)
608 		tick_usec = txc->tick;
609 
610 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
611 		ntp_update_frequency();
612 }
613 
614 /*
615  * adjtimex mainly allows reading (and writing, if superuser) of
616  * kernel time-keeping variables. used by xntpd.
617  */
618 int do_adjtimex(struct timex *txc)
619 {
620 	struct timespec ts;
621 	int result;
622 
623 	/* Validate the data before disabling interrupts */
624 	if (txc->modes & ADJ_ADJTIME) {
625 		/* singleshot must not be used with any other mode bits */
626 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
627 			return -EINVAL;
628 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
629 		    !capable(CAP_SYS_TIME))
630 			return -EPERM;
631 	} else {
632 		/* In order to modify anything, you gotta be super-user! */
633 		 if (txc->modes && !capable(CAP_SYS_TIME))
634 			return -EPERM;
635 
636 		/*
637 		 * if the quartz is off by more than 10% then
638 		 * something is VERY wrong!
639 		 */
640 		if (txc->modes & ADJ_TICK &&
641 		    (txc->tick <  900000/USER_HZ ||
642 		     txc->tick > 1100000/USER_HZ))
643 			return -EINVAL;
644 
645 		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
646 			hrtimer_cancel(&leap_timer);
647 	}
648 
649 	getnstimeofday(&ts);
650 
651 	write_seqlock_irq(&xtime_lock);
652 
653 	if (txc->modes & ADJ_ADJTIME) {
654 		long save_adjust = time_adjust;
655 
656 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
657 			/* adjtime() is independent from ntp_adjtime() */
658 			time_adjust = txc->offset;
659 			ntp_update_frequency();
660 		}
661 		txc->offset = save_adjust;
662 	} else {
663 
664 		/* If there are input parameters, then process them: */
665 		if (txc->modes)
666 			process_adjtimex_modes(txc, &ts);
667 
668 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
669 				  NTP_SCALE_SHIFT);
670 		if (!(time_status & STA_NANO))
671 			txc->offset /= NSEC_PER_USEC;
672 	}
673 
674 	result = time_state;	/* mostly `TIME_OK' */
675 	/* check for errors */
676 	if (is_error_status(time_status))
677 		result = TIME_ERROR;
678 
679 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
680 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
681 	txc->maxerror	   = time_maxerror;
682 	txc->esterror	   = time_esterror;
683 	txc->status	   = time_status;
684 	txc->constant	   = time_constant;
685 	txc->precision	   = 1;
686 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
687 	txc->tick	   = tick_usec;
688 	txc->tai	   = time_tai;
689 
690 	/* fill PPS status fields */
691 	pps_fill_timex(txc);
692 
693 	write_sequnlock_irq(&xtime_lock);
694 
695 	txc->time.tv_sec = ts.tv_sec;
696 	txc->time.tv_usec = ts.tv_nsec;
697 	if (!(time_status & STA_NANO))
698 		txc->time.tv_usec /= NSEC_PER_USEC;
699 
700 	notify_cmos_timer();
701 
702 	return result;
703 }
704 
705 #ifdef	CONFIG_NTP_PPS
706 
707 /* actually struct pps_normtime is good old struct timespec, but it is
708  * semantically different (and it is the reason why it was invented):
709  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
710  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
711 struct pps_normtime {
712 	__kernel_time_t	sec;	/* seconds */
713 	long		nsec;	/* nanoseconds */
714 };
715 
716 /* normalize the timestamp so that nsec is in the
717    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
718 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
719 {
720 	struct pps_normtime norm = {
721 		.sec = ts.tv_sec,
722 		.nsec = ts.tv_nsec
723 	};
724 
725 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
726 		norm.nsec -= NSEC_PER_SEC;
727 		norm.sec++;
728 	}
729 
730 	return norm;
731 }
732 
733 /* get current phase correction and jitter */
734 static inline long pps_phase_filter_get(long *jitter)
735 {
736 	*jitter = pps_tf[0] - pps_tf[1];
737 	if (*jitter < 0)
738 		*jitter = -*jitter;
739 
740 	/* TODO: test various filters */
741 	return pps_tf[0];
742 }
743 
744 /* add the sample to the phase filter */
745 static inline void pps_phase_filter_add(long err)
746 {
747 	pps_tf[2] = pps_tf[1];
748 	pps_tf[1] = pps_tf[0];
749 	pps_tf[0] = err;
750 }
751 
752 /* decrease frequency calibration interval length.
753  * It is halved after four consecutive unstable intervals.
754  */
755 static inline void pps_dec_freq_interval(void)
756 {
757 	if (--pps_intcnt <= -PPS_INTCOUNT) {
758 		pps_intcnt = -PPS_INTCOUNT;
759 		if (pps_shift > PPS_INTMIN) {
760 			pps_shift--;
761 			pps_intcnt = 0;
762 		}
763 	}
764 }
765 
766 /* increase frequency calibration interval length.
767  * It is doubled after four consecutive stable intervals.
768  */
769 static inline void pps_inc_freq_interval(void)
770 {
771 	if (++pps_intcnt >= PPS_INTCOUNT) {
772 		pps_intcnt = PPS_INTCOUNT;
773 		if (pps_shift < PPS_INTMAX) {
774 			pps_shift++;
775 			pps_intcnt = 0;
776 		}
777 	}
778 }
779 
780 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
781  * timestamps
782  *
783  * At the end of the calibration interval the difference between the
784  * first and last MONOTONIC_RAW clock timestamps divided by the length
785  * of the interval becomes the frequency update. If the interval was
786  * too long, the data are discarded.
