1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/tick.h> 43 #include <linux/seq_file.h> 44 #include <linux/err.h> 45 #include <linux/debugobjects.h> 46 #include <linux/sched/signal.h> 47 #include <linux/sched/sysctl.h> 48 #include <linux/sched/rt.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/sched/nohz.h> 51 #include <linux/sched/debug.h> 52 #include <linux/timer.h> 53 #include <linux/freezer.h> 54 55 #include <linux/uaccess.h> 56 57 #include <trace/events/timer.h> 58 59 #include "tick-internal.h" 60 61 /* 62 * The timer bases: 63 * 64 * There are more clockids than hrtimer bases. Thus, we index 65 * into the timer bases by the hrtimer_base_type enum. When trying 66 * to reach a base using a clockid, hrtimer_clockid_to_base() 67 * is used to convert from clockid to the proper hrtimer_base_type. 68 */ 69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 70 { 71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 72 .seq = SEQCNT_ZERO(hrtimer_bases.seq), 73 .clock_base = 74 { 75 { 76 .index = HRTIMER_BASE_MONOTONIC, 77 .clockid = CLOCK_MONOTONIC, 78 .get_time = &ktime_get, 79 }, 80 { 81 .index = HRTIMER_BASE_REALTIME, 82 .clockid = CLOCK_REALTIME, 83 .get_time = &ktime_get_real, 84 }, 85 { 86 .index = HRTIMER_BASE_BOOTTIME, 87 .clockid = CLOCK_BOOTTIME, 88 .get_time = &ktime_get_boottime, 89 }, 90 { 91 .index = HRTIMER_BASE_TAI, 92 .clockid = CLOCK_TAI, 93 .get_time = &ktime_get_clocktai, 94 }, 95 } 96 }; 97 98 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 99 /* Make sure we catch unsupported clockids */ 100 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 101 102 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 103 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 104 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 105 [CLOCK_TAI] = HRTIMER_BASE_TAI, 106 }; 107 108 /* 109 * Functions and macros which are different for UP/SMP systems are kept in a 110 * single place 111 */ 112 #ifdef CONFIG_SMP 113 114 /* 115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 116 * such that hrtimer_callback_running() can unconditionally dereference 117 * timer->base->cpu_base 118 */ 119 static struct hrtimer_cpu_base migration_cpu_base = { 120 .seq = SEQCNT_ZERO(migration_cpu_base), 121 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 122 }; 123 124 #define migration_base migration_cpu_base.clock_base[0] 125 126 /* 127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 128 * means that all timers which are tied to this base via timer->base are 129 * locked, and the base itself is locked too. 130 * 131 * So __run_timers/migrate_timers can safely modify all timers which could 132 * be found on the lists/queues. 133 * 134 * When the timer's base is locked, and the timer removed from list, it is 135 * possible to set timer->base = &migration_base and drop the lock: the timer 136 * remains locked. 137 */ 138 static 139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 140 unsigned long *flags) 141 { 142 struct hrtimer_clock_base *base; 143 144 for (;;) { 145 base = timer->base; 146 if (likely(base != &migration_base)) { 147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 148 if (likely(base == timer->base)) 149 return base; 150 /* The timer has migrated to another CPU: */ 151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 152 } 153 cpu_relax(); 154 } 155 } 156 157 /* 158 * With HIGHRES=y we do not migrate the timer when it is expiring 159 * before the next event on the target cpu because we cannot reprogram 160 * the target cpu hardware and we would cause it to fire late. 161 * 162 * Called with cpu_base->lock of target cpu held. 163 */ 164 static int 165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 166 { 167 #ifdef CONFIG_HIGH_RES_TIMERS 168 ktime_t expires; 169 170 if (!new_base->cpu_base->hres_active) 171 return 0; 172 173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 174 return expires <= new_base->cpu_base->expires_next; 175 #else 176 return 0; 177 #endif 178 } 179 180 #ifdef CONFIG_NO_HZ_COMMON 181 static inline 182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 183 int pinned) 184 { 185 if (pinned || !base->migration_enabled) 186 return base; 187 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 188 } 189 #else 190 static inline 191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 192 int pinned) 193 { 194 return base; 195 } 196 #endif 197 198 /* 199 * We switch the timer base to a power-optimized selected CPU target, 200 * if: 201 * - NO_HZ_COMMON is enabled 202 * - timer migration is enabled 203 * - the timer callback is not running 204 * - the timer is not the first expiring timer on the new target 205 * 206 * If one of the above requirements is not fulfilled we move the timer 207 * to the current CPU or leave it on the previously assigned CPU if 208 * the timer callback is currently running. 209 */ 210 static inline struct hrtimer_clock_base * 211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 212 int pinned) 213 { 214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 215 struct hrtimer_clock_base *new_base; 216 int basenum = base->index; 217 218 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 219 new_cpu_base = get_target_base(this_cpu_base, pinned); 220 again: 221 new_base = &new_cpu_base->clock_base[basenum]; 222 223 if (base != new_base) { 224 /* 225 * We are trying to move timer to new_base. 226 * However we can't change timer's base while it is running, 227 * so we keep it on the same CPU. No hassle vs. reprogramming 228 * the event source in the high resolution case. The softirq 229 * code will take care of this when the timer function has 230 * completed. There is no conflict as we hold the lock until 231 * the timer is enqueued. 