xref: /linux/kernel/time/hrtimer.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/nohz.h>
51 #include <linux/sched/debug.h>
52 #include <linux/timer.h>
53 #include <linux/freezer.h>
54 
55 #include <linux/uaccess.h>
56 
57 #include <trace/events/timer.h>
58 
59 #include "tick-internal.h"
60 
61 /*
62  * The timer bases:
63  *
64  * There are more clockids than hrtimer bases. Thus, we index
65  * into the timer bases by the hrtimer_base_type enum. When trying
66  * to reach a base using a clockid, hrtimer_clockid_to_base()
67  * is used to convert from clockid to the proper hrtimer_base_type.
68  */
69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
70 {
71 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
72 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
73 	.clock_base =
74 	{
75 		{
76 			.index = HRTIMER_BASE_MONOTONIC,
77 			.clockid = CLOCK_MONOTONIC,
78 			.get_time = &ktime_get,
79 		},
80 		{
81 			.index = HRTIMER_BASE_REALTIME,
82 			.clockid = CLOCK_REALTIME,
83 			.get_time = &ktime_get_real,
84 		},
85 		{
86 			.index = HRTIMER_BASE_BOOTTIME,
87 			.clockid = CLOCK_BOOTTIME,
88 			.get_time = &ktime_get_boottime,
89 		},
90 		{
91 			.index = HRTIMER_BASE_TAI,
92 			.clockid = CLOCK_TAI,
93 			.get_time = &ktime_get_clocktai,
94 		},
95 	}
96 };
97 
98 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 	/* Make sure we catch unsupported clockids */
100 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
101 
102 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
103 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
104 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
105 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
106 };
107 
108 /*
109  * Functions and macros which are different for UP/SMP systems are kept in a
110  * single place
111  */
112 #ifdef CONFIG_SMP
113 
114 /*
115  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116  * such that hrtimer_callback_running() can unconditionally dereference
117  * timer->base->cpu_base
118  */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 	.seq = SEQCNT_ZERO(migration_cpu_base),
121 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123 
124 #define migration_base	migration_cpu_base.clock_base[0]
125 
126 /*
127  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128  * means that all timers which are tied to this base via timer->base are
129  * locked, and the base itself is locked too.
130  *
131  * So __run_timers/migrate_timers can safely modify all timers which could
132  * be found on the lists/queues.
133  *
134  * When the timer's base is locked, and the timer removed from list, it is
135  * possible to set timer->base = &migration_base and drop the lock: the timer
136  * remains locked.
137  */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 					     unsigned long *flags)
141 {
142 	struct hrtimer_clock_base *base;
143 
144 	for (;;) {
145 		base = timer->base;
146 		if (likely(base != &migration_base)) {
147 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 			if (likely(base == timer->base))
149 				return base;
150 			/* The timer has migrated to another CPU: */
151 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 		}
153 		cpu_relax();
154 	}
155 }
156 
157 /*
158  * With HIGHRES=y we do not migrate the timer when it is expiring
159  * before the next event on the target cpu because we cannot reprogram
160  * the target cpu hardware and we would cause it to fire late.
161  *
162  * Called with cpu_base->lock of target cpu held.
163  */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 	ktime_t expires;
169 
170 	if (!new_base->cpu_base->hres_active)
171 		return 0;
172 
173 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 	return expires <= new_base->cpu_base->expires_next;
175 #else
176 	return 0;
177 #endif
178 }
179 
180 #ifdef CONFIG_NO_HZ_COMMON
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 					 int pinned)
184 {
185 	if (pinned || !base->migration_enabled)
186 		return base;
187 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 					 int pinned)
193 {
194 	return base;
195 }
196 #endif
197 
198 /*
199  * We switch the timer base to a power-optimized selected CPU target,
200  * if:
201  *	- NO_HZ_COMMON is enabled
202  *	- timer migration is enabled
203  *	- the timer callback is not running
204  *	- the timer is not the first expiring timer on the new target
205  *
206  * If one of the above requirements is not fulfilled we move the timer
207  * to the current CPU or leave it on the previously assigned CPU if
208  * the timer callback is currently running.
209  */
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 		    int pinned)
213 {
214 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215 	struct hrtimer_clock_base *new_base;
216 	int basenum = base->index;
217 
218 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 	new_cpu_base = get_target_base(this_cpu_base, pinned);
220 again:
221 	new_base = &new_cpu_base->clock_base[basenum];
222 
223 	if (base != new_base) {
224 		/*
225 		 * We are trying to move timer to new_base.
226 		 * However we can't change timer's base while it is running,
227 		 * so we keep it on the same CPU. No hassle vs. reprogramming
228 		 * the event source in the high resolution case. The softirq
229 		 * code will take care of this when the timer function has
230 		 * completed. There is no conflict as we hold the lock until
231 		 * the timer is enqueued.