787  * Returns the difference between old and new frequency values.
788  */
789 static long hardpps_update_freq(struct pps_normtime freq_norm)
790 {
791 	long delta, delta_mod;
792 	s64 ftemp;
793 
794 	/* check if the frequency interval was too long */
795 	if (freq_norm.sec > (2 << pps_shift)) {
796 		time_status |= STA_PPSERROR;
797 		pps_errcnt++;
798 		pps_dec_freq_interval();
799 		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
800 				freq_norm.sec);
801 		return 0;
802 	}
803 
804 	/* here the raw frequency offset and wander (stability) is
805 	 * calculated. If the wander is less than the wander threshold
806 	 * the interval is increased; otherwise it is decreased.
807 	 */
808 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
809 			freq_norm.sec);
810 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
811 	pps_freq = ftemp;
812 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
813 		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
814 		time_status |= STA_PPSWANDER;
815 		pps_stbcnt++;
816 		pps_dec_freq_interval();
817 	} else {	/* good sample */
818 		pps_inc_freq_interval();
819 	}
820 
821 	/* the stability metric is calculated as the average of recent
822 	 * frequency changes, but is used only for performance
823 	 * monitoring
824 	 */
825 	delta_mod = delta;
826 	if (delta_mod < 0)
827 		delta_mod = -delta_mod;
828 	pps_stabil += (div_s64(((s64)delta_mod) <<
829 				(NTP_SCALE_SHIFT - SHIFT_USEC),
830 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
831 
832 	/* if enabled, the system clock frequency is updated */
833 	if ((time_status & STA_PPSFREQ) != 0 &&
834 	    (time_status & STA_FREQHOLD) == 0) {
835 		time_freq = pps_freq;
836 		ntp_update_frequency();
837 	}
838 
839 	return delta;
840 }
841 
842 /* correct REALTIME clock phase error against PPS signal */
843 static void hardpps_update_phase(long error)
844 {
845 	long correction = -error;
846 	long jitter;
847 
848 	/* add the sample to the median filter */
849 	pps_phase_filter_add(correction);
850 	correction = pps_phase_filter_get(&jitter);
851 
852 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
853 	 * threshold, the sample is discarded; otherwise, if so enabled,
854 	 * the time offset is updated.
855 	 */
856 	if (jitter > (pps_jitter << PPS_POPCORN)) {
857 		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
858 		       jitter, (pps_jitter << PPS_POPCORN));
859 		time_status |= STA_PPSJITTER;
860 		pps_jitcnt++;
861 	} else if (time_status & STA_PPSTIME) {
862 		/* correct the time using the phase offset */
863 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
864 				NTP_INTERVAL_FREQ);
865 		/* cancel running adjtime() */
866 		time_adjust = 0;
867 	}
868 	/* update jitter */
869 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
870 }
871 
872 /*
873  * hardpps() - discipline CPU clock oscillator to external PPS signal
874  *
875  * This routine is called at each PPS signal arrival in order to
876  * discipline the CPU clock oscillator to the PPS signal. It takes two
877  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
878  * is used to correct clock phase error and the latter is used to
879  * correct the frequency.
880  *
881  * This code is based on David Mills's reference nanokernel
882  * implementation. It was mostly rewritten but keeps the same idea.
883  */
884 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
885 {
886 	struct pps_normtime pts_norm, freq_norm;
887 	unsigned long flags;
888 
889 	pts_norm = pps_normalize_ts(*phase_ts);
890 
891 	write_seqlock_irqsave(&xtime_lock, flags);
892 
893 	/* clear the error bits, they will be set again if needed */
894 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
895 
896 	/* indicate signal presence */
897 	time_status |= STA_PPSSIGNAL;
898 	pps_valid = PPS_VALID;
899 
900 	/* when called for the first time,
901 	 * just start the frequency interval */
902 	if (unlikely(pps_fbase.tv_sec == 0)) {
903 		pps_fbase = *raw_ts;
904 		write_sequnlock_irqrestore(&xtime_lock, flags);
905 		return;
906 	}
907 
908 	/* ok, now we have a base for frequency calculation */
909 	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
910 
911 	/* check that the signal is in the range
912 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
913 	if ((freq_norm.sec == 0) ||
914 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
915 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
916 		time_status |= STA_PPSJITTER;
917 		/* restart the frequency calibration interval */
918 		pps_fbase = *raw_ts;
919 		write_sequnlock_irqrestore(&xtime_lock, flags);
920 		pr_err("hardpps: PPSJITTER: bad pulse\n");
921 		return;
922 	}
923 
924 	/* signal is ok */
925 
926 	/* check if the current frequency interval is finished */
927 	if (freq_norm.sec >= (1 << pps_shift)) {
928 		pps_calcnt++;
929 		/* restart the frequency calibration interval */
930 		pps_fbase = *raw_ts;
931 		hardpps_update_freq(freq_norm);
932 	}
933 
934 	hardpps_update_phase(pts_norm.nsec);
935 
936 	write_sequnlock_irqrestore(&xtime_lock, flags);
937 }
938 EXPORT_SYMBOL(hardpps);
939 
940 #endif	/* CONFIG_NTP_PPS */
941 
942 static int __init ntp_tick_adj_setup(char *str)
943 {
944 	ntp_tick_adj = simple_strtol(str, NULL, 0);
945 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
946 
947 	return 1;
948 }
949 
950 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
951 
952 void __init ntp_init(void)
953 {
954 	ntp_clear();
955 	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
956 	leap_timer.function = ntp_leap_second;
957 }
958