232 */ 233 if (unlikely(hrtimer_callback_running(timer))) 234 return base; 235 236 /* See the comment in lock_hrtimer_base() */ 237 timer->base = &migration_base; 238 raw_spin_unlock(&base->cpu_base->lock); 239 raw_spin_lock(&new_base->cpu_base->lock); 240 241 if (new_cpu_base != this_cpu_base && 242 hrtimer_check_target(timer, new_base)) { 243 raw_spin_unlock(&new_base->cpu_base->lock); 244 raw_spin_lock(&base->cpu_base->lock); 245 new_cpu_base = this_cpu_base; 246 timer->base = base; 247 goto again; 248 } 249 timer->base = new_base; 250 } else { 251 if (new_cpu_base != this_cpu_base && 252 hrtimer_check_target(timer, new_base)) { 253 new_cpu_base = this_cpu_base; 254 goto again; 255 } 256 } 257 return new_base; 258 } 259 260 #else /* CONFIG_SMP */ 261 262 static inline struct hrtimer_clock_base * 263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 264 { 265 struct hrtimer_clock_base *base = timer->base; 266 267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 268 269 return base; 270 } 271 272 # define switch_hrtimer_base(t, b, p) (b) 273 274 #endif /* !CONFIG_SMP */ 275 276 /* 277 * Functions for the union type storage format of ktime_t which are 278 * too large for inlining: 279 */ 280 #if BITS_PER_LONG < 64 281 /* 282 * Divide a ktime value by a nanosecond value 283 */ 284 s64 __ktime_divns(const ktime_t kt, s64 div) 285 { 286 int sft = 0; 287 s64 dclc; 288 u64 tmp; 289 290 dclc = ktime_to_ns(kt); 291 tmp = dclc < 0 ? -dclc : dclc; 292 293 /* Make sure the divisor is less than 2^32: */ 294 while (div >> 32) { 295 sft++; 296 div >>= 1; 297 } 298 tmp >>= sft; 299 do_div(tmp, (unsigned long) div); 300 return dclc < 0 ? -tmp : tmp; 301 } 302 EXPORT_SYMBOL_GPL(__ktime_divns); 303 #endif /* BITS_PER_LONG >= 64 */ 304 305 /* 306 * Add two ktime values and do a safety check for overflow: 307 */ 308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 309 { 310 ktime_t res = ktime_add_unsafe(lhs, rhs); 311 312 /* 313 * We use KTIME_SEC_MAX here, the maximum timeout which we can 314 * return to user space in a timespec: 315 */ 316 if (res < 0 || res < lhs || res < rhs) 317 res = ktime_set(KTIME_SEC_MAX, 0); 318 319 return res; 320 } 321 322 EXPORT_SYMBOL_GPL(ktime_add_safe); 323 324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 325 326 static struct debug_obj_descr hrtimer_debug_descr; 327 328 static void *hrtimer_debug_hint(void *addr) 329 { 330 return ((struct hrtimer *) addr)->function; 331 } 332 333 /* 334 * fixup_init is called when: 335 * - an active object is initialized 336 */ 337 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 338 { 339 struct hrtimer *timer = addr; 340 341 switch (state) { 342 case ODEBUG_STATE_ACTIVE: 343 hrtimer_cancel(timer); 344 debug_object_init(timer, &hrtimer_debug_descr); 345 return true; 346 default: 347 return false; 348 } 349 } 350 351 /* 352 * fixup_activate is called when: 353 * - an active object is activated 354 * - an unknown non-static object is activated 355 */ 356 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 357 { 358 switch (state) { 359 case ODEBUG_STATE_ACTIVE: 360 WARN_ON(1); 361 362 default: 363 return false; 364 } 365 } 366 367 /* 368 * fixup_free is called when: 369 * - an active object is freed 370 */ 371 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 372 { 373 struct hrtimer *timer = addr; 374 375 switch (state) { 376 case ODEBUG_STATE_ACTIVE: 377 hrtimer_cancel(timer); 378 debug_object_free(timer, &hrtimer_debug_descr); 379 return true; 380 default: 381 return false; 382 } 383 } 384 385 static struct debug_obj_descr hrtimer_debug_descr = { 386 .name = "hrtimer", 387 .debug_hint = hrtimer_debug_hint, 388 .fixup_init = hrtimer_fixup_init, 389 .fixup_activate = hrtimer_fixup_activate, 390 .fixup_free = hrtimer_fixup_free, 391 }; 392 393 static inline void debug_hrtimer_init(struct hrtimer *timer) 394 { 395 debug_object_init(timer, &hrtimer_debug_descr); 396 } 397 398 static inline void debug_hrtimer_activate(struct hrtimer *timer) 399 { 400 debug_object_activate(timer, &hrtimer_debug_descr); 401 } 402 403 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 404 { 405 debug_object_deactivate(timer, &hrtimer_debug_descr); 406 } 407 408 static inline void debug_hrtimer_free(struct hrtimer *timer) 409 { 410 debug_object_free(timer, &hrtimer_debug_descr); 411 } 412 413 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 414 enum hrtimer_mode mode); 415 416 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 417 enum hrtimer_mode mode) 418 { 419 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 420 __hrtimer_init(timer, clock_id, mode); 421 } 422 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 423 424 void destroy_hrtimer_on_stack(struct hrtimer *timer) 425 { 426 debug_object_free(timer, &hrtimer_debug_descr); 427 } 428 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 429 430 #else 431 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 432 static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 433 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 434 #endif 435 436 static inline void 437 debug_init(struct hrtimer *timer, clockid_t clockid, 438 enum hrtimer_mode mode) 439 { 440 debug_hrtimer_init(timer); 441 trace_hrtimer_init(timer, clockid, mode); 442 } 443 444 static inline void debug_activate(struct hrtimer *timer) 445 { 446 debug_hrtimer_activate(timer); 447 trace_hrtimer_start(timer); 448 } 449 450 static inline void debug_deactivate(struct hrtimer *timer) 451 { 452 debug_hrtimer_deactivate(timer); 453 trace_hrtimer_cancel(timer); 454 } 455 456 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 457 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base, 458 struct hrtimer *timer) 459 { 460 #ifdef CONFIG_HIGH_RES_TIMERS 461 cpu_base->next_timer = timer; 462 #endif 463 } 464 465 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base) 466 { 467 struct hrtimer_clock_base *base = cpu_base->clock_base; 468 unsigned int active = cpu_base->active_bases; 469 ktime_t expires, expires_next = KTIME_MAX; 470 471 hrtimer_update_next_timer(cpu_base, NULL); 472 for (; active; base++, active >>= 1) { 473 struct timerqueue_node *next; 474 struct hrtimer *timer; 475 476 if (!(active & 0x01)) 477 continue; 478 479 next = timerqueue_getnext(&base->active); 480 timer = container_of(next, struct hrtimer, node); 481 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 482 if (expires < expires_next) { 483 expires_next = expires; 484 hrtimer_update_next_timer(cpu_base, timer); 485 } 486 } 487 /* 488 * clock_was_set() might have changed base->offset of any of 489 * the clock bases so the result might be negative. Fix it up 490 * to prevent a false positive in clockevents_program_event(). 