232 		 */
233 		if (unlikely(hrtimer_callback_running(timer)))
234 			return base;
235 
236 		/* See the comment in lock_hrtimer_base() */
237 		timer->base = &migration_base;
238 		raw_spin_unlock(&base->cpu_base->lock);
239 		raw_spin_lock(&new_base->cpu_base->lock);
240 
241 		if (new_cpu_base != this_cpu_base &&
242 		    hrtimer_check_target(timer, new_base)) {
243 			raw_spin_unlock(&new_base->cpu_base->lock);
244 			raw_spin_lock(&base->cpu_base->lock);
245 			new_cpu_base = this_cpu_base;
246 			timer->base = base;
247 			goto again;
248 		}
249 		timer->base = new_base;
250 	} else {
251 		if (new_cpu_base != this_cpu_base &&
252 		    hrtimer_check_target(timer, new_base)) {
253 			new_cpu_base = this_cpu_base;
254 			goto again;
255 		}
256 	}
257 	return new_base;
258 }
259 
260 #else /* CONFIG_SMP */
261 
262 static inline struct hrtimer_clock_base *
263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264 {
265 	struct hrtimer_clock_base *base = timer->base;
266 
267 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 
269 	return base;
270 }
271 
272 # define switch_hrtimer_base(t, b, p)	(b)
273 
274 #endif	/* !CONFIG_SMP */
275 
276 /*
277  * Functions for the union type storage format of ktime_t which are
278  * too large for inlining:
279  */
280 #if BITS_PER_LONG < 64
281 /*
282  * Divide a ktime value by a nanosecond value
283  */
284 s64 __ktime_divns(const ktime_t kt, s64 div)
285 {
286 	int sft = 0;
287 	s64 dclc;
288 	u64 tmp;
289 
290 	dclc = ktime_to_ns(kt);
291 	tmp = dclc < 0 ? -dclc : dclc;
292 
293 	/* Make sure the divisor is less than 2^32: */
294 	while (div >> 32) {
295 		sft++;
296 		div >>= 1;
297 	}
298 	tmp >>= sft;
299 	do_div(tmp, (unsigned long) div);
300 	return dclc < 0 ? -tmp : tmp;
301 }
302 EXPORT_SYMBOL_GPL(__ktime_divns);
303 #endif /* BITS_PER_LONG >= 64 */
304 
305 /*
306  * Add two ktime values and do a safety check for overflow:
307  */
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309 {
310 	ktime_t res = ktime_add_unsafe(lhs, rhs);
311 
312 	/*
313 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 	 * return to user space in a timespec:
315 	 */
316 	if (res < 0 || res < lhs || res < rhs)
317 		res = ktime_set(KTIME_SEC_MAX, 0);
318 
319 	return res;
320 }
321 
322 EXPORT_SYMBOL_GPL(ktime_add_safe);
323 
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325 
326 static struct debug_obj_descr hrtimer_debug_descr;
327 
328 static void *hrtimer_debug_hint(void *addr)
329 {
330 	return ((struct hrtimer *) addr)->function;
331 }
332 
333 /*
334  * fixup_init is called when:
335  * - an active object is initialized
336  */
337 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 {
339 	struct hrtimer *timer = addr;
340 
341 	switch (state) {
342 	case ODEBUG_STATE_ACTIVE:
343 		hrtimer_cancel(timer);
344 		debug_object_init(timer, &hrtimer_debug_descr);
345 		return true;
346 	default:
347 		return false;
348 	}
349 }
350 
351 /*
352  * fixup_activate is called when:
353  * - an active object is activated
354  * - an unknown non-static object is activated
355  */
356 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 {
358 	switch (state) {
359 	case ODEBUG_STATE_ACTIVE:
360 		WARN_ON(1);
361 
362 	default:
363 		return false;
364 	}
365 }
366 
367 /*
368  * fixup_free is called when:
369  * - an active object is freed
370  */
371 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
372 {
373 	struct hrtimer *timer = addr;
374 
375 	switch (state) {
376 	case ODEBUG_STATE_ACTIVE:
377 		hrtimer_cancel(timer);
378 		debug_object_free(timer, &hrtimer_debug_descr);
379 		return true;
380 	default:
381 		return false;
382 	}
383 }
384 
385 static struct debug_obj_descr hrtimer_debug_descr = {
386 	.name		= "hrtimer",
387 	.debug_hint	= hrtimer_debug_hint,
388 	.fixup_init	= hrtimer_fixup_init,
389 	.fixup_activate	= hrtimer_fixup_activate,
390 	.fixup_free	= hrtimer_fixup_free,
391 };
392 
393 static inline void debug_hrtimer_init(struct hrtimer *timer)
394 {
395 	debug_object_init(timer, &hrtimer_debug_descr);
396 }
397 
398 static inline void debug_hrtimer_activate(struct hrtimer *timer)
399 {
400 	debug_object_activate(timer, &hrtimer_debug_descr);
401 }
402 
403 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
404 {
405 	debug_object_deactivate(timer, &hrtimer_debug_descr);
406 }
407 
408 static inline void debug_hrtimer_free(struct hrtimer *timer)
409 {
410 	debug_object_free(timer, &hrtimer_debug_descr);
411 }
412 
413 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
414 			   enum hrtimer_mode mode);
415 
416 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
417 			   enum hrtimer_mode mode)
418 {
419 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
420 	__hrtimer_init(timer, clock_id, mode);
421 }
422 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
423 
424 void destroy_hrtimer_on_stack(struct hrtimer *timer)
425 {
426 	debug_object_free(timer, &hrtimer_debug_descr);
427 }
428 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
429 
430 #else
431 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
432 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
433 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
434 #endif
435 
436 static inline void
437 debug_init(struct hrtimer *timer, clockid_t clockid,
438 	   enum hrtimer_mode mode)
439 {
440 	debug_hrtimer_init(timer);
441 	trace_hrtimer_init(timer, clockid, mode);
442 }
443 
444 static inline void debug_activate(struct hrtimer *timer)
445 {
446 	debug_hrtimer_activate(timer);
447 	trace_hrtimer_start(timer);
448 }
449 
450 static inline void debug_deactivate(struct hrtimer *timer)
451 {
452 	debug_hrtimer_deactivate(timer);
453 	trace_hrtimer_cancel(timer);
454 }
455 
456 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
457 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
458 					     struct hrtimer *timer)
459 {
460 #ifdef CONFIG_HIGH_RES_TIMERS
461 	cpu_base->next_timer = timer;
462 #endif
463 }
464 
465 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
466 {
467 	struct hrtimer_clock_base *base = cpu_base->clock_base;
468 	unsigned int active = cpu_base->active_bases;
469 	ktime_t expires, expires_next = KTIME_MAX;
470 
471 	hrtimer_update_next_timer(cpu_base, NULL);
472 	for (; active; base++, active >>= 1) {
473 		struct timerqueue_node *next;
474 		struct hrtimer *timer;
475 
476 		if (!(active & 0x01))
477 			continue;
478 
479 		next = timerqueue_getnext(&base->active);
480 		timer = container_of(next, struct hrtimer, node);
481 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
482 		if (expires < expires_next) {
483 			expires_next = expires;
484 			hrtimer_update_next_timer(cpu_base, timer);
485 		}
486 	}
487 	/*
488 	 * clock_was_set() might have changed base->offset of any of
489 	 * the clock bases so the result might be negative. Fix it up
490 	 * to prevent a false positive in clockevents_program_event().
491 	 */
492 	if (expires_next < 0)
493 		expires_next = 0;
494 	return expires_next;
495 }
496 #endif
497 
498 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
499 {
500 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
501 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
502 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
503 
504 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
505 					    offs_real, offs_boot, offs_tai);
506 }
507 
508 /* High resolution timer related functions */
509 #ifdef CONFIG_HIGH_RES_TIMERS
510 
511 /*
512  * High resolution timer enabled ?
513  */
514 static bool hrtimer_hres_enabled __read_mostly  = true;
515 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
516 EXPORT_SYMBOL_GPL(hrtimer_resolution);
517 
518 /*
519  * Enable / Disable high resolution mode
520  */
521 static int __init setup_hrtimer_hres(char *str)
522 {
523 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
524 }
525 
526 __setup("highres=", setup_hrtimer_hres);
527 
528 /*
529  * hrtimer_high_res_enabled - query, if the highres mode is enabled
530  */
531 static inline int hrtimer_is_hres_enabled(void)
532 {
533 	return hrtimer_hres_enabled;
534 }
535 
536 /*
537  * Is the high resolution mode active ?