491 */ 492 if (expires_next < 0) 493 expires_next = 0; 494 return expires_next; 495 } 496 #endif 497 498 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 499 { 500 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 501 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 502 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 503 504 return ktime_get_update_offsets_now(&base->clock_was_set_seq, 505 offs_real, offs_boot, offs_tai); 506 } 507 508 /* High resolution timer related functions */ 509 #ifdef CONFIG_HIGH_RES_TIMERS 510 511 /* 512 * High resolution timer enabled ? 513 */ 514 static bool hrtimer_hres_enabled __read_mostly = true; 515 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 516 EXPORT_SYMBOL_GPL(hrtimer_resolution); 517 518 /* 519 * Enable / Disable high resolution mode 520 */ 521 static int __init setup_hrtimer_hres(char *str) 522 { 523 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 524 } 525 526 __setup("highres=", setup_hrtimer_hres); 527 528 /* 529 * hrtimer_high_res_enabled - query, if the highres mode is enabled 530 */ 531 static inline int hrtimer_is_hres_enabled(void) 532 { 533 return hrtimer_hres_enabled; 534 } 535 536 /* 537 * Is the high resolution mode active ? 538 */ 539 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 540 { 541 return cpu_base->hres_active; 542 } 543 544 static inline int hrtimer_hres_active(void) 545 { 546 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 547 } 548 549 /* 550 * Reprogram the event source with checking both queues for the 551 * next event 552 * Called with interrupts disabled and base->lock held 553 */ 554 static void 555 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 556 { 557 ktime_t expires_next; 558 559 if (!cpu_base->hres_active) 560 return; 561 562 expires_next = __hrtimer_get_next_event(cpu_base); 563 564 if (skip_equal && expires_next == cpu_base->expires_next) 565 return; 566 567 cpu_base->expires_next = expires_next; 568 569 /* 570 * If a hang was detected in the last timer interrupt then we 571 * leave the hang delay active in the hardware. We want the 572 * system to make progress. That also prevents the following 573 * scenario: 574 * T1 expires 50ms from now 575 * T2 expires 5s from now 576 * 577 * T1 is removed, so this code is called and would reprogram 578 * the hardware to 5s from now. Any hrtimer_start after that 579 * will not reprogram the hardware due to hang_detected being 580 * set. So we'd effectivly block all timers until the T2 event 581 * fires. 582 */ 583 if (cpu_base->hang_detected) 584 return; 585 586 tick_program_event(cpu_base->expires_next, 1); 587 } 588 589 /* 590 * When a timer is enqueued and expires earlier than the already enqueued 591 * timers, we have to check, whether it expires earlier than the timer for 592 * which the clock event device was armed. 593 * 594 * Called with interrupts disabled and base->cpu_base.lock held 595 */ 596 static void hrtimer_reprogram(struct hrtimer *timer, 597 struct hrtimer_clock_base *base) 598 { 599 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 600 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 601 602 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 603 604 /* 605 * If the timer is not on the current cpu, we cannot reprogram 606 * the other cpus clock event device. 607 */ 608 if (base->cpu_base != cpu_base) 609 return; 610 611 /* 612 * If the hrtimer interrupt is running, then it will 613 * reevaluate the clock bases and reprogram the clock event 614 * device. The callbacks are always executed in hard interrupt 615 * context so we don't need an extra check for a running 616 * callback. 617 */ 618 if (cpu_base->in_hrtirq) 619 return; 620 621 /* 622 * CLOCK_REALTIME timer might be requested with an absolute 623 * expiry time which is less than base->offset. Set it to 0. 624 */ 625 if (expires < 0) 626 expires = 0; 627 628 if (expires >= cpu_base->expires_next) 629 return; 630 631 /* Update the pointer to the next expiring timer */ 632 cpu_base->next_timer = timer; 633 634 /* 635 * If a hang was detected in the last timer interrupt then we 636 * do not schedule a timer which is earlier than the expiry 637 * which we enforced in the hang detection. We want the system 638 * to make progress. 639 */ 640 if (cpu_base->hang_detected) 641 return; 642 643 /* 644 * Program the timer hardware. We enforce the expiry for 645 * events which are already in the past. 646 */ 647 cpu_base->expires_next = expires; 648 tick_program_event(expires, 1); 649 } 650 651 /* 652 * Initialize the high resolution related parts of cpu_base 653 */ 654 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 655 { 656 base->expires_next = KTIME_MAX; 657 base->hres_active = 0; 658 } 659 660 /* 661 * Retrigger next event is called after clock was set 662 * 663 * Called with interrupts disabled via on_each_cpu() 664 */ 665 static void retrigger_next_event(void *arg) 666 { 667 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 668 669 if (!base->hres_active) 670 return; 671 672 raw_spin_lock(&base->lock); 673 hrtimer_update_base(base); 674 hrtimer_force_reprogram(base, 0); 675 raw_spin_unlock(&base->lock); 676 } 677 678 /* 679 * Switch to high resolution mode 680 */ 681 static void hrtimer_switch_to_hres(void) 682 { 683 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 684 685 if (tick_init_highres()) { 686 printk(KERN_WARNING "Could not switch to high resolution " 687 "mode on CPU %d\n", base->cpu); 688 return; 689 } 690 base->hres_active = 1; 691 hrtimer_resolution = HIGH_RES_NSEC; 692 693 tick_setup_sched_timer(); 694 /* "Retrigger" the interrupt to get things going */ 695 retrigger_next_event(NULL); 696 } 697 698 static void clock_was_set_work(struct work_struct *work) 699 { 700 clock_was_set(); 701 } 702 703 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 704 705 /* 706 * Called from timekeeping and resume code to reprogram the hrtimer 707 * interrupt device on all cpus. 708 */ 709 void clock_was_set_delayed(void) 710 { 711 schedule_work(&hrtimer_work); 712 } 713 714 #else 715 716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; } 717 static inline int hrtimer_hres_active(void) { return 0; } 718 static inline int hrtimer_is_hres_enabled(void) { return 0; } 719 static inline void hrtimer_switch_to_hres(void) { } 720 static inline void 721 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } 722 static inline int hrtimer_reprogram(struct hrtimer *timer, 723 struct hrtimer_clock_base *base) 724 { 725 return 0; 726 } 727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 728 static inline void retrigger_next_event(void *arg) { } 729 730 #endif /* CONFIG_HIGH_RES_TIMERS */ 731 732 /* 733 * Clock realtime was set 734 * 735 * Change the offset of the realtime clock vs. the monotonic 736 * clock. 