538  */
539 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
540 {
541 	return cpu_base->hres_active;
542 }
543 
544 static inline int hrtimer_hres_active(void)
545 {
546 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
547 }
548 
549 /*
550  * Reprogram the event source with checking both queues for the
551  * next event
552  * Called with interrupts disabled and base->lock held
553  */
554 static void
555 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
556 {
557 	ktime_t expires_next;
558 
559 	if (!cpu_base->hres_active)
560 		return;
561 
562 	expires_next = __hrtimer_get_next_event(cpu_base);
563 
564 	if (skip_equal && expires_next == cpu_base->expires_next)
565 		return;
566 
567 	cpu_base->expires_next = expires_next;
568 
569 	/*
570 	 * If a hang was detected in the last timer interrupt then we
571 	 * leave the hang delay active in the hardware. We want the
572 	 * system to make progress. That also prevents the following
573 	 * scenario:
574 	 * T1 expires 50ms from now
575 	 * T2 expires 5s from now
576 	 *
577 	 * T1 is removed, so this code is called and would reprogram
578 	 * the hardware to 5s from now. Any hrtimer_start after that
579 	 * will not reprogram the hardware due to hang_detected being
580 	 * set. So we'd effectivly block all timers until the T2 event
581 	 * fires.
582 	 */
583 	if (cpu_base->hang_detected)
584 		return;
585 
586 	tick_program_event(cpu_base->expires_next, 1);
587 }
588 
589 /*
590  * When a timer is enqueued and expires earlier than the already enqueued
591  * timers, we have to check, whether it expires earlier than the timer for
592  * which the clock event device was armed.
593  *
594  * Called with interrupts disabled and base->cpu_base.lock held
595  */
596 static void hrtimer_reprogram(struct hrtimer *timer,
597 			      struct hrtimer_clock_base *base)
598 {
599 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
600 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
601 
602 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
603 
604 	/*
605 	 * If the timer is not on the current cpu, we cannot reprogram
606 	 * the other cpus clock event device.
607 	 */
608 	if (base->cpu_base != cpu_base)
609 		return;
610 
611 	/*
612 	 * If the hrtimer interrupt is running, then it will
613 	 * reevaluate the clock bases and reprogram the clock event
614 	 * device. The callbacks are always executed in hard interrupt
615 	 * context so we don't need an extra check for a running
616 	 * callback.
617 	 */
618 	if (cpu_base->in_hrtirq)
619 		return;
620 
621 	/*
622 	 * CLOCK_REALTIME timer might be requested with an absolute
623 	 * expiry time which is less than base->offset. Set it to 0.
624 	 */
625 	if (expires < 0)
626 		expires = 0;
627 
628 	if (expires >= cpu_base->expires_next)
629 		return;
630 
631 	/* Update the pointer to the next expiring timer */
632 	cpu_base->next_timer = timer;
633 
634 	/*
635 	 * If a hang was detected in the last timer interrupt then we
636 	 * do not schedule a timer which is earlier than the expiry
637 	 * which we enforced in the hang detection. We want the system
638 	 * to make progress.
639 	 */
640 	if (cpu_base->hang_detected)
641 		return;
642 
643 	/*
644 	 * Program the timer hardware. We enforce the expiry for
645 	 * events which are already in the past.
646 	 */
647 	cpu_base->expires_next = expires;
648 	tick_program_event(expires, 1);
649 }
650 
651 /*
652  * Initialize the high resolution related parts of cpu_base
653  */
654 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
655 {
656 	base->expires_next = KTIME_MAX;
657 	base->hres_active = 0;
658 }
659 
660 /*
661  * Retrigger next event is called after clock was set
662  *
663  * Called with interrupts disabled via on_each_cpu()
664  */
665 static void retrigger_next_event(void *arg)
666 {
667 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
668 
669 	if (!base->hres_active)
670 		return;
671 
672 	raw_spin_lock(&base->lock);
673 	hrtimer_update_base(base);
674 	hrtimer_force_reprogram(base, 0);
675 	raw_spin_unlock(&base->lock);
676 }
677 
678 /*
679  * Switch to high resolution mode
680  */
681 static void hrtimer_switch_to_hres(void)
682 {
683 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
684 
685 	if (tick_init_highres()) {
686 		printk(KERN_WARNING "Could not switch to high resolution "
687 				    "mode on CPU %d\n", base->cpu);
688 		return;
689 	}
690 	base->hres_active = 1;
691 	hrtimer_resolution = HIGH_RES_NSEC;
692 
693 	tick_setup_sched_timer();
694 	/* "Retrigger" the interrupt to get things going */
695 	retrigger_next_event(NULL);
696 }
697 
698 static void clock_was_set_work(struct work_struct *work)
699 {
700 	clock_was_set();
701 }
702 
703 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
704 
705 /*
706  * Called from timekeeping and resume code to reprogram the hrtimer
707  * interrupt device on all cpus.
708  */
709 void clock_was_set_delayed(void)
710 {
711 	schedule_work(&hrtimer_work);
712 }
713 
714 #else
715 
716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
717 static inline int hrtimer_hres_active(void) { return 0; }
718 static inline int hrtimer_is_hres_enabled(void) { return 0; }
719 static inline void hrtimer_switch_to_hres(void) { }
720 static inline void
721 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
722 static inline int hrtimer_reprogram(struct hrtimer *timer,
723 				    struct hrtimer_clock_base *base)
724 {
725 	return 0;
726 }
727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
728 static inline void retrigger_next_event(void *arg) { }
729 
730 #endif /* CONFIG_HIGH_RES_TIMERS */
731 
732 /*
733  * Clock realtime was set
734  *
735  * Change the offset of the realtime clock vs. the monotonic
736  * clock.
737  *
738  * We might have to reprogram the high resolution timer interrupt. On
739  * SMP we call the architecture specific code to retrigger _all_ high
740  * resolution timer interrupts. On UP we just disable interrupts and
741  * call the high resolution interrupt code.
742  */
743 void clock_was_set(void)
744 {
745 #ifdef CONFIG_HIGH_RES_TIMERS
746 	/* Retrigger the CPU local events everywhere */
747 	on_each_cpu(retrigger_next_event, NULL, 1);
748 #endif
749 	timerfd_clock_was_set();
750 }
751 
752 /*
753  * During resume we might have to reprogram the high resolution timer
754  * interrupt on all online CPUs.  However, all other CPUs will be
755  * stopped with IRQs interrupts disabled so the clock_was_set() call
756  * must be deferred.