737 * 738 * We might have to reprogram the high resolution timer interrupt. On 739 * SMP we call the architecture specific code to retrigger _all_ high 740 * resolution timer interrupts. On UP we just disable interrupts and 741 * call the high resolution interrupt code. 742 */ 743 void clock_was_set(void) 744 { 745 #ifdef CONFIG_HIGH_RES_TIMERS 746 /* Retrigger the CPU local events everywhere */ 747 on_each_cpu(retrigger_next_event, NULL, 1); 748 #endif 749 timerfd_clock_was_set(); 750 } 751 752 /* 753 * During resume we might have to reprogram the high resolution timer 754 * interrupt on all online CPUs. However, all other CPUs will be 755 * stopped with IRQs interrupts disabled so the clock_was_set() call 756 * must be deferred. 757 */ 758 void hrtimers_resume(void) 759 { 760 WARN_ONCE(!irqs_disabled(), 761 KERN_INFO "hrtimers_resume() called with IRQs enabled!"); 762 763 /* Retrigger on the local CPU */ 764 retrigger_next_event(NULL); 765 /* And schedule a retrigger for all others */ 766 clock_was_set_delayed(); 767 } 768 769 /* 770 * Counterpart to lock_hrtimer_base above: 771 */ 772 static inline 773 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 774 { 775 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 776 } 777 778 /** 779 * hrtimer_forward - forward the timer expiry 780 * @timer: hrtimer to forward 781 * @now: forward past this time 782 * @interval: the interval to forward 783 * 784 * Forward the timer expiry so it will expire in the future. 785 * Returns the number of overruns. 786 * 787 * Can be safely called from the callback function of @timer. If 788 * called from other contexts @timer must neither be enqueued nor 789 * running the callback and the caller needs to take care of 790 * serialization. 791 * 792 * Note: This only updates the timer expiry value and does not requeue 793 * the timer. 794 */ 795 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 796 { 797 u64 orun = 1; 798 ktime_t delta; 799 800 delta = ktime_sub(now, hrtimer_get_expires(timer)); 801 802 if (delta < 0) 803 return 0; 804 805 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 806 return 0; 807 808 if (interval < hrtimer_resolution) 809 interval = hrtimer_resolution; 810 811 if (unlikely(delta >= interval)) { 812 s64 incr = ktime_to_ns(interval); 813 814 orun = ktime_divns(delta, incr); 815 hrtimer_add_expires_ns(timer, incr * orun); 816 if (hrtimer_get_expires_tv64(timer) > now) 817 return orun; 818 /* 819 * This (and the ktime_add() below) is the 820 * correction for exact: 821 */ 822 orun++; 823 } 824 hrtimer_add_expires(timer, interval); 825 826 return orun; 827 } 828 EXPORT_SYMBOL_GPL(hrtimer_forward); 829 830 /* 831 * enqueue_hrtimer - internal function to (re)start a timer 832 * 833 * The timer is inserted in expiry order. Insertion into the 834 * red black tree is O(log(n)). Must hold the base lock. 835 * 836 * Returns 1 when the new timer is the leftmost timer in the tree. 837 */ 838 static int enqueue_hrtimer(struct hrtimer *timer, 839 struct hrtimer_clock_base *base) 840 { 841 debug_activate(timer); 842 843 base->cpu_base->active_bases |= 1 << base->index; 844 845 timer->state = HRTIMER_STATE_ENQUEUED; 846 847 return timerqueue_add(&base->active, &timer->node); 848 } 849 850 /* 851 * __remove_hrtimer - internal function to remove a timer 852 * 853 * Caller must hold the base lock. 854 * 855 * High resolution timer mode reprograms the clock event device when the 856 * timer is the one which expires next. The caller can disable this by setting 857 * reprogram to zero. This is useful, when the context does a reprogramming 858 * anyway (e.g. timer interrupt) 859 */ 860 static void __remove_hrtimer(struct hrtimer *timer, 861 struct hrtimer_clock_base *base, 862 u8 newstate, int reprogram) 863 { 864 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 865 u8 state = timer->state; 866 867 timer->state = newstate; 868 if (!(state & HRTIMER_STATE_ENQUEUED)) 869 return; 870 871 if (!timerqueue_del(&base->active, &timer->node)) 872 cpu_base->active_bases &= ~(1 << base->index); 873 874 #ifdef CONFIG_HIGH_RES_TIMERS 875 /* 876 * Note: If reprogram is false we do not update 877 * cpu_base->next_timer. This happens when we remove the first 878 * timer on a remote cpu. No harm as we never dereference 879 * cpu_base->next_timer. So the worst thing what can happen is 880 * an superflous call to hrtimer_force_reprogram() on the 881 * remote cpu later on if the same timer gets enqueued again. 882 */ 883 if (reprogram && timer == cpu_base->next_timer) 884 hrtimer_force_reprogram(cpu_base, 1); 885 #endif 886 } 887 888 /* 889 * remove hrtimer, called with base lock held 890 */ 891 static inline int 892 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 893 { 894 if (hrtimer_is_queued(timer)) { 895 u8 state = timer->state; 896 int reprogram; 897 898 /* 899 * Remove the timer and force reprogramming when high 900 * resolution mode is active and the timer is on the current 901 * CPU. If we remove a timer on another CPU, reprogramming is 902 * skipped. The interrupt event on this CPU is fired and 903 * reprogramming happens in the interrupt handler. This is a 904 * rare case and less expensive than a smp call. 905 */ 906 debug_deactivate(timer); 907 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 908 909 if (!restart) 910 state = HRTIMER_STATE_INACTIVE; 911 912 __remove_hrtimer(timer, base, state, reprogram); 913 return 1; 914 } 915 return 0; 916 } 917 918 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 919 const enum hrtimer_mode mode) 920 { 921 #ifdef CONFIG_TIME_LOW_RES 922 /* 923 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 924 * granular time values. For relative timers we add hrtimer_resolution 925 * (i.e. one jiffie) to prevent short timeouts. 