757  */
758 void hrtimers_resume(void)
759 {
760 	WARN_ONCE(!irqs_disabled(),
761 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
762 
763 	/* Retrigger on the local CPU */
764 	retrigger_next_event(NULL);
765 	/* And schedule a retrigger for all others */
766 	clock_was_set_delayed();
767 }
768 
769 /*
770  * Counterpart to lock_hrtimer_base above:
771  */
772 static inline
773 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
774 {
775 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
776 }
777 
778 /**
779  * hrtimer_forward - forward the timer expiry
780  * @timer:	hrtimer to forward
781  * @now:	forward past this time
782  * @interval:	the interval to forward
783  *
784  * Forward the timer expiry so it will expire in the future.
785  * Returns the number of overruns.
786  *
787  * Can be safely called from the callback function of @timer. If
788  * called from other contexts @timer must neither be enqueued nor
789  * running the callback and the caller needs to take care of
790  * serialization.
791  *
792  * Note: This only updates the timer expiry value and does not requeue
793  * the timer.
794  */
795 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
796 {
797 	u64 orun = 1;
798 	ktime_t delta;
799 
800 	delta = ktime_sub(now, hrtimer_get_expires(timer));
801 
802 	if (delta < 0)
803 		return 0;
804 
805 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
806 		return 0;
807 
808 	if (interval < hrtimer_resolution)
809 		interval = hrtimer_resolution;
810 
811 	if (unlikely(delta >= interval)) {
812 		s64 incr = ktime_to_ns(interval);
813 
814 		orun = ktime_divns(delta, incr);
815 		hrtimer_add_expires_ns(timer, incr * orun);
816 		if (hrtimer_get_expires_tv64(timer) > now)
817 			return orun;
818 		/*
819 		 * This (and the ktime_add() below) is the
820 		 * correction for exact:
821 		 */
822 		orun++;
823 	}
824 	hrtimer_add_expires(timer, interval);
825 
826 	return orun;
827 }
828 EXPORT_SYMBOL_GPL(hrtimer_forward);
829 
830 /*
831  * enqueue_hrtimer - internal function to (re)start a timer
832  *
833  * The timer is inserted in expiry order. Insertion into the
834  * red black tree is O(log(n)). Must hold the base lock.
835  *
836  * Returns 1 when the new timer is the leftmost timer in the tree.
837  */
838 static int enqueue_hrtimer(struct hrtimer *timer,
839 			   struct hrtimer_clock_base *base)
840 {
841 	debug_activate(timer);
842 
843 	base->cpu_base->active_bases |= 1 << base->index;
844 
845 	timer->state = HRTIMER_STATE_ENQUEUED;
846 
847 	return timerqueue_add(&base->active, &timer->node);
848 }
849 
850 /*
851  * __remove_hrtimer - internal function to remove a timer
852  *
853  * Caller must hold the base lock.
854  *
855  * High resolution timer mode reprograms the clock event device when the
856  * timer is the one which expires next. The caller can disable this by setting
857  * reprogram to zero. This is useful, when the context does a reprogramming
858  * anyway (e.g. timer interrupt)
859  */
860 static void __remove_hrtimer(struct hrtimer *timer,
861 			     struct hrtimer_clock_base *base,
862 			     u8 newstate, int reprogram)
863 {
864 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
865 	u8 state = timer->state;
866 
867 	timer->state = newstate;
868 	if (!(state & HRTIMER_STATE_ENQUEUED))
869 		return;
870 
871 	if (!timerqueue_del(&base->active, &timer->node))
872 		cpu_base->active_bases &= ~(1 << base->index);
873 
874 #ifdef CONFIG_HIGH_RES_TIMERS
875 	/*
876 	 * Note: If reprogram is false we do not update
877 	 * cpu_base->next_timer. This happens when we remove the first
878 	 * timer on a remote cpu. No harm as we never dereference
879 	 * cpu_base->next_timer. So the worst thing what can happen is
880 	 * an superflous call to hrtimer_force_reprogram() on the
881 	 * remote cpu later on if the same timer gets enqueued again.
882 	 */
883 	if (reprogram && timer == cpu_base->next_timer)
884 		hrtimer_force_reprogram(cpu_base, 1);
885 #endif
886 }
887 
888 /*
889  * remove hrtimer, called with base lock held
890  */
891 static inline int
892 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
893 {
894 	if (hrtimer_is_queued(timer)) {
895 		u8 state = timer->state;
896 		int reprogram;
897 
898 		/*
899 		 * Remove the timer and force reprogramming when high
900 		 * resolution mode is active and the timer is on the current
901 		 * CPU. If we remove a timer on another CPU, reprogramming is
902 		 * skipped. The interrupt event on this CPU is fired and
903 		 * reprogramming happens in the interrupt handler. This is a
904 		 * rare case and less expensive than a smp call.
905 		 */
906 		debug_deactivate(timer);
907 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
908 
909 		if (!restart)
910 			state = HRTIMER_STATE_INACTIVE;
911 
912 		__remove_hrtimer(timer, base, state, reprogram);
913 		return 1;
914 	}
915 	return 0;
916 }
917 
918 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
919 					    const enum hrtimer_mode mode)
920 {
921 #ifdef CONFIG_TIME_LOW_RES
922 	/*
923 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
924 	 * granular time values. For relative timers we add hrtimer_resolution
925 	 * (i.e. one jiffie) to prevent short timeouts.
926 	 */
927 	timer->is_rel = mode & HRTIMER_MODE_REL;
928 	if (timer->is_rel)
929 		tim = ktime_add_safe(tim, hrtimer_resolution);
930 #endif
931 	return tim;
932 }
933 
934 /**
935  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
936  * @timer:	the timer to be added
937  * @tim:	expiry time
938  * @delta_ns:	"slack" range for the timer
939  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
940  *		relative (HRTIMER_MODE_REL)
941  */
942 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
943 			    u64 delta_ns, const enum hrtimer_mode mode)
944 {
945 	struct hrtimer_clock_base *base, *new_base;
946 	unsigned long flags;
947 	int leftmost;
948 
949 	base = lock_hrtimer_base(timer, &flags);
950 
951 	/* Remove an active timer from the queue: */
952 	remove_hrtimer(timer, base, true);
953 
954 	if (mode & HRTIMER_MODE_REL)
955 		tim = ktime_add_safe(tim, base->get_time());
956 
957 	tim = hrtimer_update_lowres(timer, tim, mode);
958 
959 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
960 
961 	/* Switch the timer base, if necessary: */
962 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
963 
964 	leftmost = enqueue_hrtimer(timer, new_base);
965 	if (!leftmost)
966 		goto unlock;
967 
968 	if (!hrtimer_is_hres_active(timer)) {
969 		/*
970 		 * Kick to reschedule the next tick to handle the new timer
971 		 * on dynticks target.
972 		 */
973 		if (new_base->cpu_base->nohz_active)
974 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
975 	} else {
976 		hrtimer_reprogram(timer, new_base);
977 	}
978 unlock:
979 	unlock_hrtimer_base(timer, &flags);
980 }
981 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
982 
983 /**
984  * hrtimer_try_to_cancel - try to deactivate a timer
985  * @timer:	hrtimer to stop
986  *
987  * Returns:
988  *  0 when the timer was not active
989  *  1 when the timer was active
990  * -1 when the timer is currently executing the callback function and
991  *    cannot be stopped
992  */
993 int hrtimer_try_to_cancel(struct hrtimer *timer)
994 {
995 	struct hrtimer_clock_base *base;
996 	unsigned long flags;
997 	int ret = -1;
998 
999 	/*
1000 	 * Check lockless first. If the timer is not active (neither
1001 	 * enqueued nor running the callback, nothing to do here.  The
1002 	 * base lock does not serialize against a concurrent enqueue,
1003 	 * so we can avoid taking it.
1004 	 */
1005 	if (!hrtimer_active(timer))
1006 		return 0;
1007 
1008 	base = lock_hrtimer_base(timer, &flags);
1009 
1010 	if (!hrtimer_callback_running(timer))
1011 		ret = remove_hrtimer(timer, base, false);
1012 
1013 	unlock_hrtimer_base(timer, &flags);
1014 
1015 	return ret;
1016 
1017 }
1018 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1019 
1020 /**
1021  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1022  * @timer:	the timer to be cancelled
1023  *
1024  * Returns:
1025  *  0 when the timer was not active
1026  *  1 when the timer was active
1027  */
1028 int hrtimer_cancel(struct hrtimer *timer)
1029 {
1030 	for (;;) {
1031 		int ret = hrtimer_try_to_cancel(timer);
1032 
1033 		if (ret >= 0)
1034 			return ret;
1035 		cpu_relax();
1036 	}
1037 }
1038 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1039 
1040 /**
1041  * hrtimer_get_remaining - get remaining time for the timer
1042  * @timer:	the timer to read
1043  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1044  */
1045 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1046 {
1047 	unsigned long flags;
1048 	ktime_t rem;
1049 
1050 	lock_hrtimer_base(timer, &flags);
1051 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1052 		rem = hrtimer_expires_remaining_adjusted(timer);
1053 	else
1054 		rem = hrtimer_expires_remaining(timer);
1055 	unlock_hrtimer_base(timer, &flags);
1056 
1057 	return rem;
1058 }
1059 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1060 
1061 #ifdef CONFIG_NO_HZ_COMMON
1062 /**
1063  * hrtimer_get_next_event - get the time until next expiry event
1064  *
1065  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1066  */
1067 u64 hrtimer_get_next_event(void)
1068 {
1069 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1070 	u64 expires = KTIME_MAX;
1071 	unsigned long flags;
1072 
1073 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1074 
1075 	if (!__hrtimer_hres_active(cpu_base))
1076 		expires = __hrtimer_get_next_event(cpu_base);
1077 
1078 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1079 
1080 	return expires;
1081 }
1082 #endif
1083 
1084 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1085 {
1086 	if (likely(clock_id < MAX_CLOCKS)) {
1087 		int base = hrtimer_clock_to_base_table[clock_id];
1088 
1089 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1090 			return base;
1091 	}
1092 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1093 	return HRTIMER_BASE_MONOTONIC;
1094 }
1095 
1096 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1097 			   enum hrtimer_mode mode)
1098 {
1099 	struct hrtimer_cpu_base *cpu_base;
1100 	int base;
1101 
1102 	memset(timer, 0, sizeof(struct hrtimer));
1103 
1104 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1105 
1106 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1107 		clock_id = CLOCK_MONOTONIC;
1108 
1109 	base = hrtimer_clockid_to_base(clock_id);
1110 	timer->base = &cpu_base->clock_base[base];
1111 	timerqueue_init(&timer->node);
1112 }
1113 
1114 /**
1115  * hrtimer_init - initialize a timer to the given clock
1116  * @timer:	the timer to be initialized
1117  * @clock_id:	the clock to be used
1118  * @mode:	timer mode abs/rel
1119  */
1120 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1121 		  enum hrtimer_mode mode)
1122 {
1123 	debug_init(timer, clock_id, mode);
1124 	__hrtimer_init(timer, clock_id, mode);
1125 }
1126 EXPORT_SYMBOL_GPL(hrtimer_init);
1127 
1128 /*
1129  * A timer is active, when it is enqueued into the rbtree or the
1130  * callback function is running or it's in the state of being migrated
1131  * to another cpu.
1132  *
1133  * It is important for this function to not return a false negative.
1134  */
1135 bool hrtimer_active(const struct hrtimer *timer)
1136 {
1137 	struct hrtimer_cpu_base *cpu_base;
1138 	unsigned int seq;
1139 
1140 	do {
1141 		cpu_base = READ_ONCE(timer->base->cpu_base);
1142 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1143 
1144 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1145 		    cpu_base->running == timer)
1146 			return true;
1147 
1148 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1149 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1150 
1151 	return false;
1152 }
1153 EXPORT_SYMBOL_GPL(hrtimer_active);
1154 
1155 /*
1156  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1157  * distinct sections:
1158  *
1159  *  - queued:	the timer is queued
1160  *  - callback:	the timer is being ran
1161  *  - post:	the timer is inactive or (re)queued
1162  *
1163  * On the read side we ensure we observe timer->state and cpu_base->running
1164  * from the same section, if anything changed while we looked at it, we retry.
1165  * This includes timer->base changing because sequence numbers alone are
1166  * insufficient for that.
1167  *
1168  * The sequence numbers are required because otherwise we could still observe
1169  * a false negative if the read side got smeared over multiple consequtive
1170  * __run_hrtimer() invocations.