926 */ 927 timer->is_rel = mode & HRTIMER_MODE_REL; 928 if (timer->is_rel) 929 tim = ktime_add_safe(tim, hrtimer_resolution); 930 #endif 931 return tim; 932 } 933 934 /** 935 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 936 * @timer: the timer to be added 937 * @tim: expiry time 938 * @delta_ns: "slack" range for the timer 939 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 940 * relative (HRTIMER_MODE_REL) 941 */ 942 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 943 u64 delta_ns, const enum hrtimer_mode mode) 944 { 945 struct hrtimer_clock_base *base, *new_base; 946 unsigned long flags; 947 int leftmost; 948 949 base = lock_hrtimer_base(timer, &flags); 950 951 /* Remove an active timer from the queue: */ 952 remove_hrtimer(timer, base, true); 953 954 if (mode & HRTIMER_MODE_REL) 955 tim = ktime_add_safe(tim, base->get_time()); 956 957 tim = hrtimer_update_lowres(timer, tim, mode); 958 959 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 960 961 /* Switch the timer base, if necessary: */ 962 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 963 964 leftmost = enqueue_hrtimer(timer, new_base); 965 if (!leftmost) 966 goto unlock; 967 968 if (!hrtimer_is_hres_active(timer)) { 969 /* 970 * Kick to reschedule the next tick to handle the new timer 971 * on dynticks target. 972 */ 973 if (new_base->cpu_base->nohz_active) 974 wake_up_nohz_cpu(new_base->cpu_base->cpu); 975 } else { 976 hrtimer_reprogram(timer, new_base); 977 } 978 unlock: 979 unlock_hrtimer_base(timer, &flags); 980 } 981 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 982 983 /** 984 * hrtimer_try_to_cancel - try to deactivate a timer 985 * @timer: hrtimer to stop 986 * 987 * Returns: 988 * 0 when the timer was not active 989 * 1 when the timer was active 990 * -1 when the timer is currently executing the callback function and 991 * cannot be stopped 992 */ 993 int hrtimer_try_to_cancel(struct hrtimer *timer) 994 { 995 struct hrtimer_clock_base *base; 996 unsigned long flags; 997 int ret = -1; 998 999 /* 1000 * Check lockless first. If the timer is not active (neither 1001 * enqueued nor running the callback, nothing to do here. The 1002 * base lock does not serialize against a concurrent enqueue, 1003 * so we can avoid taking it. 1004 */ 1005 if (!hrtimer_active(timer)) 1006 return 0; 1007 1008 base = lock_hrtimer_base(timer, &flags); 1009 1010 if (!hrtimer_callback_running(timer)) 1011 ret = remove_hrtimer(timer, base, false); 1012 1013 unlock_hrtimer_base(timer, &flags); 1014 1015 return ret; 1016 1017 } 1018 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1019 1020 /** 1021 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1022 * @timer: the timer to be cancelled 1023 * 1024 * Returns: 1025 * 0 when the timer was not active 1026 * 1 when the timer was active 1027 */ 1028 int hrtimer_cancel(struct hrtimer *timer) 1029 { 1030 for (;;) { 1031 int ret = hrtimer_try_to_cancel(timer); 1032 1033 if (ret >= 0) 1034 return ret; 1035 cpu_relax(); 1036 } 1037 } 1038 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1039 1040 /** 1041 * hrtimer_get_remaining - get remaining time for the timer 1042 * @timer: the timer to read 1043 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1044 */ 1045 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1046 { 1047 unsigned long flags; 1048 ktime_t rem; 1049 1050 lock_hrtimer_base(timer, &flags); 1051 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1052 rem = hrtimer_expires_remaining_adjusted(timer); 1053 else 1054 rem = hrtimer_expires_remaining(timer); 1055 unlock_hrtimer_base(timer, &flags); 1056 1057 return rem; 1058 } 1059 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1060 1061 #ifdef CONFIG_NO_HZ_COMMON 1062 /** 1063 * hrtimer_get_next_event - get the time until next expiry event 1064 * 1065 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1066 */ 1067 u64 hrtimer_get_next_event(void) 1068 { 1069 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1070 u64 expires = KTIME_MAX; 1071 unsigned long flags; 1072 1073 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1074 1075 if (!__hrtimer_hres_active(cpu_base)) 1076 expires = __hrtimer_get_next_event(cpu_base); 1077 1078 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1079 1080 return expires; 1081 } 1082 #endif 1083 1084 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1085 { 1086 if (likely(clock_id < MAX_CLOCKS)) { 1087 int base = hrtimer_clock_to_base_table[clock_id]; 1088 1089 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1090 return base; 1091 } 1092 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1093 return HRTIMER_BASE_MONOTONIC; 1094 } 1095 1096 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1097 enum hrtimer_mode mode) 1098 { 1099 struct hrtimer_cpu_base *cpu_base; 1100 int base; 1101 1102 memset(timer, 0, sizeof(struct hrtimer)); 1103 1104 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1105 1106 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1107 clock_id = CLOCK_MONOTONIC; 1108 1109 base = hrtimer_clockid_to_base(clock_id); 1110 timer->base = &cpu_base->clock_base[base]; 1111 timerqueue_init(&timer->node); 1112 } 1113 1114 /** 1115 * hrtimer_init - initialize a timer to the given clock 1116 * @timer: the timer to be initialized 1117 * @clock_id: the clock to be used 1118 * @mode: timer mode abs/rel 1119 */ 1120 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1121 enum hrtimer_mode mode) 1122 { 1123 debug_init(timer, clock_id, mode); 1124 __hrtimer_init(timer, clock_id, mode); 1125 } 1126 EXPORT_SYMBOL_GPL(hrtimer_init); 1127 1128 /* 1129 * A timer is active, when it is enqueued into the rbtree or the 1130 * callback function is running or it's in the state of being migrated 1131 * to another cpu. 1132 * 1133 * It is important for this function to not return a false negative. 1134 */ 1135 bool hrtimer_active(const struct hrtimer *timer) 1136 { 1137 struct hrtimer_cpu_base *cpu_base; 1138 unsigned int seq; 1139 1140 do { 1141 cpu_base = READ_ONCE(timer->base->cpu_base); 1142 seq = raw_read_seqcount_begin(&cpu_base->seq); 1143 1144 if (timer->state != HRTIMER_STATE_INACTIVE || 1145 cpu_base->running == timer) 1146 return true; 1147 1148 } while (read_seqcount_retry(&cpu_base->seq, seq) || 1149 cpu_base != READ_ONCE(timer->base->cpu_base)); 1150 1151 return false; 1152 } 1153 EXPORT_SYMBOL_GPL(hrtimer_active); 1154 1155 /* 1156 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1157 * distinct sections: 1158 * 1159 * - queued: the timer is queued 1160 * - callback: the timer is being ran 1161 * - post: the timer is inactive or (re)queued 1162 * 1163 * On the read side we ensure we observe timer->state and cpu_base->running 1164 * from the same section, if anything changed while we looked at it, we retry. 