1171  */
1172 
1173 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1174 			  struct hrtimer_clock_base *base,
1175 			  struct hrtimer *timer, ktime_t *now)
1176 {
1177 	enum hrtimer_restart (*fn)(struct hrtimer *);
1178 	int restart;
1179 
1180 	lockdep_assert_held(&cpu_base->lock);
1181 
1182 	debug_deactivate(timer);
1183 	cpu_base->running = timer;
1184 
1185 	/*
1186 	 * Separate the ->running assignment from the ->state assignment.
1187 	 *
1188 	 * As with a regular write barrier, this ensures the read side in
1189 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1190 	 * timer->state == INACTIVE.
1191 	 */
1192 	raw_write_seqcount_barrier(&cpu_base->seq);
1193 
1194 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1195 	fn = timer->function;
1196 
1197 	/*
1198 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1199 	 * timer is restarted with a period then it becomes an absolute
1200 	 * timer. If its not restarted it does not matter.
1201 	 */
1202 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1203 		timer->is_rel = false;
1204 
1205 	/*
1206 	 * Because we run timers from hardirq context, there is no chance
1207 	 * they get migrated to another cpu, therefore its safe to unlock
1208 	 * the timer base.
1209 	 */
1210 	raw_spin_unlock(&cpu_base->lock);
1211 	trace_hrtimer_expire_entry(timer, now);
1212 	restart = fn(timer);
1213 	trace_hrtimer_expire_exit(timer);
1214 	raw_spin_lock(&cpu_base->lock);
1215 
1216 	/*
1217 	 * Note: We clear the running state after enqueue_hrtimer and
1218 	 * we do not reprogram the event hardware. Happens either in
1219 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1220 	 *
1221 	 * Note: Because we dropped the cpu_base->lock above,
1222 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1223 	 * for us already.
1224 	 */
1225 	if (restart != HRTIMER_NORESTART &&
1226 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1227 		enqueue_hrtimer(timer, base);
1228 
1229 	/*
1230 	 * Separate the ->running assignment from the ->state assignment.
1231 	 *
1232 	 * As with a regular write barrier, this ensures the read side in
1233 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1234 	 * timer->state == INACTIVE.
1235 	 */
1236 	raw_write_seqcount_barrier(&cpu_base->seq);
1237 
1238 	WARN_ON_ONCE(cpu_base->running != timer);
1239 	cpu_base->running = NULL;
1240 }
1241 
1242 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1243 {
1244 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1245 	unsigned int active = cpu_base->active_bases;
1246 
1247 	for (; active; base++, active >>= 1) {
1248 		struct timerqueue_node *node;
1249 		ktime_t basenow;
1250 
1251 		if (!(active & 0x01))
1252 			continue;
1253 
1254 		basenow = ktime_add(now, base->offset);
1255 
1256 		while ((node = timerqueue_getnext(&base->active))) {
1257 			struct hrtimer *timer;
1258 
1259 			timer = container_of(node, struct hrtimer, node);
1260 
1261 			/*
1262 			 * The immediate goal for using the softexpires is
1263 			 * minimizing wakeups, not running timers at the
1264 			 * earliest interrupt after their soft expiration.
1265 			 * This allows us to avoid using a Priority Search
1266 			 * Tree, which can answer a stabbing querry for
1267 			 * overlapping intervals and instead use the simple
1268 			 * BST we already have.
1269 			 * We don't add extra wakeups by delaying timers that
1270 			 * are right-of a not yet expired timer, because that
1271 			 * timer will have to trigger a wakeup anyway.
1272 			 */
1273 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1274 				break;
1275 
1276 			__run_hrtimer(cpu_base, base, timer, &basenow);
1277 		}
1278 	}
1279 }
1280 
1281 #ifdef CONFIG_HIGH_RES_TIMERS
1282 
1283 /*
1284  * High resolution timer interrupt
1285  * Called with interrupts disabled
1286  */
1287 void hrtimer_interrupt(struct clock_event_device *dev)
1288 {
1289 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1290 	ktime_t expires_next, now, entry_time, delta;
1291 	int retries = 0;
1292 
1293 	BUG_ON(!cpu_base->hres_active);
1294 	cpu_base->nr_events++;
1295 	dev->next_event = KTIME_MAX;
1296 
1297 	raw_spin_lock(&cpu_base->lock);
1298 	entry_time = now = hrtimer_update_base(cpu_base);
1299 retry:
1300 	cpu_base->in_hrtirq = 1;
1301 	/*
1302 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1303 	 * held to prevent that a timer is enqueued in our queue via
1304 	 * the migration code. This does not affect enqueueing of
1305 	 * timers which run their callback and need to be requeued on
1306 	 * this CPU.
1307 	 */
1308 	cpu_base->expires_next = KTIME_MAX;
1309 
1310 	__hrtimer_run_queues(cpu_base, now);
1311 
1312 	/* Reevaluate the clock bases for the next expiry */
1313 	expires_next = __hrtimer_get_next_event(cpu_base);
1314 	/*
1315 	 * Store the new expiry value so the migration code can verify
1316 	 * against it.
1317 	 */
1318 	cpu_base->expires_next = expires_next;
1319 	cpu_base->in_hrtirq = 0;
1320 	raw_spin_unlock(&cpu_base->lock);
1321 
1322 	/* Reprogramming necessary ? */
1323 	if (!tick_program_event(expires_next, 0)) {
1324 		cpu_base->hang_detected = 0;
1325 		return;
1326 	}
1327 
1328 	/*
1329 	 * The next timer was already expired due to:
1330 	 * - tracing
1331 	 * - long lasting callbacks
1332 	 * - being scheduled away when running in a VM
1333 	 *
1334 	 * We need to prevent that we loop forever in the hrtimer
1335 	 * interrupt routine. We give it 3 attempts to avoid
1336 	 * overreacting on some spurious event.
1337 	 *
1338 	 * Acquire base lock for updating the offsets and retrieving
1339 	 * the current time.
1340 	 */
1341 	raw_spin_lock(&cpu_base->lock);
1342 	now = hrtimer_update_base(cpu_base);
1343 	cpu_base->nr_retries++;
1344 	if (++retries < 3)
1345 		goto retry;
1346 	/*
1347 	 * Give the system a chance to do something else than looping
1348 	 * here. We stored the entry time, so we know exactly how long
1349 	 * we spent here. We schedule the next event this amount of
1350 	 * time away.
1351 	 */
1352 	cpu_base->nr_hangs++;
1353 	cpu_base->hang_detected = 1;
1354 	raw_spin_unlock(&cpu_base->lock);
1355 	delta = ktime_sub(now, entry_time);
1356 	if ((unsigned int)delta > cpu_base->max_hang_time)
1357 		cpu_base->max_hang_time = (unsigned int) delta;
1358 	/*
1359 	 * Limit it to a sensible value as we enforce a longer
1360 	 * delay. Give the CPU at least 100ms to catch up.
1361 	 */
1362 	if (delta > 100 * NSEC_PER_MSEC)
1363 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1364 	else
1365 		expires_next = ktime_add(now, delta);
1366 	tick_program_event(expires_next, 1);
1367 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1368 		    ktime_to_ns(delta));
1369 }
1370 
1371 /* called with interrupts disabled */
1372 static inline void __hrtimer_peek_ahead_timers(void)
1373 {
1374 	struct tick_device *td;
1375 
1376 	if (!hrtimer_hres_active())
1377 		return;
1378 
1379 	td = this_cpu_ptr(&tick_cpu_device);
1380 	if (td && td->evtdev)
1381 		hrtimer_interrupt(td->evtdev);
1382 }
1383 
1384 #else /* CONFIG_HIGH_RES_TIMERS */
1385 
1386 static inline void __hrtimer_peek_ahead_timers(void) { }
1387 
1388 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1389 
1390 /*
1391  * Called from run_local_timers in hardirq context every jiffy
1392  */
1393 void hrtimer_run_queues(void)
1394 {
1395 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1396 	ktime_t now;
1397 
1398 	if (__hrtimer_hres_active(cpu_base))
1399 		return;
1400 
1401 	/*
1402 	 * This _is_ ugly: We have to check periodically, whether we
1403 	 * can switch to highres and / or nohz mode. The clocksource
1404 	 * switch happens with xtime_lock held. Notification from
1405 	 * there only sets the check bit in the tick_oneshot code,
1406 	 * otherwise we might deadlock vs. xtime_lock.
1407 	 */
1408 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1409 		hrtimer_switch_to_hres();
1410 		return;
1411 	}
1412 
1413 	raw_spin_lock(&cpu_base->lock);
1414 	now = hrtimer_update_base(cpu_base);
1415 	__hrtimer_run_queues(cpu_base, now);
1416 	raw_spin_unlock(&cpu_base->lock);
1417 }
1418 
1419 /*
1420  * Sleep related functions:
1421  */
1422 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1423 {
1424 	struct hrtimer_sleeper *t =
1425 		container_of(timer, struct hrtimer_sleeper, timer);
1426 	struct task_struct *task = t->task;
1427 
1428 	t->task = NULL;
1429 	if (task)
1430 		wake_up_process(task);
1431 
1432 	return HRTIMER_NORESTART;
1433 }
1434 
1435 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1436 {
1437 	sl->timer.function = hrtimer_wakeup;
1438 	sl->task = task;
1439 }
1440 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1441 
1442 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1443 {
1444 	hrtimer_init_sleeper(t, current);
1445 
1446 	do {
1447 		set_current_state(TASK_INTERRUPTIBLE);
1448 		hrtimer_start_expires(&t->timer, mode);
1449 
1450 		if (likely(t->task))
1451 			freezable_schedule();
1452 
1453 		hrtimer_cancel(&t->timer);
1454 		mode = HRTIMER_MODE_ABS;
1455 
1456 	} while (t->task && !signal_pending(current));
1457 
1458 	__set_current_state(TASK_RUNNING);
1459 
1460 	return t->task == NULL;
1461 }
1462 
1463 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1464 {
1465 	struct timespec rmt;
1466 	ktime_t rem;
1467 
1468 	rem = hrtimer_expires_remaining(timer);
1469 	if (rem <= 0)
1470 		return 0;
1471 	rmt = ktime_to_timespec(rem);
1472 
1473 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1474 		return -EFAULT;
1475 
1476 	return 1;
1477 }
1478 
1479 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1480 {
1481 	struct hrtimer_sleeper t;
1482 	struct timespec __user  *rmtp;
1483 	int ret = 0;
1484 
1485 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1486 				HRTIMER_MODE_ABS);
1487 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1488 
1489 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1490 		goto out;
1491 
1492 	rmtp = restart->nanosleep.rmtp;
1493 	if (rmtp) {
1494 		ret = update_rmtp(&t.timer, rmtp);
1495 		if (ret <= 0)
1496 			goto out;
1497 	}
1498 
1499 	/* The other values in restart are already filled in */
1500 	ret = -ERESTART_RESTARTBLOCK;
1501 out:
1502 	destroy_hrtimer_on_stack(&t.timer);
1503 	return ret;
1504 }
1505 
1506 long hrtimer_nanosleep(struct timespec64 *rqtp, struct timespec __user *rmtp,
1507 		       const enum hrtimer_mode mode, const clockid_t clockid)
1508 {
1509 	struct restart_block *restart;
1510 	struct hrtimer_sleeper t;
1511 	int ret = 0;
1512 	u64 slack;
1513 
1514 	slack = current->timer_slack_ns;
1515 	if (dl_task(current) || rt_task(current))
1516 		slack = 0;
1517 
1518 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1519 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1520 	if (do_nanosleep(&t, mode))
1521 		goto out;
1522 
1523 	/* Absolute timers do not update the rmtp value and restart: */
1524 	if (mode == HRTIMER_MODE_ABS) {
1525 		ret = -ERESTARTNOHAND;
1526 		goto out;
1527 	}
1528 
1529 	if (rmtp) {
1530 		ret = update_rmtp(&t.timer, rmtp);
1531 		if (ret <= 0)
1532 			goto out;
1533 	}
1534 
1535 	restart = &current->restart_block;
1536 	restart->fn = hrtimer_nanosleep_restart;
1537 	restart->nanosleep.clockid = t.timer.base->clockid;
1538 	restart->nanosleep.rmtp = rmtp;
1539 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1540 
1541 	ret = -ERESTART_RESTARTBLOCK;
1542 out:
1543 	destroy_hrtimer_on_stack(&t.timer);
1544 	return ret;
1545 }
1546 
1547 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1548 		struct timespec __user *, rmtp)
1549 {
1550 	struct timespec64 tu64;
1551 	struct timespec tu;
1552 
1553 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1554 		return -EFAULT;
1555 
1556 	tu64 = timespec_to_timespec64(tu);
1557 	if (!timespec64_valid(&tu64))
1558 		return -EINVAL;
1559 
1560 	return hrtimer_nanosleep(&tu64, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1561 }
1562 
1563 /*
1564  * Functions related to boot-time initialization:
1565  */
1566 int hrtimers_prepare_cpu(unsigned int cpu)
1567 {
1568 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1569 	int i;
1570 
1571 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1572 		cpu_base->clock_base[i].cpu_base = cpu_base;
1573 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1574 	}
1575 
1576 	cpu_base->cpu = cpu;
1577 	hrtimer_init_hres(cpu_base);
1578 	return 0;
1579 }
1580 
1581 #ifdef CONFIG_HOTPLUG_CPU
1582 
1583 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1584 				struct hrtimer_clock_base *new_base)
1585 {
1586 	struct hrtimer *timer;
1587 	struct timerqueue_node *node;
1588 
1589 	while ((node = timerqueue_getnext(&old_base->active))) {
1590 		timer = container_of(node, struct hrtimer, node);
1591 		BUG_ON(hrtimer_callback_running(timer));
1592 		debug_deactivate(timer);
1593 
1594 		/*
1595 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1596 		 * timer could be seen as !active and just vanish away
1597 		 * under us on another CPU
1598 		 */
1599 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1600 		timer->base = new_base;
1601 		/*
1602 		 * Enqueue the timers on the new cpu. This does not
1603 		 * reprogram the event device in case the timer
1604 		 * expires before the earliest on this CPU, but we run
1605 		 * hrtimer_interrupt after we migrated everything to
1606 		 * sort out already expired timers and reprogram the
1607 		 * event device.