1165 * This includes timer->base changing because sequence numbers alone are 1166 * insufficient for that. 1167 * 1168 * The sequence numbers are required because otherwise we could still observe 1169 * a false negative if the read side got smeared over multiple consequtive 1170 * __run_hrtimer() invocations. 1171 */ 1172 1173 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1174 struct hrtimer_clock_base *base, 1175 struct hrtimer *timer, ktime_t *now) 1176 { 1177 enum hrtimer_restart (*fn)(struct hrtimer *); 1178 int restart; 1179 1180 lockdep_assert_held(&cpu_base->lock); 1181 1182 debug_deactivate(timer); 1183 cpu_base->running = timer; 1184 1185 /* 1186 * Separate the ->running assignment from the ->state assignment. 1187 * 1188 * As with a regular write barrier, this ensures the read side in 1189 * hrtimer_active() cannot observe cpu_base->running == NULL && 1190 * timer->state == INACTIVE. 1191 */ 1192 raw_write_seqcount_barrier(&cpu_base->seq); 1193 1194 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1195 fn = timer->function; 1196 1197 /* 1198 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1199 * timer is restarted with a period then it becomes an absolute 1200 * timer. If its not restarted it does not matter. 1201 */ 1202 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1203 timer->is_rel = false; 1204 1205 /* 1206 * Because we run timers from hardirq context, there is no chance 1207 * they get migrated to another cpu, therefore its safe to unlock 1208 * the timer base. 1209 */ 1210 raw_spin_unlock(&cpu_base->lock); 1211 trace_hrtimer_expire_entry(timer, now); 1212 restart = fn(timer); 1213 trace_hrtimer_expire_exit(timer); 1214 raw_spin_lock(&cpu_base->lock); 1215 1216 /* 1217 * Note: We clear the running state after enqueue_hrtimer and 1218 * we do not reprogram the event hardware. Happens either in 1219 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1220 * 1221 * Note: Because we dropped the cpu_base->lock above, 1222 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1223 * for us already. 1224 */ 1225 if (restart != HRTIMER_NORESTART && 1226 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1227 enqueue_hrtimer(timer, base); 1228 1229 /* 1230 * Separate the ->running assignment from the ->state assignment. 1231 * 1232 * As with a regular write barrier, this ensures the read side in 1233 * hrtimer_active() cannot observe cpu_base->running == NULL && 1234 * timer->state == INACTIVE. 1235 */ 1236 raw_write_seqcount_barrier(&cpu_base->seq); 1237 1238 WARN_ON_ONCE(cpu_base->running != timer); 1239 cpu_base->running = NULL; 1240 } 1241 1242 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now) 1243 { 1244 struct hrtimer_clock_base *base = cpu_base->clock_base; 1245 unsigned int active = cpu_base->active_bases; 1246 1247 for (; active; base++, active >>= 1) { 1248 struct timerqueue_node *node; 1249 ktime_t basenow; 1250 1251 if (!(active & 0x01)) 1252 continue; 1253 1254 basenow = ktime_add(now, base->offset); 1255 1256 while ((node = timerqueue_getnext(&base->active))) { 1257 struct hrtimer *timer; 1258 1259 timer = container_of(node, struct hrtimer, node); 1260 1261 /* 1262 * The immediate goal for using the softexpires is 1263 * minimizing wakeups, not running timers at the 1264 * earliest interrupt after their soft expiration. 1265 * This allows us to avoid using a Priority Search 1266 * Tree, which can answer a stabbing querry for 1267 * overlapping intervals and instead use the simple 1268 * BST we already have. 1269 * We don't add extra wakeups by delaying timers that 1270 * are right-of a not yet expired timer, because that 1271 * timer will have to trigger a wakeup anyway. 1272 */ 1273 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1274 break; 1275 1276 __run_hrtimer(cpu_base, base, timer, &basenow); 1277 } 1278 } 1279 } 1280 1281 #ifdef CONFIG_HIGH_RES_TIMERS 1282 1283 /* 1284 * High resolution timer interrupt 1285 * Called with interrupts disabled 1286 */ 1287 void hrtimer_interrupt(struct clock_event_device *dev) 1288 { 1289 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1290 ktime_t expires_next, now, entry_time, delta; 1291 int retries = 0; 1292 1293 BUG_ON(!cpu_base->hres_active); 1294 cpu_base->nr_events++; 1295 dev->next_event = KTIME_MAX; 1296 1297 raw_spin_lock(&cpu_base->lock); 1298 entry_time = now = hrtimer_update_base(cpu_base); 1299 retry: 1300 cpu_base->in_hrtirq = 1; 1301 /* 1302 * We set expires_next to KTIME_MAX here with cpu_base->lock 1303 * held to prevent that a timer is enqueued in our queue via 1304 * the migration code. This does not affect enqueueing of 1305 * timers which run their callback and need to be requeued on 1306 * this CPU. 1307 */ 1308 cpu_base->expires_next = KTIME_MAX; 1309 1310 __hrtimer_run_queues(cpu_base, now); 1311 1312 /* Reevaluate the clock bases for the next expiry */ 1313 expires_next = __hrtimer_get_next_event(cpu_base); 1314 /* 1315 * Store the new expiry value so the migration code can verify 1316 * against it. 1317 */ 1318 cpu_base->expires_next = expires_next; 1319 cpu_base->in_hrtirq = 0; 1320 raw_spin_unlock(&cpu_base->lock); 1321 1322 /* Reprogramming necessary ? */ 1323 if (!tick_program_event(expires_next, 0)) { 1324 cpu_base->hang_detected = 0; 1325 return; 1326 } 1327 1328 /* 1329 * The next timer was already expired due to: 1330 * - tracing 1331 * - long lasting callbacks 1332 * - being scheduled away when running in a VM 1333 * 1334 * We need to prevent that we loop forever in the hrtimer 1335 * interrupt routine. We give it 3 attempts to avoid 1336 * overreacting on some spurious event. 