1608 		 */
1609 		enqueue_hrtimer(timer, new_base);
1610 	}
1611 }
1612 
1613 int hrtimers_dead_cpu(unsigned int scpu)
1614 {
1615 	struct hrtimer_cpu_base *old_base, *new_base;
1616 	int i;
1617 
1618 	BUG_ON(cpu_online(scpu));
1619 	tick_cancel_sched_timer(scpu);
1620 
1621 	local_irq_disable();
1622 	old_base = &per_cpu(hrtimer_bases, scpu);
1623 	new_base = this_cpu_ptr(&hrtimer_bases);
1624 	/*
1625 	 * The caller is globally serialized and nobody else
1626 	 * takes two locks at once, deadlock is not possible.
1627 	 */
1628 	raw_spin_lock(&new_base->lock);
1629 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1630 
1631 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1632 		migrate_hrtimer_list(&old_base->clock_base[i],
1633 				     &new_base->clock_base[i]);
1634 	}
1635 
1636 	raw_spin_unlock(&old_base->lock);
1637 	raw_spin_unlock(&new_base->lock);
1638 
1639 	/* Check, if we got expired work to do */
1640 	__hrtimer_peek_ahead_timers();
1641 	local_irq_enable();
1642 	return 0;
1643 }
1644 
1645 #endif /* CONFIG_HOTPLUG_CPU */
1646 
1647 void __init hrtimers_init(void)
1648 {
1649 	hrtimers_prepare_cpu(smp_processor_id());
1650 }
1651 
1652 /**
1653  * schedule_hrtimeout_range_clock - sleep until timeout
1654  * @expires:	timeout value (ktime_t)
1655  * @delta:	slack in expires timeout (ktime_t)
1656  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1657  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1658  */
1659 int __sched
1660 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1661 			       const enum hrtimer_mode mode, int clock)
1662 {
1663 	struct hrtimer_sleeper t;
1664 
1665 	/*
1666 	 * Optimize when a zero timeout value is given. It does not
1667 	 * matter whether this is an absolute or a relative time.
1668 	 */
1669 	if (expires && *expires == 0) {
1670 		__set_current_state(TASK_RUNNING);
1671 		return 0;
1672 	}
1673 
1674 	/*
1675 	 * A NULL parameter means "infinite"
1676 	 */
1677 	if (!expires) {
1678 		schedule();
1679 		return -EINTR;
1680 	}
1681 
1682 	hrtimer_init_on_stack(&t.timer, clock, mode);
1683 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1684 
1685 	hrtimer_init_sleeper(&t, current);
1686 
1687 	hrtimer_start_expires(&t.timer, mode);
1688 
1689 	if (likely(t.task))
1690 		schedule();
1691 
1692 	hrtimer_cancel(&t.timer);
1693 	destroy_hrtimer_on_stack(&t.timer);
1694 
1695 	__set_current_state(TASK_RUNNING);
1696 
1697 	return !t.task ? 0 : -EINTR;
1698 }
1699 
1700 /**
1701  * schedule_hrtimeout_range - sleep until timeout
1702  * @expires:	timeout value (ktime_t)
1703  * @delta:	slack in expires timeout (ktime_t)
1704  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1705  *
1706  * Make the current task sleep until the given expiry time has
1707  * elapsed. The routine will return immediately unless
1708  * the current task state has been set (see set_current_state()).
1709  *
1710  * The @delta argument gives the kernel the freedom to schedule the
1711  * actual wakeup to a time that is both power and performance friendly.
1712  * The kernel give the normal best effort behavior for "@expires+@delta",
1713  * but may decide to fire the timer earlier, but no earlier than @expires.
1714  *
1715  * You can set the task state as follows -
1716  *
1717  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1718  * pass before the routine returns unless the current task is explicitly
1719  * woken up, (e.g. by wake_up_process()).
1720  *
1721  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1722  * delivered to the current task or the current task is explicitly woken
1723  * up.
1724  *
1725  * The current task state is guaranteed to be TASK_RUNNING when this
1726  * routine returns.
1727  *
1728  * Returns 0 when the timer has expired. If the task was woken before the
1729  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1730  * by an explicit wakeup, it returns -EINTR.
1731  */
1732 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1733 				     const enum hrtimer_mode mode)
1734 {
1735 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1736 					      CLOCK_MONOTONIC);
1737 }
1738 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1739 
1740 /**
1741  * schedule_hrtimeout - sleep until timeout
1742  * @expires:	timeout value (ktime_t)
1743  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1744  *
1745  * Make the current task sleep until the given expiry time has
1746  * elapsed. The routine will return immediately unless
1747  * the current task state has been set (see set_current_state()).
1748  *
1749  * You can set the task state as follows -
1750  *
1751  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1752  * pass before the routine returns unless the current task is explicitly
1753  * woken up, (e.g. by wake_up_process()).
1754  *
1755  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1756  * delivered to the current task or the current task is explicitly woken
1757  * up.
1758  *
1759  * The current task state is guaranteed to be TASK_RUNNING when this
1760  * routine returns.
1761  *
1762  * Returns 0 when the timer has expired. If the task was woken before the
1763  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1764  * by an explicit wakeup, it returns -EINTR.
1765  */
1766 int __sched schedule_hrtimeout(ktime_t *expires,
1767 			       const enum hrtimer_mode mode)
1768 {
1769 	return schedule_hrtimeout_range(expires, 0, mode);
1770 }
1771 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1772