1337 * 1338 * Acquire base lock for updating the offsets and retrieving 1339 * the current time. 1340 */ 1341 raw_spin_lock(&cpu_base->lock); 1342 now = hrtimer_update_base(cpu_base); 1343 cpu_base->nr_retries++; 1344 if (++retries < 3) 1345 goto retry; 1346 /* 1347 * Give the system a chance to do something else than looping 1348 * here. We stored the entry time, so we know exactly how long 1349 * we spent here. We schedule the next event this amount of 1350 * time away. 1351 */ 1352 cpu_base->nr_hangs++; 1353 cpu_base->hang_detected = 1; 1354 raw_spin_unlock(&cpu_base->lock); 1355 delta = ktime_sub(now, entry_time); 1356 if ((unsigned int)delta > cpu_base->max_hang_time) 1357 cpu_base->max_hang_time = (unsigned int) delta; 1358 /* 1359 * Limit it to a sensible value as we enforce a longer 1360 * delay. Give the CPU at least 100ms to catch up. 1361 */ 1362 if (delta > 100 * NSEC_PER_MSEC) 1363 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1364 else 1365 expires_next = ktime_add(now, delta); 1366 tick_program_event(expires_next, 1); 1367 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1368 ktime_to_ns(delta)); 1369 } 1370 1371 /* called with interrupts disabled */ 1372 static inline void __hrtimer_peek_ahead_timers(void) 1373 { 1374 struct tick_device *td; 1375 1376 if (!hrtimer_hres_active()) 1377 return; 1378 1379 td = this_cpu_ptr(&tick_cpu_device); 1380 if (td && td->evtdev) 1381 hrtimer_interrupt(td->evtdev); 1382 } 1383 1384 #else /* CONFIG_HIGH_RES_TIMERS */ 1385 1386 static inline void __hrtimer_peek_ahead_timers(void) { } 1387 1388 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1389 1390 /* 1391 * Called from run_local_timers in hardirq context every jiffy 1392 */ 1393 void hrtimer_run_queues(void) 1394 { 1395 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1396 ktime_t now; 1397 1398 if (__hrtimer_hres_active(cpu_base)) 1399 return; 1400 1401 /* 1402 * This _is_ ugly: We have to check periodically, whether we 1403 * can switch to highres and / or nohz mode. The clocksource 1404 * switch happens with xtime_lock held. Notification from 1405 * there only sets the check bit in the tick_oneshot code, 1406 * otherwise we might deadlock vs. xtime_lock. 1407 */ 1408 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1409 hrtimer_switch_to_hres(); 1410 return; 1411 } 1412 1413 raw_spin_lock(&cpu_base->lock); 1414 now = hrtimer_update_base(cpu_base); 1415 __hrtimer_run_queues(cpu_base, now); 1416 raw_spin_unlock(&cpu_base->lock); 1417 } 1418 1419 /* 1420 * Sleep related functions: 1421 */ 1422 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1423 { 1424 struct hrtimer_sleeper *t = 1425 container_of(timer, struct hrtimer_sleeper, timer); 1426 struct task_struct *task = t->task; 1427 1428 t->task = NULL; 1429 if (task) 1430 wake_up_process(task); 1431 1432 return HRTIMER_NORESTART; 1433 } 1434 1435 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1436 { 1437 sl->timer.function = hrtimer_wakeup; 1438 sl->task = task; 1439 } 1440 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1441 1442 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1443 { 1444 hrtimer_init_sleeper(t, current); 1445 1446 do { 1447 set_current_state(TASK_INTERRUPTIBLE); 1448 hrtimer_start_expires(&t->timer, mode); 1449 1450 if (likely(t->task)) 1451 freezable_schedule(); 1452 1453 hrtimer_cancel(&t->timer); 1454 mode = HRTIMER_MODE_ABS; 1455 1456 } while (t->task && !signal_pending(current)); 1457 1458 __set_current_state(TASK_RUNNING); 1459 1460 return t->task == NULL; 1461 } 1462 1463 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1464 { 1465 struct timespec rmt; 1466 ktime_t rem; 1467 1468 rem = hrtimer_expires_remaining(timer); 1469 if (rem <= 0) 1470 return 0; 1471 rmt = ktime_to_timespec(rem); 1472 1473 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1474 return -EFAULT; 1475 1476 return 1; 1477 } 1478 1479 long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1480 { 1481 struct hrtimer_sleeper t; 1482 struct timespec __user *rmtp; 1483 int ret = 0; 1484 1485 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1486 HRTIMER_MODE_ABS); 1487 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1488 1489 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1490 goto out; 1491 1492 rmtp = restart->nanosleep.rmtp; 1493 if (rmtp) { 1494 ret = update_rmtp(&t.timer, rmtp); 1495 if (ret <= 0) 1496 goto out; 1497 } 1498 1499 /* The other values in restart are already filled in */ 1500 ret = -ERESTART_RESTARTBLOCK; 1501 out: 1502 destroy_hrtimer_on_stack(&t.timer); 1503 return ret; 1504 } 1505 1506 long hrtimer_nanosleep(struct timespec64 *rqtp, struct timespec __user *rmtp, 1507 const enum hrtimer_mode mode, const clockid_t clockid) 1508 { 1509 struct restart_block *restart; 1510 struct hrtimer_sleeper t; 1511 int ret = 0; 1512 u64 slack; 1513 1514 slack = current->timer_slack_ns; 1515 if (dl_task(current) || rt_task(current)) 1516 slack = 0; 1517 1518 hrtimer_init_on_stack(&t.timer, clockid, mode); 1519 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); 1520 if (do_nanosleep(&t, mode)) 1521 goto out; 1522 1523 /* Absolute timers do not update the rmtp value and restart: */ 1524 if (mode == HRTIMER_MODE_ABS) { 1525 ret = -ERESTARTNOHAND; 1526 goto out; 1527 } 1528 1529 if (rmtp) { 1530 ret = update_rmtp(&t.timer, rmtp); 1531 if (ret <= 0) 1532 goto out; 1533 } 1534 1535 restart = ¤t->restart_block; 1536 restart->fn = hrtimer_nanosleep_restart; 1537 restart->nanosleep.clockid = t.timer.base->clockid; 1538 restart->nanosleep.rmtp = rmtp; 1539 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1540 1541 ret = -ERESTART_RESTARTBLOCK; 1542 out: 1543 destroy_hrtimer_on_stack(&t.timer); 1544 return ret; 1545 } 1546 1547 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1548 struct timespec __user *, rmtp) 1549 { 1550 struct timespec64 tu64; 1551 struct timespec tu; 1552 1553 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1554 return -EFAULT; 1555 1556 tu64 = timespec_to_timespec64(tu); 1557 if (!timespec64_valid(&tu64)) 1558 return -EINVAL; 1559 1560 return hrtimer_nanosleep(&tu64, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1561 } 1562 1563 /* 1564 * Functions related to boot-time initialization: 1565 */ 1566 int hrtimers_prepare_cpu(unsigned int cpu) 1567 { 1568 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1569 int i; 1570 1571 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1572 cpu_base->clock_base[i].cpu_base = cpu_base; 1573 timerqueue_init_head(&cpu_base->clock_base[i].active); 1574 } 1575 1576 cpu_base->cpu = cpu; 1577 hrtimer_init_hres(cpu_base); 1578 return 0; 1579 } 1580 1581 #ifdef CONFIG_HOTPLUG_CPU 1582 1583 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1584 struct hrtimer_clock_base *new_base) 1585 { 1586 struct hrtimer *timer; 1587 struct timerqueue_node *node; 1588 1589 while ((node = timerqueue_getnext(&old_base->active))) { 1590 timer = container_of(node, struct hrtimer, node); 1591 BUG_ON(hrtimer_callback_running(timer)); 1592 debug_deactivate(timer); 1593 1594 /* 1595 * Mark it as ENQUEUED not INACTIVE otherwise the 1596 * timer could be seen as !active and just vanish away 1597 * under us on another CPU 1598 */ 1599 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1600 timer->base = new_base; 1601 /* 1602 * Enqueue the timers on the new cpu. This does not 1603 * reprogram the event device in case the timer 1604 * expires before the earliest on this CPU, but we run 1605 * hrtimer_interrupt after we migrated everything to 1606 * sort out already expired timers and reprogram the 1607 * event device. 1608 */ 1609 enqueue_hrtimer(timer, new_base); 1610 } 1611 } 1612 1613 int hrtimers_dead_cpu(unsigned int scpu) 1614 { 1615 struct hrtimer_cpu_base *old_base, *new_base; 1616 int i; 1617 1618 BUG_ON(cpu_online(scpu)); 1619 tick_cancel_sched_timer(scpu); 1620 1621 local_irq_disable(); 1622 old_base = &per_cpu(hrtimer_bases, scpu); 1623 new_base = this_cpu_ptr(&hrtimer_bases); 1624 /* 1625 * The caller is globally serialized and nobody else 1626 * takes two locks at once, deadlock is not possible. 1627 */ 1628 raw_spin_lock(&new_base->lock); 1629 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1630 1631 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1632 migrate_hrtimer_list(&old_base->clock_base[i], 1633 &new_base->clock_base[i]); 1634 } 1635 1636 raw_spin_unlock(&old_base->lock); 1637 raw_spin_unlock(&new_base->lock); 1638 1639 /* Check, if we got expired work to do */ 1640 __hrtimer_peek_ahead_timers(); 1641 local_irq_enable(); 1642 return 0; 1643 } 1644 1645 #endif /* CONFIG_HOTPLUG_CPU */ 1646 1647 void __init hrtimers_init(void) 1648 { 1649 hrtimers_prepare_cpu(smp_processor_id()); 1650 } 1651 1652 /** 1653 * schedule_hrtimeout_range_clock - sleep until timeout 1654 * @expires: timeout value (ktime_t) 1655 * @delta: slack in expires timeout (ktime_t) 1656 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1657 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME 1658 */ 1659 int __sched 1660 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1661 const enum hrtimer_mode mode, int clock) 1662 { 1663 struct hrtimer_sleeper t; 1664 1665 /* 1666 * Optimize when a zero timeout value is given. It does not 1667 * matter whether this is an absolute or a relative time. 1668 */ 1669 if (expires && *expires == 0) { 1670 __set_current_state(TASK_RUNNING); 1671 return 0; 1672 } 1673 1674 /* 1675 * A NULL parameter means "infinite" 1676 */ 1677 if (!expires) { 1678 schedule(); 1679 return -EINTR; 1680 } 1681 1682 hrtimer_init_on_stack(&t.timer, clock, mode); 1683 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1684 1685 hrtimer_init_sleeper(&t, current); 1686 1687 hrtimer_start_expires(&t.timer, mode); 1688 1689 if (likely(t.task)) 1690 schedule(); 1691 1692 hrtimer_cancel(&t.timer); 1693 destroy_hrtimer_on_stack(&t.timer); 1694 1695 __set_current_state(TASK_RUNNING); 1696 1697 return !t.task ? 0 : -EINTR; 1698 } 1699 1700 /** 1701 * schedule_hrtimeout_range - sleep until timeout 1702 * @expires: timeout value (ktime_t) 1703 * @delta: slack in expires timeout (ktime_t) 1704 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1705 * 1706 * Make the current task sleep until the given expiry time has 1707 * elapsed. The routine will return immediately unless 1708 * the current task state has been set (see set_current_state()). 1709 * 1710 * The @delta argument gives the kernel the freedom to schedule the 1711 * actual wakeup to a time that is both power and performance friendly. 1712 * The kernel give the normal best effort behavior for "@expires+@delta", 1713 * but may decide to fire the timer earlier, but no earlier than @expires. 1714 * 1715 * You can set the task state as follows - 1716 * 1717 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1718 * pass before the routine returns unless the current task is explicitly 1719 * woken up, (e.g. by wake_up_process()). 1720 * 1721 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1722 * delivered to the current task or the current task is explicitly woken 1723 * up. 1724 * 1725 * The current task state is guaranteed to be TASK_RUNNING when this 1726 * routine returns. 1727 * 1728 * Returns 0 when the timer has expired. If the task was woken before the 1729 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1730 * by an explicit wakeup, it returns -EINTR. 1731 */ 1732 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 1733 const enum hrtimer_mode mode) 1734 { 1735 return schedule_hrtimeout_range_clock(expires, delta, mode, 1736 CLOCK_MONOTONIC); 1737 } 1738 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1739 1740 /** 1741 * schedule_hrtimeout - sleep until timeout 1742 * @expires: timeout value (ktime_t) 1743 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1744 * 1745 * Make the current task sleep until the given expiry time has 1746 * elapsed. The routine will return immediately unless 1747 * the current task state has been set (see set_current_state()). 1748 * 1749 * You can set the task state as follows - 1750 * 1751 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1752 * pass before the routine returns unless the current task is explicitly 1753 * woken up, (e.g. by wake_up_process()). 1754 * 1755 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1756 * delivered to the current task or the current task is explicitly woken 1757 * up. 1758 * 1759 * The current task state is guaranteed to be TASK_RUNNING when this 1760 * routine returns. 1761 * 1762 * Returns 0 when the timer has expired. If the task was woken before the 1763 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1764 * by an explicit wakeup, it returns -EINTR. 1765 */ 1766 int __sched schedule_hrtimeout(ktime_t *expires, 1767 const enum hrtimer_mode mode) 1768 { 1769 return schedule_hrtimeout_range(expires, 0, mode); 1770 } 1771 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1772